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Chapter 1

Introduction.

During the last fifteen years, successful theoretical and experimental work have led to
the creation of a new domain of atomic and molecular physics - the cooling and trap-
ping of atoms using light and electro-magnetic fields. Cooling means that the mean
energy (i.e. temperature, E = kT') of the kinetic motion of atoms becomes smaller.
For example, in typical magneto-optical traps with cesium atoms, velocities of atoms
are of the order of 0.1 cm/s (~ 100 pK), whereas at the room temperature atoms
have velocities of about 200 cm/s. Part of the interest in cooling was stimulated by
a large number of applications of cold atoms. At the fundamental level applications
include high resolution photo-association spectroscopy (reviewed by J. Weiner et al.
[142] and by W. C. Stwalley and H. Wang et al. [121]) and the study of collisions at
ultra-low energies (several uK) [31, 41]. More practical applications include atomic
clocks, atomic lasers and interferometers, the development of instruments for atomic
optics and atomic lithography. An additional impressive phenomenon, recently ex-
perimentally observed is Bose-Einstein condensation [8, 23, 33].

The principle of trapping and cooling is based on the mechanical effect of light.
The first theoretical and experimental works on the laser trapping of atoms were
begun over 30 years ago. In 1968 V. Letokhov proposed that atom could be trapped
in a light beam using the dipole force [80, 81]. He and his coworkers defined a so-called
Doppler limit of laser cooling of atoms [82] — a temperature minimum, determined by
the heating due to the spontaneous emission into a lower state. The first proposal to
cool neutral atoms in counter-propagating laser beams was made by T.W.Hinsch and
A. L. Schawlow in 1975 [49]. At the same time, a similar proposal was put forward
by D. J. Wineland and H.G. Dehmelt [143], to be used for ions in ion traps. Hansch
and Schawlow proposed to cool neutral atoms in pairs of counter-propagating laser
beams detuned slightly below a resonance transition of the atoms.

Alkali atoms were the first species to be trapped and cooled to ultra-low tem-
perature due to their relatively simple structure. The method of the laser cooling,
proposed by Hansch and Schawlow, was experimentally carried out first by S. Chu
in 1985 [26]. S. Chu used six red-shifted laser beams in order to stop sodium atoms
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(see Fig. 1.1). This type of cooling was called Doppler cooling. Another method was
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Figure 1.1: The first experiment using the Doppler cooling. Schematic drawing of the vacuum
chamber, intersecting laser beams and atomic beam [145].

proposed by W. Phillips et al. [19]. W. Phillips using Zeeman slower and optical
molasses obtained a temperature of about 40 K for Na atoms. This temperature
was lower than the Doppler limit. The explanation of this effect and further develop-
ment was made by C. Cohen-Tannoud;ji et al. [28]. This polarization gradient cooling
below the Doppler limit, is limited by the recoil energy of a single photon. It was
called the Sisyphus cooling. In 1987 J. Dalibard from the Ecole Normale first pro-
posed a “magneto-optical” trap, using a weak magnetic field and circularly polarized
light. After that the magneto-optical trap has become the most widely used setup for
the cooling. The subsequent works by Cohen-Tannoudji, A. Aspect, E. Arimondo,
R. Kaiser, N. Van-Steenkiste, C. Salomon [9, 10, 29, 60, 10] led to the creation of an-
other ingenious cooling scheme based on velocity-selective optical pumping of atoms
into a non-absorbing coherent superposition of states (so-called “dark” state). Using
this method helium atoms were cooled to a temperature of 0.25 p K.

1.1 Photo-associative spectroscopy of homonuclear
dimers

One of the most impressive experimental achievements carried out on trapped and
cooled atoms is photo-association spectroscopy (PAS).

The principle of PAS is based on possibility for two free atoms to absorb one
photon being excited into a bound molecular state (see, for example, Ref. [142] and
Fig. 1.2). The reaction for a pair of identical ground-state atoms A can be written
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in a form:
AnS)+ A(nS)+wy, — Az(Qyu(nS, nPyagz/2)iv,J) (1.1)

where the frequency wy is smaller than the resonant atomic transition nS —s nP
frequency w,. The energy difference w, — wy defines the bound energy of vibrational

level (v, J) (Fig. 1.2):

Y AnS+nP

>\ ____________ EEI_ = :

20 |
S

Q |

5 !

m I

I

W= -A, : o,
0 E. ¢ 1S4nS

Interatomic distance

F igure 1.2: The photo-association scheme. The energy w, corresponds to the atomic transition
nS — nP. Photon wy (wy < w,) is the photo-association step. It populates a ro-vibrational level
vy, Jp of the upper molecular state nS +nP starting from the two free atoms with the asymptotic
kinetic energy E.

we—wp =FE,+ FE (12)

where F is a relative asymptotic kinetic energy of two ground atoms. By scanning
the frequency wy, different vibrational levels (v, J) can be populated. The resolution
of photo-association experiment is limited by the width of the statistical distribution
of E. For a gas of atoms in a thermal equilibrium at temperature 300K, the width is
of order 200 cm™'; at temperature about 100 uK the width is of order 1 MHz [106].
At this temperature (100 xK), the statistical distribution width become comparable
and even smaller than the natural width. For example, for rubidium, the natural
width of the '3, (55 + 5P) state is 12 MHz.

Since the method of laser (Doppler) cooling works for two-levels atoms, the best
experimental realization of the ideal two-level system is provided by alkali atoms.
The ground state ns and the first excited state np of a single electron in alkali atoms
give the two-level system. Therefore, in most cases, photo-association experiments
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Figure 1.3: Potential curves of Rby correlated to the 5S + 5P dissociation limit of free atoms,
calculated without the spin-orbit interaction. (Calculated by Foucrault et al. [43] at small distances
and by M.Marinescu and A.Dalgarno [92] at large distances.)

are able to investigate molecular states of alkali dimers, which have dissociation limits
corresponding to nS 4+ nP and nP + nP free atoms.

The potential curves of all homonuclear alkali molecules are very similar. Figure
1.3 shows all potential curves of Rb, having the 55 + 5P dissociation limit. A dif-
ference between various alkali atoms that plays an important role in the behavior of
related molecules is the the spin-orbit splitting of the np electronic state. It gives
two different dissociation limits of the n.S + nP molecule. The spin-orbit splitting is
large for heavy alkali atoms, Rb and Cs where it should be taken into account. Fig-
ure 1.4 shows the potential curves for Rby calculated after account for the spin-orbit
coupling.

The first experiments with free-bound photo-absorption were carried out before
the development of laser cooling [112, 55]. In those experiments the population of
the initial free state was very broad due to high temperature of ground-state atoms.
As a result the fluorescence spectrum obtained was not very selective. One way to
improve the selectivity would be to use slow ground-state atoms in a PAS experiment.
H. Thorsheim et al. were the first who proposed to use trapped and cooled atoms
for the free-bound spectroscopy [126]. In that paper many features of PAS were
predicted: (1) precision measurement of rotational-vibrational progression from which
accurate potentials could be determined, (2) line profile measurements, (3) spectral
intensity modulation from which the ground-state potential and the scattering length
could be determined. In next several years many experimentalists investigated these
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Figure 1.4: The Rb, potential curves calculated from curves presented on the Fig. 1.3 with
accounting of the spin-orbit coupling (details of calculations are in the Appendix).

PAS features. The breakthrough in PAS and PAI experiments was achieved by two
separated experiments by P. Lett et al. [83] using sodium in a magneto-optical trap
(MOT) and by Miller et al. [51] in a far-off-resonance optical trap (FORT) [96] using
rubidium atoms in 1993.

In the photo-association experiment [83] with Sodium, two regular progression
were observed, corresponding to different vibrational levels of single excited poten-
tial curve of Nay molecule correlated to the 35 + 3P5/5 limit of free atoms. These
series were attributed to 1, and 0F potential curves. The experiment allowed to de-
termine these potential curves with high accuracy. Since the long-range potentials
correlated to the 35 + 3P5/; limit have the asymptotic behavior Cs/R?, the exper-
imental spectral series can serve for determination of coefficients Cs, using the law
of Leroy-Bernstein [78]. In 1994 Ratliff et al. [109] improved the experiment [83]
using so-called “dark-spot” MOT [63] and increasing the ionic signal by two orders
of magnitude. This experiment revealed new series of 35 + 3P, /2 manifold attributed
to 1,, 0F and 0, vibrational series. Due to their high experimental resolution the
rotational and hyperfine structure was observed as well. Furthermore, in this experi-
ment it was shown that measurements of the fluorescence loss during the trap phase
and measurements of the ionization production can serve to better attribute different
peaks in the spectra [142].

In the experiment of Miller et al. [51] with Rubidium another interesting feature
was revealed. The spectrum exhibits slow oscillations of line intensities. The transi-
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tion probability for PA is defined by the matrix element of dipole transition moment.
The latter is governed by the overlap of ground state and excited state wave func-
tions. The main contribution to this overlap is given by the outer turning point R,
of the nuclear wave function in the excited potential. If the wave function of ground
state has a maximum at this internuclear distance, then the transition probability is
large. If the ground-state wave function has a node at R = R,, then the transition
probability is small. Thus the oscillations of transition probability reflect nodes and
anti-nodes of the scattering wave function [126, 142]. By scanning the excitation
frequency one can obtain the shape of the ground state wave function. In particular,
the scattering length can be determined. In an improved experiment (Heinzen et al.)
[27] the C3 coefficients were determined for the 1, and 0f potentials.

The photo-association experiments with Lithium (®Li and “Li) were performed
by the Hulet group in 1995. Cj5 coefficients, atomic lifetimes and scattering lengths
were determined [1, 93]. The C5 coeflicient was defined with very high precision. In
1996 Abraham et al. [2] reported spectra with a resolved hyperfine structure for both
isotopes.

The experiments with Potassium were carried out by the groups of Stwalley and
Gould [135, 136, 139]. 0, 1, and 0] series were identified in the obtained spectrum.
Later, Wang et al. [137] reported a full study of the six long-range states of 0, 1,
and 0, symmetries, three states dissociating to the 4S5 + 4P;), asymptote and other
three states dissociating to the 45 4 4P/, asymptote. This authors determined Cs
constants, radiative lifetimes and reported also, for the first time, the pure long range
1, state [138].

In 1998 the group of P. Pillet reported for the first time PAS experiments with
Cesium [41] (see below). A spectrum of 0; (65 -+ 6P52) state was observed. The
Cs coefficient of 0; (65 + 6P;/;) was defined as well. More recently, several papers
[42, 31] reported the 1,, 1,, 0f PA spectra of Csy, (65 4 6P5/3). An accurate RKR
potential 0; (65 + 6Ps/;) has been determined using the experimental data.

Recently, the first results of PAS experiments with polarized Hydrogen were
published [101]. The group from Utrecht reported the first experiment with cold
meta-stable Helium atoms [144]. They observed for the first time vibrational levels
in He*(225).

Another feature present in PA spectra is the broadening of spectral lines caused
by various pre-dissociation processes. The loss of atoms from the trap is connected to
finite lifetimes of excited molecular state. In many cases the mechanism of the trap
loss is not well described theoretically. Among the experiments with the trap loss
and measurements of line widths are direct measurements of fine-structure collision
losses of Cs [40], isotopic difference in trap loss collisions [134], pre-dissociation of
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Figure 1.5: Diagram of the Cs; optical transitions and molecular states relevant for the photo-
association experiment. The vibrational level shown represents schematically a level of one of the
four curves. Spontaneous emission leads to: (i) trap-loss by desexcitation in two free atoms occurring
from the four curves. (ii) and (iii) formation of translationally cold molecules in the X! T} and a®f,
by desexcitation of the 1, and 0, states respectively. (Taken from [42])

1.2 “Laser cooling” of molecules

With the development of laser cooling techniques and PAS, it became possible to
observe and study cold molecules. Despite the great progress, the technique of atoms
cooling cannot be applied to molecules directly. The direct cooling of molecules
remains a difficult problem, mostly because of enhanced spectral complexity of
molecules and multiple spontaneous decay channels. Excited molecules have many
more decay channels. All these channels must be re-pumped again into the excited
state. It requires many different laser frequencies [13, 31]. The situation is similar
to cooling of atoms with hyperfine structure, when one needs an additional laser fre-
quency in order to re-pump non-resonant hyperfine level to which the spontaneous
emission from the excited level occurs.

Translationally cold molecules were reported for the first time [41] in the Ce-
sium trap at the temperature about 300K (corresponding to the velocity 13 cm/ 8).
The originality of the experiment was in detection of Cs§ molecular ions by photo-
lonization of Cs; triplet ground state molecules, produced by spontaneous decay of
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the excited molecular state formed by photo-association. The experimental scheme
is shown in figure 1.5. The formation of cold ground-state molecules in this exper-
iment is favored due to the particular shape of the 0, and 1, potential curves (see
the figure). These curves have the second shallow well at distances about 25 a,.
Therefore they also possess a Condon point at intermediate internuclear distances
(near 15 — 18 ag) [42] that favours spontaneous emission to the ground molecular
state (arrows 7 and 77 in Fig. 1.5).

Later on several experiments were reported with the cold molecules produced in
different ways.

Knize et al. observed cold cesium molecules formed not by photo-association,
but by the trap laser. The number of molecules was very small, about 20-30. The
molecules stayed in the trap for 0.5 s. [122].

The group of Stwalley reported the observation of ultra-cold ground-state Potas-
sium molecules [103]. For potassium, the intermediate Condon point is situated at
very large distances. However, using the fact that K, spectroscopy is very well known,
the authors could predict for which transition 0F — 'Y} the Franck-Condon factor
is favourable. They could observe cold molecules in the ground molecular state 12;‘.

C. Gabbanini et al. have initiated experiments with Rubidium atoms.

The future research in cooling of molecules involves several aspects: 1) improv-
ing and optimizing formation of ultra-cold molecules; 2) trapping cold molecules; 3)
cooling the internal degrees of freedom; 4) achieving non-destructive techniques of
detection; 5) working toward realization of a Bose-Einstein condensate of molecules.
The feasible applications of ultra-cold molecules are in metrology, chemistry, inter-
ferometry of molecules, and a molecular laser. In order to realize these programs one
needs to develop new theoretical and computing techniques.

1.3 Heteronuclear alkali diatoms

Another promising direction is the possibility to trap and study heteronuclear sys-
tems. Heteronuclear diatoms are interesting because they have a permanent dipole
moment, that allows to trap them by an electrostatic field. Another particularly im-
portant difference is that the interaction of a ground-excited-state heteronuclear pair
lacks the long-range resonant dipole contribution (V & C3/R3) which plays a deci-
sive role in the homonuclear case. Instead, the long-range part of the heteronuclear
pair potential is generally dominated by a comparatively shorter range interaction
(V = Cs/R® or Cs/R®, for example). One consequence of this difference is that
the absorption of the photo-associating photon occurs at a much smaller internu-
clear spacing (R.;) for a heteronuclear as compared to a homonuclear pair. In the
photo-association experiment with Na, one has R., =~ 1800 ao, whereas for NaCs
the separation R, is estimated as =~ 40 — 100 a¢ in case of 10 MHz detuning from
the resonant frequency [116]. Some experiments with heteronuclear alkali atoms have
been published. Weidemiiller et al. reported their observation of cold collisions in
lithium-cesium MOT [113]. In the experiment of J. Shaffer et al. [116] NaCs cold
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collisions have been observed. The theoretical study of heteronuclear systems in the
context of PAS was presented by Stwalley et al. [140].

1.4 Theoretical techniques for cold diatoms

In many cases theoretical description of cold diatomic systems within the Born-
Oppenheimer approximation can be subdivided in two parts: 1) definition of potential
curves in this approximation and 2) simulation of dynamics on these potentials. The
first problem is beyond of the scope of the present thesis. There are two approaches
to the second problem corresponding to two forms of the Schrédinger equation: time-
independent and time-dependent.

The time-independent method is used for many physical problems, in particular,
for calculation of bound states, resonances and lifetimes, wave functions of bound and
pre-dissociated states (this is considered in the present thesis). The time-dependent
approach is generally applied when a subject of interest is the temporal evolution of
an initial state. But the same approach can be used also for calculation of bound
states and wave function, resonances and lifetimes.

1.4.1 Time-independent methods

There are many different numerical methods for integration of the Schrodinger equa-
tion. Among the most commonly used, the Runge-Kutta methods [146] for numerical
integration of ordinary differential equations are popular because of their simplicity
and efficiency (see, for example, the book by M. Abramowitz and I. Stegun [3]).
The Numerov [146] method is also frequently used (see, for example, the book by
W.Press et al., [108]). This is a two-step, fifth order predictor-corrector method for
a second-order ordinary differential equation. The Numerov method was found to
be more precise for this problem than the Runge-Kutta methods. In both Runge-
Kutta and Numerov methods the variable step in coordinate can be introduced in
order to adapt it to fast or slow variation of the integrand. A variable step was
introduced in the Numerov method by Simos and Mousadis [118, 119] and by Coté
and Jamieson [32]. Runge-Kutta and Numerov methods are so-called finite-order
difference methods. They are based on a local polynomial approximation of the
function and therefore the convergence of these methods follows a power low Az”,
where Az is a grid step and n is the order of the finite difference approximation. Due
to their local character, the finite difference methods usually need grids with very
large number of points.

An alternative to the Numerov method is the method of the variational matrix
representation in which an orthonormal basis of N functions is used, and variational
coefficients are determined by diagonalization. In this variational basis representation
(VBR), the operators are represented in terms of their projections onto a basis of L2
functions. The eigenvalues of truncated (N x N) matrix are usually determined by
diagonalization.
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In 1982-1984 J. Light et al. [85, 86) have developed the Discrete Variable Rep-
resentation (DVR) method. The method is based on the representation of the wave
function on a grid of points, and in the same time, a unitary transformation maps N
functions to a unique set of N points. The DVR basis is constructed in such a way
that the amplitudes of a wave function on grid points directly give expansion coefh-
cients of the wave function over the related basis. Thus the DVR method includes
some properties of Numerov method and VBR method. All operators in DVR are
represented by matrices N x N (as it is in VBR method) where N is a number of
grid points. Eigenvalues and eigenfunctions of a multichannel potential are defined
by a simple diagonalization of the Hamiltonian matrix. In some sense, both DVR and
VBR methods are isomorphic - the DVR grid can be “constructed” from the VBR
basis. In 1983-1993 R. Kosloff and D. Kosloff ( [67, 68, 70]) reported a special case
of VBR methods - the Fourier grid representation (FGR) method, where the basis
of of exponential functions was employed. The great advantage of the method is the
simple connection between the truncated L? basis of functions and equally spaced
grids in coordinate spaces. The transformation between split spaces (between grids)
is carried out by a discrete Fourier transform. Now the FGR method is widely used
(see, for instance, (30, 35, 127, 34, 99, 100]). In application to the time-independent
Schrodinger equation it is referred to as the Fourier Grid Hamiltonian method [35].

1.4.2 Time-dependent methods. The Chebyshev polynomial
expansion method

When solving the time-dependent Schrédinger equation in most cases one employs the
second-order difference, split operator propagation, Chebyshev polynomial expansion
or Lanczos method. The brief description together with comparative discussion of
precision and efficiency of these methods can be found in [77, 98].

One of the most frequently used methods is the split operator method. It is based
on the fact that in most cases the Hamiltonian H can be split into two non-commuting
parts with a simple transformation between them, namely the kinetic energy term T
and the potential term V [77]. The time-propagation operator U(At) = exp(—:HA?)
in this case is presented as a product of three operators:

U(AL) = exp(—%TAt) exp(—iVA?) exp(—%TAt) . (1.3)

The kinetic part of the Hamiltonian is diagonal in the momentum space, the potential
is diagonal in the coordinate representation. Therefore, the propagation operator
U(At) can be easily evaluated by the matrix multiplication. The transformation
between the configuration and the momentum spaces are performed by the Fourier
transformation.

The Lanczos method is recommended for time-dependent potentials. It is a short-
time propagation scheme. It does not impose any restriction on the form of the

Hamiltonian 77, 98].
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Among the time-dependent methods the most precise one is expansion of prop-
agator over Chebyshev polynomials as proposed by R. Kosloff and H. Tal-Ezer in
series of papers [123, 71, 72]. Later E. Fattal and R. Kosloff [72] proposed to adapt
the working grid in order to improve distribution of points over the grid. They used
an analytical transformation of the coordinate (the mapping). The mapping was
applied to the time-dependent and time-independent Schrodinger equations. Such a
mapped grid was used for solution of the Coulomb problems with a singularity. The
multi-dimensional version of the Fourier grid representation method is also discussed

in Ref. [72].

1.5 Organization of the Thesis

The subject of this thesis is a further development of both time-independent and
time-dependent approaches adapted for diatomic systems when the energy is close
(below and above) to the molecular dissociation limit. As an applications, the thesis
discusses the most typical problems of the theoretical interpretation of experiment
with cold diatoms: calculations of bound levels for one- or multi-channel potentials,
calculations of lifetimes and resonances of pre-dissociated vibrational levels, simula-
tion of dynamics of cold atom collisions.

The thesis is organized as follows. Chapter 2 describes the Mapped Fourier Grid
Representation (MFGR) method. The method is adapted for calculation of bound
levels for a multi-channel potential in diabatic and adiabatic representation. By
introducing the absorptive potential into the method we are able to calculate lifetimes
of pre-dissociated vibrational levels. Further on, the method is used for solution
of the time-dependent Schrédinger equation. It is demonstrated that the mapped
time-dependent techniques is an eflicient tool for simulation of dynamics of slow
atomic collisions. The lifetimes are calculated by two methods: by the time-dependent
method and by the time-independent method with an absorptive potential. This
allows us to verify the applicability of both approaches.

Chapter 3 is devoted to the accuracy of the developed techniques (time-dependent
and time-independent) method and to the comparison with other methods.

In chapter 4 the techniques are applied to various problems. The bound levels
of 0F symmetries of Cs; and Rb; diatoms are calculated. It is found that for this
symmetry small variation of the molecular fine structure coupling can have strong
effect of the perturbations in the spectrum. These perturbations are investigated
and parameterized using the Multichannel Quantum Defect theory. Lifetimes of
pre-dissociated levels of the 0} symmetry of Rby and Cs, are determined with two
methods — by the time-independent method with the absorptive potential and by the
time-dependent method using the Chebyshev propagator. We find strong isotopic
difference in lifetimes of pre-dissociated levels of 0} symmetry for two isotopes: ®Rb,
and 87R,b2.

Chapter 5 describes another application. The symmetry breaking between 'II,,
and 'TI, states of ®Li"Li observed in the experiment is explained using the developed
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method and a simple model of coupling between 'II, and I, molecular states.

The Appendix contains description and calculation of potential curves of n.5+n P-
symmetry with the spin-orbit coupling and some features of diabatic and adiabatic
representations of the Schrodinger equation.









Chapter 2

Mapped Fourier Grid
Representation Method for Cold
Collisions.

As discussed in the Introduction, the Fourier grid representation (FGR) method is
one of the most effective methods for solution of the Schrodinger equation. It is
widely used for applications (for example, works by M. Monnerville and J. M. Robbe
[99, 100], by O. Dulieu et al. [35]). The FGR method has many advantages of both,
finite-order difference and VBR, methods. The FGR method represents the wave
function by coefficients of expansion over basis functions as in VBR method. At the
same time these coefficients represent values of the wave function on the coordinate
grid, as in the Numerov-type methods. As a result, the Hamiltonian is represented by
a matrix, but the elements of the matrix are related to the values of the Hamiltonian
on the grid. A second advantage of the FGR method is the choice of expansion func-
tions (complex exponents) allows one to easily switch from momentum to coordinate
representations of the wave function and vice versa. The third advantage is that,
knowing the initial conditions of the problem and using properties of the representa-
tion by exponential basis, one can determine the number of basis functions and the
accuracy of the representation by this basis prior to calculations. The disadvantage
of the ordinary FGR method is the constant grid step. Since the step cannot be too
big, a Hamiltonian with a long-range potential demands a grid with a large number
of mesh points. Therefore it becomes virtually impossible to apply the FGR method
to the problems of cold collisions and to calculation of bound vibrational levels for
long-range potentials.

This chapter of the Thesis describes how the FGR method can be modified in order
to include large internuclear separations into consideration. It is made by an adaptive
coordinate transformation (or mapping) of the Schrédinger equation in such way that
“local completeness” of the basis would be sufficient to correctly represent the wave
function locally. In other words, the coordinate grid defined by the exponential basis
with the mapping would be more dense in regions where wave function varies more
rapidly. The mapping uniformly “distributes” the grid points between oscillations of



22 Mapped Fourier Grid Representation Method for Cold Collisions.

wave functions. It allows one to introduce a unique parameter of the points density,
i.e. number of mesh points per oscillation (the 1/8 parameter). This parameter
defines a priori the accuracy of the calculation.

In section 2.1 the ordinary FGR method is described and the completeness of the
Fourier basis is discussed. Section 2.2 is devoted to the hermicity of the matrix of the
Hamiltonian in the Fourier grid representation. The hermicity of different terms in
the Hamiltonian is discussed. After that in section 2.3 we develop the mapped FGR
method for the Schrodinger equation in the diabatic basis. Section 2.4 describes the
mapped FGR (MFGR) method for the adiabatic representation. The next section
2.5 is devoted to the time-independent calculation of lifetimes by using the mapped
FGR method. Section 2.6 describes the mapped time-dependent FGR method that
employs the Chebyshev expansion scheme. Section 2.7 applies it to calculation of
lifetimes. The last section 2.8 describes how the mapping must be chosen. The
enveloping potential is introduced in order to make the proper choice.

2.1 Functions and operators in the FGR method

This section briefly reviews the Fourier grid method for representing the wave func-
tions. The scheme presented here, was developed mainly by R. Kosloff in 1983-1993
[70]. The FGR method can be considered as a special case of the General Collo-
cation Scheme [70] or Discrete Variable Representation (DVR) [85]. Functions are
represented on grid points. On the other hand, FGR method is also a special case of
the Variable Basis Representation (VBR) with the exponential functional basis. We
describe a general scheme for representing functions and operators on a grid.

2.1.1 Expansion basis. Wave function on the grid

An approximation of a wave function ¢(R) by a finite set of N; analytical linear-
independent functions g,(R) is given by formula

Y(R) = P(R) =) angn(R) - (2.1)

The wave function is represented by the Ny-component vector of coefficients a,,.
If the wave function t(R) is represented on a grid of N, points R; (j = 1,...N,),
then at grid points one has

(R;) = P(R;) = Y angn(R;) (2.2)

or in the matrix form
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where ¢ and a are Ny-component vectors, and G is Ny x N, matrix:

;i =Y(R;);  Gin = gn(Ry) - (2.4)

If Ny = Ny = N, the matrix G is invertible provided g, are linear-independent. The
coefficients a, in a vector form are expressed as

a=G 1. (2.5)

The two last equations demonstrate that descriptions of the vector 4 by coefficients
an, and by sampling points ¥(R;) are identical. In other words these descriptions are
different representations of one discrete function 1. The connection between these
representation is provided by the matrix G.

If the grid points are chosen so that the expansion functions obey the orthogonality
relation:

Z_g: 9n(Ri)gn(R;) = bij (2.6)

then according to Eq. (2.5) the coefficients a,, are calculated in a very simple way:

Ng
an =3 Yn(FR;)gn(R;) - (2.7)
j=1
If the basis set 9, (n = 1,... N,) is orthogonal and normalized:
Rlﬂﬂ_‘f
[ G (R)gm(R)R = bum, (238)
then the scalar product of two wave-functions
Ng
n=1
and
Ng
$(R) =D bgn(R) (2.10)
n=1
is expressed as
Ny
<plo>= 3 b (R))¢(R;) - (2.11)
i=1

One can consider linear space G constructed on the finite basis of L? functions defined
on the grid. As a consequence of the orthogonality relations this space becomes a
discrete vector space with a unitary transformation between the discrete sampling
points R; and the discrete functional basis g,.
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2.1.2 Exponential basis. Coordinate grid

In the Fourier grid method the expansion basis {gx(R)} is a set of N complex expo-
nential functions:

1 .
w(R) = —=e®™R/L k= _(N/2-1),...,0,...,(N/2),
! VN (2.12)

where index k is related to the momentum p. This choice of the basis has an advantage
that functions (2.12) are eigenfunctions of the momentum operator with eigenvalues
pr = 2wk/L. Thus the expansion coefficients of the wave function ¥(R) over basis
functions (2.12) have a meaning of values of the wave function in the momentum
space. This basis will be referred to as the coordinate basis, since the argument is
the coordinate R. It will be designated also {|px > (R)}:

1 . 21k
R) = ——e'Pf h =—. 2.1
lpx > (R) \/Ne ,  where py = — (2.13)
It is important that Eq. (2.13) gives relation between the smallest momentum Ap
that can be presented by such a basis and the length of the coordinate grid L.
2r
Ap=—. 2.14
P=7 (2.14)
A coordinate grid, corresponding to this basis and satisfying Eqs. (2.6) and (2.8)
is a set of equally-spaced points (Rmin; Rmez): Bj = Rpin+ (j — 1) * AR; j =
1,N; AR=L/N; L = Ryaoz — Rpin. Indeed, the functions gr(R) on this grid obey
Eq. (2.6):

N/2 1 N/2 - .
S (RG(Ra) =y Y. R/l
k=—N/2+l k:—N/Z-}-I
N2 i2m(n—m
1 Z i2mkn/L —i2mkm/L _ ie—mw(n_m)/N l—e (( )/)N s
__ pi2w(n—m nym -
N o=Hiz N E (2.15)

The orthogonality relation (2.8) in a discrete form is also satisfied:
N
> 9k(R;)gr (Rj) = Oy - (2.16)
7=1

Here Eq. (2.15) are used. Now the wave-function ¢ (R) is expanded over
functions:

_1 _i2rkR/L
VN e

] N/2 '
3 apemRRL (2.17)

R)~ —
’(/)( ) \/Nk=—N/2+1
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The expansion coefficients aj, are coeflicients of the discrete Fourier expansion. They
are calculated as

1 Y B
A = —— R e 2rkRi/L 2.18

These coefficients a, represent the amplitude of wave-function in the space k, i.e. in
the momentum space, at the points |py >. The expansion functions LNe"'z’rkRi/ L
define a basis in the momentum space. This space is canonically conjugate to the
coordinate space. The basis functions are designated as |R; > (p).

Thus two conjugated bases are defined:

lpk > (R) = ﬁeiPkR’ (2.19)
R; = L, 2.20
|R; > (p) = ﬁe ’ (2.20)

where R is a discrete variable of the basis (2.19) in the coordinate representation,
and p is a discrete variable of the basis (2.20) in the momentum representation.

In order to avoid confusion, one must note, that basis functions of the coordinate
representation are numerated by the index k, which is related to the grid in the mo-
mentum space. Each function of the momentum representation (2.20) corresponds
to single coordinate grid point R;. Therefore one must be careful in notations of
both basis. Below the representation using the first basis is referred to also as a
momentum-grid or simply a coordinate representation. The second representa-
tion is referred to as a coordinate-grid or a momentum representation.

Both bases are related to the corresponding grids. The notation “grid” will be
more frequent since the grid representation has a simple sense - wave functions are
represented by values of the function on the grid points in the corresponding basis.

The maximum absolute value of the momentum that can be presented by these
bases is given by Eq. (2.13) with £ = N/2. It gives an important relation between the
step of the Fourier grid AR and the maximum momentum that can be represented
by the chosen grid:

T

=— 2.21
Vo = 2 (221)
For completeness, continuous versions of bases are:
1 -
> (R) = _elka, Re Rmina Rmin + L ’
1 R
R; > (p) = ——=€""", pe€[-D,,D,. (2.22)

Ny
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Consider now the M-channel function ¢(R).

¥1(R)

- 2o R

Y(R) = 1/)(;) ; (2.23)
Yu(R)

In the Fourier grid representation the channel index must be introduced to label com-
ponents of ¥(R). A pair of indexes of FGR-components (j) and channel components
() will be designated by Greek characters

a=(v,7) . (2.24)

With account for both indexes the vector-function J(R) in FGR has M x N compo-
nents. The same consideration is valid in the conjugate momentum representation.

2.1.3 Choice of the basis

The basis (2.12) is characterized by two parameters: by the length of the coordi-
nate grid L and by the number of basis functions N. These parameters have to be
determined from the physical content of the problem.

At first we discuss definition of the grid length L when the bound levels are con-
sidered. In the crudest approximation L is size region where the motion is allowed
classically allowed. However, if the potential is not infinite at ends of the grid the
bound state wave functions have exponentially decreasing tails situated in the classi-
cally forbidden domain. If such a tail is not negligible, one has to extend properly the
length L into the classically forbidden region. For the pre-dissociated levels ¢*(R)
the wave functions ¥P(R) do not vanish at the asymptotic region. In this case the
ends of the grid must be chosen in the region, where wave functions become the
purely asymptotic: ¥?(R) ~ sinkR. The grid must be extended in this case up to
the distances where variation of the potential energy becomes much smaller than the
asymptotic kinetic energy.

Since the second parameter N defines the maximum momentum p?,, . representing

by the grid:
s
= L =— .
p:rqna.’t Ter}qna.‘L‘/ AR 3 (2 25)

the parameter N is chosen using the same reasoning as above but now considering
domain of possible variation of the momentum. From Eq. (2.25) one sees that if
pY... increases then the density of grid points (AR decreases) is to be enhanced. This
improves accuracy of the wave function representation. Thus the basis needed for
the calculations is defined simply from the physical content of the problem and the
desirable accuracy.

The size of the basis N must be chosen in such way that p?, . is larger than the
maximum possible momentum in the problem py,,z

pmax < pgna:c * (226)
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As ppaq is defined by the maximum kinetic energy pmaz = V24 FEmez (4 1s a reduced
mass), the size of the basis is

\% Q;EEmaa: L

N 2.27
> = (2.27)
For the grid step AR = L/N this gives
m
AR = —(——. 2.2
R 2,U'Ema:c ( 8)

Note that the relations (2.25) and (2.26) state that each oscillation of the wave
function is represented at least by one sampling point. Since the basis is exponential
one sees that the more oscillations of the wave function are harmonic, the better
the wave function is represented by the basis. If oscillations are not harmonic, the
accuracy of the representation can be improved by increasing of density of points, i.e.
by increasing N.

2.1.4 Operators in FGR

Once the basis is chosen, the operators are defined in the usual way, i.e. by its matrix
elements on the basis functions. For example, in the coordinate grid representation
(on the points { R;}) the action of the operator A on a wave function ¢( R) is presented
as:

AY(R)|p=pr, = Z:Aj,l¢(Rl) ; (2.29)

where Aj; is a matrix element in {R;} representation which will be referred to also
as < Rj|A|R1 >.

In case of M-channel problem, all operators are represented in FGR by MN x M N
matrices. As discussed above the label of basis states in FGR consists of a pair of
indexes (v, 7).

Consider now the Hamiltonian in the FGR method. The matrix element H, s is
to be be considered with two pairs of indices o and 3:

a=(v,7),

=01, (2.30)

Here j,[ label the grid points R; whereas ,7' channels.
Now we discuss kinetic and potential energy operators.

One-channel potential operator

The operator of potential energy V in FGR is the operator of multiplication in
the coordinate space; it is diagonal in variable R:

Vi(R)|r=r, = V(R;)¥(R;) . (2.31)



28 Mapped Fourier Grid Representation Method for Cold Collisions.

As a result the correspondent matrix element in coordinate grid representation is
simply a value of the potential V' at the related point:

Vag = V(R;)6;1 . (2.32)

Multi-channel potential operator

In the multi-channel case potential operator is applied to the wave function as

Vi (R)|r=r, = E Vo (B;) by (R;) (2.33)

that implies
Vap = Vo (B;) 651 - (2.34)

Kinetic energy term

The kinetic energy term implies evaluation of the second (and, sometimes, also the
first) derivative over R. Derivative operators are diagonal in the momentum space,
and, thus, can be calculated in coordinate space using the Fourier transform. Their
explicit form in the R; basis is given by I. Tuvi and Y. Band [127]: The n** derivative
of ¥(R) is written:

n/2 s P2 (n) N/ 2T 27!' s
(R)™|p=r, = Yo ae*RT = > ae™¥ (zkf)

k:—N/2+l R=RJ‘ k:—N/2+l

N/2 n
= Y Z D(R))e 3 % (zk%r)

k=— N/2+1

1

/e 27
TS Z¢ (R)eHi-D% (zk ) . (2.35)
N Niaw 1= L

Comparing Eq. (2.35) with (2.29), the matrix elements of the operator ddr;—?,),) can be

written in the form
d(n) ]_ .l., -1 2m 27r
el g )&
{dR(n)} : Z e ( T ) : (2.36)

l=1

The sum in this equation can be evaluated analytically for the first and second deriva-
tives [127]. For an even number N of grid points one has
7T2 2 o
PYETIN B (23)
R 2.37
dR? —j2r?
RN r- e —

L2 sin? [(_7 l)m/N]’
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y i, i=1
(Rjlop|Bi) = . : (2.38)
(=1~ F( + cot[(j — D /N]), j #1

Derivative matrix elements in the multichannel case are diagonal over the channel
indexes:

(el T18) = (Bl R (2.39)

Non-adiabatic term

Consider now a term which mixes channels and grid points. An example of such a
term is the non-adiabatic coupling term in the adiabatic Schrodinger equation. Due
to the nuclei motion the adiabatic potential channels are coupled. This coupling
is described by non-adiabatic term which contains a first derivative multiplied by a
factor mixing the channel components (see, for instance, the Appendix B):

A d
W= (< ’Ylﬁl’)’ > d—R5) = (A’Y,’Y'ﬁ) . (240)

The matrix element of (a|W|3) is

(a]WIB) =< R;|Ayy—2 Ry >= AM(R)<R~,| IR> (2.41)

vy dR
In Eq. (2.40) the operators A and f= do not commute. Indeed, consider the
operator

d
W= oA, (2.42)

where the matrix A, ,/(R) has the same form as in the preceding equations. Its
matrix elements is

(a|W'|B) =< le Ay R >= A,y (R) < RJI IRI y (2.43)

The right hand sides of (2.41) and (2.43) are different since A.,./(R;) # A.,..(R)).

Now all the terms in the Hamiltonian are written in terms of matrix elements in
the FGR basis. In FGR the entire Hamiltonian for M-channel problem is presented
by the matrix MN x MN. The diagonalization of this matrix gives eigenenergies
of the Hamiltonian. The eigenvectors obtained in course of diagonalization give the
wave functions of related states evaluated at the grid points. These eigenvectors have
MN components, which are labeled by the index a = (v,75). The a-component,
|a >, of the wave function in the coordinate grid representation gives value of the
wave function in the 4 channel at a distances R;:

o >=y,(R;) - (2.44)
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Kinetic energy term in the time-propagation

For the time-propagation the use of the matrix form of the derivative d* R/dR? for
calculations of the kinetic energy term T implies multiplication of related matrix on
the vector v at every step of propagation. It takes each time O(/N?) operations. The
fact that T is diagonal in the momentum space, gives a possibility to reduce a number
of operations for evaluation of T. If 7,[;(])) is the wave function in the momentum space,
then

Ti(p) = %J)(p) . (2.45)

Therefore procedure of calculation T (R) consists of three steps:

1. The Fourier image ¢p) of 1(R) is calculated;
2. The function ¥ (p) is multiplied by %;

3. The inverse Fourier transformation of the product gives the result Ty(R).

If the number of points is a power of 2, each evaluation of Ty(R) takes O(N log N)
operations provided the fast Fourier procedure is employed[70, 72].

2.1.5 Multi-channel potential. Example of two-channel po-
tential.

The principle of generalization of the ordinary FGR method to the multi-channel
problems is well known and was widely used (M.Monnerville and J.Robbe [99, 100],
O. Dulieu and P. Julienne [34], O. Dulieu et al. [35]). Although the principle of
representing the multichannel problem was already outlined in the general scheme
(section 2.1.4), these problems are so important that this subsection describes them
in more detail.

Below we give only one example. Consider Hamiltonian for the two-channel prob-
lem. For the grid {R;} with N points the kinetic energy matrix T has dimension
NxN (T= —M‘fi%) (subsection 2.1.4) for the one-channel potential. The potential
V(R) depends upon R and has channel components V; 1(R), V1 2(R), V21(R), V22(R).
Let Vi1, V12, Va1, Vo, be diagonal N x N matrices with the diagonal elements
< R;|V, v|R; >= V,.,4(R;). The total matrix H of the Hamiltonian in the FGR has

dimension 2N x 2N:

H=T+V= ( g 2 ) + ( “gjgg 1‘2:2% ) : (2.46)

The diagonalization of this matrix gives eigenenergies of the Hamiltonian H. The
eigenfunctions obtained in course of diagonalization are presented as two-component
wave functions. The first V values of wave functions give the first channel component
on grid points while the second half gives the second channel component.
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2.2 Hermicity of the Hamiltonian in the basis of
FGR.

The Hamiltonian in the FGR method are represented usually by a very large matrix
NM x NM. In applications, the number NM can be very large. Bound levels of the
Hamiltonian are obtained by a diagonalization of such large matrix. In this case it is
preferable to minimize calculational efforts.

One possible approach is to look for an hermitian representation of the Hamilto-
nian. The diagonalization of the hermitian matrix is much cheaper. On the other
hand, for the time propagation, the using of an hermitian matrix is also necessary
— the propagation scheme using the Chebyshev polynomials does not work for non-
hermitian matrix (see section on propagation).

The Hamiltonian H is always hermitian over channels v, but its matrix in FGR is
not obliged to be hermitian over grid index j. In this section, symmetry properties of
the Hamiltonian in FGR are reviewed mainly as it was given by I.Tuvi and Y.Band
[127]. .

A hermicity of the Hamiltonian over channel indexes reads:

Haoo = (6| Hlby)r = [ 03(R)(H ) (R)AR = (Y Ity = H,

(2.47)
where the notation ()r means integration over the internuclear variable R.
The Hermicity of the Hamiltonian in FGR means that:
< a|lH|f >=< p|H|a >", (2.48)

where o, [ are defined by Eq. (2.30).
The hermicity of the total Hamiltonian can be checked as the hermicity of all
consisting terms.

One-channel potential operator
It is diagonal over indexes a and (3, since it is diagonal over j and (.

Multi-channel potential operator
The operator V is hermitian over channels. V is diagonal over grid indexes. =
V is hermitian over a permutation of @ and 8. From equation (2.34):

< alV|B >=< f|V]a >, (2.49)

. . . . 1 d2
Second derivative and kinetic energy term — 25 if?

Indexes j and [ enter symmetrically into Eq. (2.37). Changing j and [ does
not change matrix elements. = The second derivative and the kinetic energy term

2 o .
_'217?.1% are hermitian in FGR.
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Terms with a first derivative

From Eq. (2.38), the matrix of the first derivative operator in FGR is anti-
hermitian:

d d
< Rj|zi—R|R1 >= - Rllﬁle >* . (2.50)

Therefore, in general, terms containing the first derivative are not hermitian in FGR.
There are two ways that these terms can be symmetrized. If the first derivative is
multiplied by an operator, which is anti-hermitian over channels and R-independent,
the whole product will be hermitian over indexes a and 3. This property will be used
for the adiabatic Schrodinger equation, containing a term of a such type. Another
way 1s to try to exclude the first derivative by a proper transformation of the wave
function. This approach will be used for the mapped Schrédinger equation.

2.3 Mapped FGR method for a long-range poten-
tial.

As 1t was discussed already in the introduction of the Thesis, the calculations of
bound vibrational levels near the dissociation limit with long range potential requires
modifications of existing numerical methods. Wave functions of the most excited
vibrational levels have an important tail located at very large distances. The situation
becomes even more difficult, when the potential energy is rapidly decreasing near the
dissociation limit and, as a consequence, an important part of the wave function can
be beyond the region of the classical motion. C.Boisseau et al. [20, 21] have shown
that for the Lennard-Jones potential, a part of the norm of the most excited level
situated at the classically forbidden region can be very close to 100%. The ordinary
FGR methods, using the constant grid step, are not able to treat too long-range
potentials, since corresponding grids have too large a number of points. R. Kosloff,
E. Fattal et al. [38, 70, 39] have proposed the mapped FGR method, optimizing
the working grid. For the optimization, the estimation of the working phase space
was used. But their method was adapted only for the short-range potential with
singularities, and it does not propose any uniform procedure for the choice of the
mapping. The recent work by E.Tiesinga et al. [125] discusses also the mapped
FGR method in application to the highly-excited bound levels. There are two main
disadvantages in the proposed method. There is no a preliminary criteria for the
precision of results, and the mapping is analytical and must be adapted for any
new potential curve. Co6té and M.Jamieson in their work [32] have used for the
solution of the Schrodinger equation the Numerov method with the variable step,
adapted to local oscillations of the wave functions. The step was changing during the
integration. The method proposed in the Thesis can be viewed as a combination of
the FGR method with the preliminary adapted grid step. The procedure of this step
adaptation will be refereed as a mapping.
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This section presents mainly the theoretical part of an article [64] by V. Kokoouline,
O. Dulieu, R. Kosloff and F. Masnou-Seeuws. In order to keep the logical progres-
sion of the Thesis, the part of the article concerning applications is included in the
subsection 4.2.1. The whole paper is included at the end of the Thesis (Appendix C).
The text taken from the paper will be typed by this font. Some corrections added to
the article’s text will be typed by the normal letters.

The subsection 2.3.1 describes the procedure of a choice of the potential-adapted
grid-step — the mapping. Then, the Schrédinger equation in the mapped coordinate
is presented. The hermicity of the Hamiltonian in FGR is discussed also. After,
the analytic mapping adapted for potentials with the C, /R"™ asymptotic behavior is
discussed. Finally, the phase space approach is presented for the estimation of the
efficiency of working grids with and without the mapping.

2.3.1 Mapping procedure

In order to compute bound vibrational states of a diatomic molecule, a method, originally
proposed by Kosloff [69] and by Colbert and Miller [30] , was further developed by Mon-
nerville and Robbe [99], Dulieu and Julienne [34] and by Dulieu et al [35]. Let us recall
briefly the principle of this method, hereafter referred to as Fourier Grid Representation
Method (FGR). In the paper [64] the FGR method for time-independent Schrodinger
equation is called the FGR method. This notation is used also in [34, 35]. The radial
Schrodinger equation for eigenvalues problem is written:

[T+ V(R)¥(R) = Ey(R) (2.51)

A grid of N points equally spaced over coordinate R is defined as: R;,(i = 1, N). We
introduce a set of functions defined at the grid points

¢i(R;) = 6(R; — R;), (3,5 =1,N) (2.52)

(see the subsection 2.1.2). In this basis, both T and V(R) are represented by N x N
matrices . The potential operator V(R) is diagonal in this representation, while the
kinetic energy T is diagonal in the momentum representation which is connected by
Fourier transform to the coordinate representation. Using well-known properties of the
Fourier transform, the elements of the operator T can be written explicitly as a function
of the number of points V -assumed to be even- and total length L of the grid [95] :

w2 N2 42
o2 1
T =(-1)" — .
1= ) R G — /) (254
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In Eqs. (2.53) and (2.54), u is the reduced mass of the system. Eigenvalues E; are
obtained by diagonalization of the N x N matrix T + V.

Is is important to note that for the vibrational levels considered, the energy is close to
the asymptotic value of the potential, hereafter taken as the energy origin. The maximum
kinetic energy in the problem can be estimated by the depth (V.02 — Viuin ) of the potential
well. In most applications V,,,. = 0, nonzero positive values corresponding to situations
where the potential has a hump. For a grid of length L, the two-dimension phase space
should occupy at least a rectangular-shaped area :

A 2 2Lpmas, (2.55)

where p,,,. is the maximum momentum which has to be considered, corresponding to
the maximum value of the kinetic energy:

Pmaz = \/2H(Vmaz - Vmin)) (256)

In practice, for a grid with N points, with a constant grid step AR = L/N, the FGR
method [72] considers a momentum domain extending from —py,.;q to +pyrid, so that the
phase space is a rectangle with area:

AN =2rNh = 2Lpg,-id. (257)

where, using atomic units, 2 = 1. Therefore the constant grid step should verify:

™ T

AR = < ) 2.58
DPgrid \/?'F‘(Vmaa: - Vmin) ( )

When the vibrational motion extends at very long range, the length L has to be very large
and calculations involve diagonalization of huge matrices H = 7' 4 V. In fact, the grid
contains too many points in the asymptotic region: indeed, at each distance R, the grid
step needs only to be small enough to represent correctly the local kinetic energy. It is
then sufficient to consider a local grid step s(R) satisfying to the condition:

2V — V(R))

For the class of problems that we are considering (see below section 3) the computation
effort of the diagonalization procedure scales as the cube of the number of grid points.
We propose to apply coordinate transformation in order to " compress” the grid at large
distances. To that purpose, we define a transformation function g(R) to set a working
grid z; = g(R;),» = 1, N, with a constant step Az related to the variable step in the
physical grid through:

s(R) (2.59)
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s(R) = : (2.60)

The transformation function is obtained, by comparing Eqs. (2.60) and (2.59), as:

z=g(R)= /R \/2/1’(Vmaa: — V(r))dr' (2.61)

Ry m

It is easy to check that in the working grid the minimum step is:
Az =1. (2.62)

In Eq. (2.61), the integration domain starts at a distance Ry slightly smaller than the
position of the repulsive potential wall at short range. Now the physical grid is well
adapted to different regions of the potential, since in the asymptotic region the local step
s(R) becomes much larger than at short inter-nuclear distances . In Fig. 2.1, we have
illustrated this behavior considering various potentials for Na, [89] or Cs, [94] with either
R~ or R~® asymptotic behavior. For a constant step Az = 1 in the working grid, we
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Figure 2.1: Examples of potential curves used in the paper. a) Two potentials with R_sasymptotic
behavior. Solid line: Naj (IHg, 35 + 3p), dashed line: Cs2(1,4,65 + 6p2P3/2). b) Two ground state
potentials with R~6 asymptotic behavior. Solid line: Nag(lzg‘, 3s+3s), dashed line: CS2(IE;-, 6s+
65). For all curves, the energy origin is taken at the dissociation limit.

have represented in Fig. 2.2 the variation of s(R) as a function of the distance R. The
marked dependence upon the value of the n exponent manifests itself clearly, the step
s(R) increasing more rapidly with the distance in case of a R~ potential. Besides, due
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30
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Figure 2.2: Variation of the grid-step 5([) in the physical grid, for the four potentials in Fig. 2.1.
Dotted line: Nag(IZ;,35 + 3s), dashed line: Csz(lzj,Gs + 65), solid line: Naz(*TI,, 3s + 3p),
dash-dotted line: Csa(14,6s + 6p2P3/2).

to the mass factor present in Eq. (2.59) the R variation is more rapid for Na, than for
Cs,. These features, as well as the role of the position Ry of the inner repulsive potential
wall, will be discussed more explicitly in paragraph 2.3.3.

Alternatively, in Eq. (2.59 defining a maximum local grid step, the real potential V(R)
can be replaced by another potential V,,,,( R) provided the local kinetic energy stays larger
than or equal to the real one. We shall call V,,,(R) an "enveloping potential” as the
corresponding potential curve lies below the real one. The local grid step is now such
that:

T

Senu(R) =
g V/26(Vinaz — Venu(R))

< s(r). (2.63)

Therefore the number of points on the grid is necessarily increased compared to the
previous one. We discuss in the paragraph 2.3.3 examples where the asymptotic expression
of the potential is considered.

Finally, for the discussion of the convergence of the calculations, it is convenient to
introduce an auxiliary parameter Br = Seny(R)/s(R). If the enveloping potential differs
from the real one, g depends upon R, with the restriction Sp < 1 so that the number
of grid points is sufficient. Moreover, we can, starting from the real potential, calculate
s(R), and choose a constant § < 1 (for instance the minimum value of Bg) in order to
define a local grid step such that sg(R) = Bs(R). It means that the density of points is

% time larger than the critical density defined by Eq. (2.62), the step in the working grid
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being now:
Az =p (2.64)

corresponding in the physical grid to a larger extension of the momentum, from —pg,;q
to Dgrid = pma.’c/ﬂ

2.3.2 Transformation of the Hamiltonian

Changing in the Schrodinger equation :

1 d?
g dp V(R = By (2.65)

the variable R into another z with the transformation:
R = f(z), dR = J(z)dz, J(z) = f'(z) (2.66)

one gets:

)¢ + V(o) = By, (2.67)

L e sa
2uJ? dz?  2uJ3dx

where J' = 2L As discussed in the Appendix, the elements T;; and T;; of the kinetic
energy operator in FGR are generally different, leading to the diagonalization of a non-
symmetric matrix.

In order to introduce a Hamiltonian matrix symmetric in FGR, we define a new wave

function &(z):

Y(z) = I3 (2) (), (2.68)

so that Eq. (2.67) becomes:

( L & i+V+—1—(—§(J’)2+””))<z5(9c)=157¢(90)

S ouJ?dz? | pJldz 20\ 4 J* 2J3 (2.69)
We can rewrite this equation in a symmetrical form as:
1,1 d2 d* 1 -
el | =F 2.
( 4;.4{J2dw2+dx2J2)+ V)¢ ¢ (2.70)

where we have introduced an effective potential by:

Vi Viays - (102 1) am
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We can check that the indexes 7 and j now play the same role in the expression of the
kinetic operator T matrix elements :

T, = (—1)~ " ! L. (2.72)
we 2uL? sin?((i — ) [N \JZ ~ J})’ '
if ¢ # 7, while
™ N?4+21

L P
oul?2 6 J?

(2.73)
As a consequence, FGR yields a symmetrical Hamiltonian matrix, so that efficient diago-
nalization procedures designed for triangular matrices can be implemented.

2.3.3 Mapping using B2 and R~® analytical potentials and a
repulsive wall

In the derivation of the mapping procedure, we can use as an "enveloping potential” in
equation (2.63) any analytic potential V.., (R) = —C¢"/R", such that the corresponding
potential curve lies below V(R).

The Schrodinger equation for a potential with R™™ behavior, n being an integer
value such that n > 3, was discussed by many authors: in Refs. [75, 104, 47], a
change of variable is introduced in order to transform the Schrodinger equation into
Bessel equation for which analytical solutions can be found. In the present approach,
performing integration of the right hand side of Eq. (2.61), we get :

20y, 1
Tn = go(R) = wo‘"(n——ﬁjg (2.74)
where we have defined:

IQNCSnv
an, = Er— (2.75)

20, 1
ZTon = - (276
" -2 g )

Whereas the physical grid is extending from R, (chosen at a distance shorter than
the position of the repulsive wall of the actual potential) to R,,.., the new grid is varying
from 0 to a maximum value which is limited by the finite value z, ,,, depending both of the
asymptotic behavior of the potential (through «,, and n) and of R,. There is therefore an
accumulation of points in the vicinity of z¢,, which is never explicitly reached. At small
distances, due to the existence of a repulsive wall in our potential, we do not encounter
the problem of the accumulation of points at the origin that had to be considered in Ref.
[38] for the Coulomb problem.
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The relation between the constant step Az on the working grid and the variable step
sn(R) on the physical grid is readily obtained as:

n/2
su(B) = E A (2.77)

124)

The role of the exponent n and of the mass factor in «,, appears clearly in Eq. (2.77)
and has been illustrated in fig.2.2 . We also display as an example in fig. (2.3), in a case
where n = 3, corresponding to the asymptotic behavior of the upper 1, curve of Cs,, the
repartition of the grid points for the working grid and for the physical grid : the adaptive
character of the mapping procedure is demonstrated by the fewer number of points in the
working grid when inter-nuclear distance is increasing. In the case of asymptotic potential

a)
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—-1500
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Figure 2.3: Distribution of the grid points for a potential with asymptotic R~3 behavior: example of
Cs2(1,4,65 + 6p2P3/2). a) - without mapping; b) - with the mapping defined by Eq. (2.74).

—C£™ [ R®, the change of variable should be:

T3 = To,3 — 2a3R_;_ (278)

where we have defined a3=+/2pC%" /7 through Eq. (2.75. The inverse transformation
is then analytical:

(2&3)2

(500,3 - 333)2

R = fs(zs) = (2.79)

As the change of function described in section 2.3.2 differs from what was proposed
in the references quoted above [75, 104, 47], our new Schrodinger equation differs from a
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Bessel equation. It is more convenient for numerical calculations as it leads to symmetrical
matrices in FGR:

( | ((xO,g,—:cs)“ ¢ & M) v (x3))¢(a€3) = Ed(s)

2\ (e daf T dad 27(o0)’ (2.80)
with new potential V/:
— 1 39 4
V (.’1,‘3) = V(CL‘3) + EW‘(CCO’;; — ,’133) (281)

In the new coordinate z3, the asymptotic behavior of V/(z3) obtained by transformation
of —C3/R™ is:

1 4x?

R -

Vas(z) =

so that when C§™ = (5, the effective potential, in the asymptotic region, may be
written:

- 1 472 39
Vs (23) = — (-28—(500,3 — $3)6 + ——— (203 — 503)4) .

2u \ 2%(as)" 2%(as)" (2.83)
The matrix elements for the kinetic energy operator are now:
T, = (~1) m? 1 ((xo,a —23:)° | (o3 — ivi,j)s) ’
WG - e\ Plaa) | Baa) )7 g
if 7 # 7, while
T = 72 N? 42 (203 — 23;)° (2.85)

ul? 6 25(as)

2.3.4 Comparison of the numerical and the analytical map-
ping procedures

The analytic approach enables a simple assessment of the procedure. However, the com-
puting code has to be modified for potentials differing in their asymptotic expression,
which is not the case for the general numerical procedure.

Another disadvantage of the analytical approach lies in the definition of an enveloping
potential. In many cases, due to the existence of higher order attractive terms in the
multi-pole expansion, the asymptotic curve —C3/R* crosses the V(R) curve. Therefore
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the value of C5™ should be chosen much larger than the actual Cs value. For example,
as illustrated in Fig. 2.4, the asymptotic behavior of Na, 311, (3s,3p 2P) is —6.48/R®
[92], but only the enveloping curve with C$™ = 18.0 lies under V(R) for all inter-nuclear
distances. In the latter case, the use of an enveloping analytical potential in Eq. (2.63)
results into a number of grid points four times larger than when the real potential is
used in Eq. (2.61). This drawback is particularly important for cases corresponding to

0 -
=-2500 ¢
5
[P]
= -5000 |
&
>
=7500
-10000 ! -
0 10 20 30

Internuclear distance (a,)

Figure 2.4: Comparison of the computed potential curve for Nag (°*IL,, 3s, 3p) [89] (full line) with
the asymptotic curve V(R) = —C3/R?, C3 = 6.48 a.u., (dashed line) and the enveloping curve
V(R) = —C$™/R3, C£™ = 18 a.u. (dash-dotted line).

small values of Ry, the divergence of C3/R® near the origin resulting into a significant
increase of the number of grid points N. Moreover, increasing the phase space of the
problem when using small grid steps near the origin may lead to spurious eigenvalues in
the numerical diagonalization procedure. It also increases significantly the spectral range
of the Hamiltonian operator. This will hinder the use of direct propagation methods.

It seems therefore more convenient to use the real potential in Eq. (2.61). The map-
ping transformation is calculated for any potential whatever is the asymptotic behavior.
The integral in Eq. (2.61) and all derivatives of g(R) are then obtained through purely
numerical procedures .

2.3.5 Occupation of the phase space domain after coordinate
transformation
As discussed by Fattal et al [38] and by Kosloff [72], mapping procedures are capable of

optimizing the use of the phase space volume of the representation. As a first approx-
imation, the phase space domain necessary to describe the system can be estimated by
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considering the classical trajectory corresponding to the highest vibrational level which
we want to compute. This is illustrated in Fig. 2.5, where we have drawn the phase
domain in distance R and momentum p spanned by a classical trajectory corresponding
to a vibrational motion with binding energy £ = 1.3-1077, i.e. E, = —0.295 cm™1, in
the potential Csy(1,) displayed in Figs. 2.1 and 2.2.

40 | a) :
4 ; ; :
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—_ Xy 8’educed un?ts)
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Figure 2.5: Solid lines: The classical energy shell in phase space with and without the coordinate
transformation, for the vibrational level with binding energy £, = —0.295 ¢ ™! in the potential Cs
(14, 6s, 6p2P3/2) . a) - The main figure shows the energy shell in phase space without any mapping.
b) - The upper inset displays the energy shell with the mapping defined by the enveloping potential
—C&™ [ R? with C;ff = 24.42. c)- The lower inset displays the energy shell in phase space with the
mapping using the real behavior of the potential. The area S = 1034 a.u. defined by contour is the
same for all three cases. The number of phase cells IV, is connected with S through S = 27 * N..
Broken lines: The rectangles defining the phase space used in the calculations. One can see that without
the mapping a larger phase volume is used in the calculation, that requires proportionally more grid

points. The third case is most efficient in that sense.

The shape differs markedly from rectangular, showing that at large distances, due to
the very small value of the local momentum, only a very small part of the phase space
defined by a grid with a constant grid step is occupied.

The same domain in the new variables = and P, is presented also. In the working
grid, the variable z is defined in Eq. (2.61) while the variable P, , canonically conjugated
to x in the new phase space, can be found [74] from the Poisson bracket:

JdP, 0z Oz 0P,

dp OR  Op OR

(2.86)
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As from Eq. (2.66) dR = J(z)dz and as g—;— = 0 then:

P, =pJ(z) (2.87)

On the lower inset of Fig.2.5 we display the phase space spanned by the classical
trajectory in the new variables x, P,. The area confined by the contour is the same as in
previous case, S = 1034 a.u., but the shape is now very close to a rectangle.

In the upper inset of the figure we show also the same trajectory in the z3, P,3 space -
using Eq. (2.78) and generalizing Eq. (2.87) ~ for mapping with the analytical enveloping
potential —C’g”"/R3 where C°™ = 24.42, larger than the value C5 = 18 associated with
the Cs, (1,) potential. The contour now differs from a rectangular shape, especially at
short x3, where the extension of the momentum space is due to overestimation of local
kinetic energy. The efficiency of the occupation of the phase space can easily be discussed
by comparing the equivalent area S = 1034 a.u. spanned by the three contours with the
area of the rectangles associated to the three grids. In the physical problem, treated
with a classical picture, the number of phase cells N, = 165 is deduced from the area S
through S = 27 x N.. Without mapping, the rectangle associated with the physical grid
has an area, defined in Eq. (2.55), such that A < 28730 =~ 27 x 4573. The numerical
treatment should therefore involve at least N = 4573 grid points. After mapping with
enveloping potential, the area spanned by the grid is defined as A7*” < 223 oz Pry noas
so that in the chosen ax-ample we have A3'*"" < 1705 = 27 x 272, so that the minimum
number of grid points is reduced to 272. Finally, when the mapping procedure based on
the real potential, the area A™P < 2&,,4, Py, 0 NOW is at least 1077, corresponding to
a minimum number of grid points of 172 only, very close to the number N, = 165 of cells
estimated from the classical phase space restricted to the same energy. The efficiency of
the numerical mapping method is therefore clearly demonstrated by this figure.

One should note that this approach to the estimation of phase space confined by
the problem is completely classical. |t assumes that the quantum density in phase space
decays exponentially fast in the classical forbidden region. The definition of the phase
space in quantum mechanics was done by M. Hillery et al in [53]. Using the Wigner
distribution function the exponential decay of the quantum density outside the classical
allowed region is clearly evident [72]. If tunneling is important, the phase space region
involved, both in coordinate and momentum has to be included in the grid, so that a
larger number of grid points should be considered. The introduction of a parameter 3,
as defined in Eq. (2.64), in order to reduce the step in the working grid is then justified,
and this parameter needs to be optimized in the calculations.

The efficiency of the method can be further improved if classically forbidden re-
gion is taken into account. This problem was briefly discussed in the subsection
2.1.3. A possible improvement could be the including of the domain of the classically
forbidden motion, [Rmin, Rmin + L], which accounts exponentially decreasing tails of
wave functions. An estimation of a such domain can be made in the semi-classical
approximation.
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2.4 Mapping for Hamiltonian containing non-adiabatic
coupling term

The previous sections considered the Schrodinger equation containing terms which
are hermitian in FGR. It was assumed that the Hamiltonian does not contain a term
with the first derivative, which is not-hermitian in FGR. The Schrodinger equation
with the multi-channels adiabatic potential includes such a term that couples the
adiabatic channels.

If such a term with the first derivatives is directly introduced into the Schrodinger
equation, the total matrix of the Hamiltonian becomes non-hermitian in FGR. It
means that in the time-independent approach one has to diagonalize a non-symmetric
matrix, that takes much more time as compared with the diagonalization of a hermi-
tian matrix (see discussion by M. Monnerville and J. Robbe [100]). Unfortunately,
this approach does not work at all for the time propagation based on the Chebyshev
polynomial expansion. Therefore, it is useful to construct the matrix of adiabatic
Hamiltonian hermitian in the FGR.

In this section two different approaches to the problem of non-hermicity are con-
sidered. First, the non-hermitian terms of the Hamiltonian are combined in such a
way that they become hermitian in FGR. This approach is valid only for the uniform
(non-mapped) FGR method. It was developed mainly by I. Tuvi and Y. Band [127].
The second approach employs diabatization of the adiabatic potential, i.e. excluding
the non-adiabatic terms by changing the basis of molecular states (F. Smith [120],
M. Baer [12]).

2.4.1 Reducing adiabatic Hamiltonian to hermitian matrix
in FGR

In this subsection the hermitian representation of the adiabatic Schrodinger equation
without mapping is briefly discussed. The procedure was suggested by I. Tuvi and
Y. Band [127] in order to explicitly obtain a hermitian matrix for the adiabatic
Hamiltonian in the FGR. In the Thesis small modifications are added that simplifies
understanding. The time-independent Schrédinger equation is used, but all results
are also valid for the time-dependent equation.

The following form of the adiabatic Schrodinger equation is used:

1 d&
(‘de )wq——z(wdR )%/—E% (2.88)

with non-adiabatic radial coupling terms:

7Y(R) <7l =l >

’Y7’y

2

0 (R) =< 4|2

. aml’ > (2.89)



2.4 Mapping for Hamiltonian containing non-adiabatic coupling term 45

The notation < | >, means integrating over the electronic variable. Quantities
(1) (R) and 7;512) (R) do not depend upon the electronic coordinates. It is supposed

that 7‘( ) »(R), 7;523 (R) are known as well as V,(R).

Equatlon (2.88) looks like Eq. (2.67). Indeed, the first derivative is present in
both cases. However, from the point of view of the FGR, there is a large difference.
Eq. (2.67) contains the term with the first derivative multiplied by a function of R.
This function does not mix potential channels. Due to that, the term with the first
derivative can be excluded by multiplication of the wave function by J'/%(z) as it was
discussed above. In Eq. (2.88) the term with the first derivative contains a factor
mixing the channels, and therefore, it cannot be excluded by a simple multiplication
of the wave function by some factor like J*/%(z).

The matrix 7(!) is anti-hermitian over channel indices v and +':

<Y >r= by (2.90)
<Ay >= 6 v > + < [ 0 >,=
9R vy o= 7 T oo Y '7 r=
0
<'y| 'y> -|-<'y| 'y >,=0 (2.91)
and, therefore,
<7lzg Iv >1= = <1lzp Iv > (2.92)

The matrix 7 is hermitian over channel indices
92

!
<7laR2|~r> <7laR2I7 > (2.93)
The matrix element (a|H|3) of the Hamiltonian in the coordinate-grid basis is:
1 d?
(a|H|B) = ( InglRl) vy + Vo (B1) 5,
1
o (2R R iRy + 2R3 ) (2.0

where a and [ are defined by Eq. (2.30).
The first two terms of the right hand side in the last equation are hermitian over

a and (. Since 7',51,3,, ( ) depend of the variable R, one has

rD(R;) # R (2.95)

Therefore the third and fourth terms are not hermitian. As a result the entire matrix
i1s not hermitian:

(alH|B) # (B|H|a)" . (2.96)
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In order to overcome this difficulty, I. Tuvi and Y. Band [127] proposed to repre-
sent the non-adiabatic radial terms in alternative form. Using the identity
1) d

d d
() = gor® 4 70—y (2.97)

the adiabatic Schrédinger equation is rewritten as

1 & ) md 4 @ ( )
=y 1/)7__2( + T by = Ey
2 ’Y:’Y ’Y’Y
( 2u dR? arR " dR (2.98)

where

—(2) 9 d
7=, - y RTW(H), . (2.99)
The equation (2.99) is equivalent to Eq. (2.88), but in the latter form all the terms
in the Hamiltonian are hermitian in FGR.
For matrix elements of the non-adiabatic interaction one has

(alr) 4 rW18) = (0 (Ry) 4 70 (R) (1) =

H(R) ~ T (R)) (Ul 13)) = (Blr® - 4+ 7D}y
3 ) ] an w1 (2.100)

—(2)
The term 7 is hermitian over channel indices and diagonal over j and I. There-
fore it is hermitian in FGR:

(@l 7 18) = (817 o . (2.101)

-(2)
Thus 7 is the additional term in the potential.

2.4.2 Application to the problem of bound states

The results of previous subsection are valid for the multi-channel problem. Below,
a numerical example with a two-channel potential is considered to demonstrate that
the proposed method is workable. We consider example based on the potential curves
calculated numerically for real diatomic molecules. I. Tuvi and Y. Band [127] have
also tested the same method but using analytical Morse potential.

Specifically we consider two states of 0} (55 + 5P) symmetry of Rb, (see more
discussion in section 4.2). We compare calculations in diabatic and adiabatic repre-
sentations.

In the diabatic form the Schrodinger equation reads

[——u— + V‘“ab] =E . (2.102)



2.4 Mapping for Hamiltonian containing non-adiabatic coupling term 47

The potential V2P js constructed from two Hund’s case a potential curves of Rb:
A'SF (55 + 5P) and b*I1,(55 + 5P) (the graph 1.3). The non-diagonal adiabatic
coupling is a constant spin-orbit interaction (see section 4.2). The corresponding
adiabatic equation is

1 d? . 1 d d
= = Vadlab = (1) % v (1) ~(2) = E .
2udRe " 2% (T agtaT ) [rE 103)
The adiabatic potential curves V24iaP are obtained by diagonalization of Hund’s case
a potentials (with the adiabatic coupling) at each internuclear distance (see Fig. 1.4).
Consider now relation between these two representations. If the diabatic potential

for the two-states problem is

diab _ [ Ui(R) a(R)

A\ = ( ao(R) Us(R) ) , (2.104)

then the related adiabatic representation of Vadiab jg

Vadiab —
( 3 [Ui(R) + Ua(R) — AU(R)] 0 )
0 HOR) + Ua(R) + AUR) ) * 100
where

AU(R) = \/(Us(R) — Uz(R))? + 4a*(R). (2.106)

The matrix S of transformation between diabatic and adiabatic representations
Vdiab — S—lvadiabs (2107)

is defined by the diabatic curves and the interaction a:

S — ( cosy siny ) ’ (2.108)

—siny cosYy

where

a(R) J
= —arctan . 2.109
=g [ O (2109
The matrices of non-adiabatic coupling operators in the adiabatic equation are cal-
culated by inserting the identity (2.107) into Eq. (2.102) and comparing it with
Eq. (2.103). They are

s\’
W _gf8
T s(dR) , (2.110)
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28 \”
ds [ds\T
2(2) - _ 2 (22
a T (dR) : (2.112)

A uniform equally-spaced grid was used for the test, because the mapping can not
be implemented directly for the equation with non-adiabatic terms (this problem is
considered in the next section.)

The matrix elements for derivatives with even number N of points are given by
Eqgs. (2.37) and (2.38). The matrix elements of the first order derivative are complex,
whereas these elements for odd N are real [127]. Therefore, in order to exclude
complex variables from the program, the odd number of points was chosen for the
adiabatic equation. The matrix elements for odd N are:

m2 N2—1

d? T L2 3 1= .7
(Ri| < |R,) = (2.113)
dR? '._ 21r cos[!z J)7/N] .
T sin®[(i—7)n/N]? ;é J
d 0,:1=y
(Ri—-| Ry) = (2.114)
_(_l)l—stm[(z J)x/N]’ g ?é ]

The first test verifies that calculations with even and odd N give the same results.
The diabatic equation was used for the Cs; (1,) state was considered using N = 564
and 565 for even and odd cases respectively. Tests show that eigenvalues calculated by
using odd and even grids are the same with the relative difference E""&—"E‘m 10-12
for deeply bound levels. The relative difference is of order of 107® for the highest
calculated level v = 330 (in this energy region the error comes from exponentially
decreasing tails of wave functions, extending to the classically forbidden region). In
addition, the two-channel case of Rby (0F) has also been tested. The precision is of
the same order of magnitude.

The second test is a comparison of results for adiabatic and diabatic equations.
The equations (2.103) and (2.65) should give identical results. The two-channel
potential of symmetry 0F for Rby was used. The relative difference between results
of two approaches for vibrational levels is of order of 107% — 10=% (or 1072 — 10!
cm™!). As one can see the error is quite large. It is attributed to the imperfection of
the present code. There are numerous spline procedures which reduce the accuracy
and have to be excluded.

Unfortunately only preliminary tests were carried out. The work will be continued.
But even these preliminary tests have demonstrated that the proposed approach is
working.
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2.4.3 Adiabatic basis: long-range potentials. Diabatization
procedure

In contrast to the results of Ref. [127] it seems to be impossible to obtain a symmetric
form of the Hamiltonian with the adiabatic terms in the grid representation, using an
arbitrary mapping. It is not enough to multiply a wave function by some combination
of J(z) and its derivatives and to combine the derivative operators as it was done in
the previous section. A possible way is to choose some transformation of the basis of
adiabatic functions |y > into another set (|y >— |¢ >) for which the first-derivative
operator vanishes or, by others words, to apply to the Hamiltonian the diabatization
procedure.

The diabatization procedure is not new. As early as in 1969 F. Smith [120]
and M. Baer in 1976 [12] proposed to exclude -% terms from the equation using a
unitary transformation of the basis of electronic wave functions. Later, many other
authors examined advantages and disadvantages of both representations (see also
[117], V. Sidis 1989).

In this section, it is shown how the transformation matrix S can be found using
the non-adiabatic terms. The procedure of the numerical evaluation is proposed.

Consider the adiabatic Schrodinger equation in the form of (2.103). Applying a
linear transformation S of the basis of molecular states

Y =S¢ (2.115)
the equation is reduced to the form
STHS¢ = E¢ , (2.116)

where H is the Hamiltonian from Eq. (2.103). The new Hamiltonian HY = STHS
has form:
_LST

2
2u [

d d
S— +928'— +8"+ 208 —
drz T gr TS TATTS Rt

+2rMg’ + 18 — gy vedisbg) (2.117)

or
1 d&? d
—— == +2(STS' + sTrVg)—
oplare TUSTS +STTUS) Tt

STS" + 287718’ 4 ST7(2)g — 28Ty adiabg] (2.118)
The condition for the diabatic functions ¢ is:
STs' + sTr(Ns =0,

§' = —rWs |
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7 = _§'ST = §(ST) . (2.119)

It is exactly Eq. (2.110). For the matrix 7(2) the condition (2.111) is satisfied also.
The formal solution of Eq. (2.119) is

S=Ce ™R (2.120)
Using expressions (2.119) and (2.111) for 7)), 7(2) and the fact that

STS” 4 28T+’ + 8Tr(?)g =

STS” +28T8s™s’ + 8TSS"TS = ST + 259" + 878 = (STS)" =0,

(2.121)
we reduce the Schrodinger to the form
1 d Tyyadiab
ToudR? +S°'V (R)S|¢=E¢p. (2.122)

Since the kinetic energy in this representation is diagonal over channel indexes,
this representation is diabatic representation. The matrices S and e ™R are unitary.
As a result, C is a unitary matrix independent of R. A choice of arbitrary constant C
gives different diabatic presentations, which are interconnected by a unitary transfor-
mation. From the physical point of view it gives a possibility to choose S as a unity
matrix I for a some desirable distance (R = oo, for example), and, as a result, at this
distance the potential operator is diagonal and equivalent to the adiabatic curves.

Let some diabatic representation be known. The corresponding equation (2.122)
is written in a form:

1 & .
- leab = FEd. )
=5+ V(R 6 = B (212
Any other diabatic equation can be written in a form:
e + CTVvdbR)C|p = E (2.124)
2/1 dR2 (10 - 501 .

where
¢=Cop. (2.125)

It can be useful for the case when there is diabatic equation with non-vanishing
interaction between diabatic states in the asymptotic region (for example, the diabatic
representation of the 0 symmetry). This asymptotic coupling can be excluded by
the corresponding unitary transformation (2.125).

Everything concerning the mapping and the adiabatic and the diabatic represen-
tations can be extended for the time-dependent Schrédinger equation.
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2.4.4 The numerical evaluation. An error estimation

If adiabatic potential curves V°%4 and matrices 7™V and 7(®) are known, the
Schrodinger equation with long-range potentials can be solved in two steps. In the
first step, the non-diagonal diabatic potential operator is defined. After that the
Schrodinger equation is solved in diabatic representation using coordinate transfor-
mation, as described already.

For the definition of S one needs to find out solution of the equation (2.122).
Numerically the integration is carried out by the procedure:

S(R+ AR) =S — ARrS,

S = S(R). (2.126)

Let us estimate the precision of the procedure (2.126) for calculations of the trans-
formation matrix 5. The error accumulated during one step AR can be estimated
from the unitary relation. Let S is unitary at the distance R. Then for S(R + AR):

S(R+ AR)ST(R+ AR) =

SST — ARS(tMS)T — ARTWSST + AR} F(NS(r 18T =
I - ARSST(r™)T — ARTWSST + AR WSST (r(T =

I- AR((TMNT 4+ 7)) 4 AR M (7NT = 1 — AR
(2.127)

The error is AR5, If the integration distance Ryqz — Rpmin 1s divided on N
equidistant intervals AR, the total error for N intervals can be estimated as:

(Rmaz -

Rmin)2 ~(2)
~ MAX(7)p. (2.128)

Ser =

Here M AX (7)) means a matrix constructed from maximum values of each ?i(,?)
matrix element defined on entire interval [Rmin; Rmaz). Thus, the error can be
reduced by reducing the integration step. The error for each element of S is defined
by the maximum value of the matrix element of 7(* and by the number of partition

intervals.

2.5 Mapped time-independent FGR method for
lifetime calculations

The applicability of the FGR method is not limited to the bound states calculations.
In 1994-1999 M. Monnerville and J. M. Robbe [99, 100] have successfully applied
the FGR method for calculations of lifetimes of pre-dissociated vibrational levels,
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introducing the absorptive potential at one end of the grid. The method of absorptive
potential itself originally was proposed by G. Jolicard et al. [58]. A. Vibék and
G. G. Balint-Kurti in 1991-1992 [131, 132] have proposed different forms of absorptive
potential and have checked their efficiency using the time-dependent approach.

The pre-dissociated vibrational levels often have a small asymptotic kinetic energy
(E,s) in comparison with the potential depth at small distances. In this case, it is
worthwhile to use a non-uniform grid, i.e. to apply mapping.

This section describes how the mapping is introduced into the FGR method to-
gether with the absorptive potential.

The transformation of the Schrédinger equation induced the coordinate transfor-
mation is the same as for the ordinary potential. The principle of definition of the
enveloping potential is the same: one has to define the maximum local energy for all
internuclear distances. But there is one difference. The asymptotic kinetic energy
E.; now is not zero and the grid step becomes constant at asymptotic region. This
energy F,; should be taken into account. The general scheme of calculation of the
enveloping potential is described in the section 2.8.

Following the recommendations by A. Vibék and G. G. Balint-Kurti [131] and
M. Monnerville and J. M. Robbe [99, 100], the optical potential is chosen as

Vopt. = —14s [N exp (_R ?_LR[))] (2.129)

with parameters calculated according to Ref. [131]. N is a constant N = 13.22, L
is the effective length of the optical potential, Ry is a starting point of the optical
potential, A is a constant defining the absorption intensity.

Since the absorptive potential introduces imaginary part into diagonal elements
of the matrix of the Hamiltonian in FGR, this matrix can not be made hermitian.
Thus, the diagonalizing procedure takes much more time than in case of the hermitian
matrix (especially, when the eigenfunctions are calculated).

An imaginary parts of an eigenvalue gives a half-width of the corresponding pre-
dissociated level. The inverse of the width is a lifetime 7 of this state.

2.6 Time-dependent FGR method.

In previous sections the time-independent Schrédinger equation was considered in
application to the problem of vibrational and pre-dissociation levels of the diatom
near the dissociation limit. But, the time-independent approach can not be applied
for all problems, especially, when a temporal description of the process is required.
Thus, for completeness, the supplementary approach - the mapped time-dependent
method is considered in this section. All results of the previous sections, concerning
the mapping procedure are generalized for the time-dependent approach. As a base
method, a propagation scheme, developed mainly by R. Kosloff (for instance, [72]) is
taken.
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In this chapter, first, the ordinary (without the mapping) method of propagation
[72] is briefly described. Then, the mapping is introduced into the method, and fea-
tures of the mapped time-dependent method are discussed — a choice of the enveloping
potential, the phase domain domain, the absorbing conditions.

2.6.1 General description

The propagation using the FGR method and the Chebyshev expansion (FGR-C) is
one of numerous pseudo-spectral techniques of the time propagation, among those
are also the Krylov method, the method based on Newton’s interpolation formulas.
A clear and whole description of these methods as well as of those based on the
Chebyshev expansion one can find in Refs. [69, 70, 71, 62, 72]. A comparison with
other propagation and time-dependent methods has been done by C. Leforestier et
al. [77]. A complete description and analysis of several time-propagation techniques
including the scheme with the Chebyshev polynomials are given by M.Monnerville
[98]. Since FGR-C is used for the application of the mapping to the time propagation,
it is briefly described below.
The time-dependent Schrodinger equation:

S d(t R)

Hy(t, R) = —gi

(2.130)

Here, H is a time-independent hermitian (in the ordinary sense) . ¥(t, R) is a multi-

component wave function. The solution is an exponential operator e~ #Ht:

b(to+ At, R) = e ?HA%) (5 R) = U(At)(to, R). (2.131)

The problem of the propagation in time can be separated in two essential parts.
The first is a choice of a basis {g,(R)} of the representation of the wave function

P(to, R).

Y(to, R) = Zan (to)gn(R (2.132)

The second 1s the procedure of the evaluation of e_%HA’@Z)(tO, R)

The R-grid basis in FGR-C is the same as in the time-independent FGR. (Eq.
(2.20)). The propagation (2.131) is carried out using an expansion of the propagation
operator e”#HA% a5 a function of ¢ in Chebyshev polynomials with a variable ¢.

Thus, in two words, the technic committed below is following.

1. The wave function (%o, R) at time o is presented on grid points {R;}. (Or
¥(to) can be presented on the grid {p;} in the momentum space. See the section
2.1).
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2. If the wave-function 1 (o) in the moment ¢, is known, the ¢ (to+At) is calculated
using Eq. (2.131). The exponent operator (2.131) is approximated by a sum of
Chebyshev polynomials ¢, as

e~ RHAL % b,(At)d, = P(At). (2.133)

n=0

The number N, in the sum Zﬁ’;o b, ¢, is sufficiently large to provide a desirable
precision. The argument of functions ¢, is an operator —%HAt, and a results
of ¢ is an operator also. (If the time step is fixed, the operator —;HAt? can
be simply presented as a constant matrix N x N, where N is a number of grid
points or a number of basis functions g,(R).) Since the Hamiltonian is suppose
to be time-independent, the operator P(At) does not depend of time and can
be also presented by a constant N x N matrix in FGR. Coefficients b, are
calculated as it is described below. In order to reduce the calculation efforts
the propagation in time is not organized simply as a consecutive multiplication
of the wave function ¥(R;) by the constant matrix of P(At). The applied
procedure is described below.

2.6.2 Chebyshev expansion

In this subsection a procedure of calculation of the evolution operator U = e~ #HA! of

Eq. 2.131 (more strictly speaking the procedure of calculation of P(At)) is described
as it is presented in [123]:

The operator U is expanded in polynomial series of the operator —%HAt. The
problem is reduced to an approximation of the scalar function e by a polynomial
expansion, where z belongs to the domain which includes all eigenvalues of the op-
erator —%HAt. As the considering problem is limited over energies, the spectrum
of H is limited, and this analogue with a scalar function is possible. The expansion
by complex Chebyshev polynomials ¢ gives the best approximation among other
possible expansions [123].

The complex Chebyshev polynomials ¢ are defined by the recurrence relation:

or(2) = 2206-1(2) + Pr-2(2)

wo(z) =1, ¢i(2) =2 (2.134)

with z € [—1;14].

In order to calculate polynomials with an operator argument, first, one should
remove the energy spectrum of the operator HAt to the interval [—1;1]. The maxi-
mum kinetic energy represented by the grid (see subsection 2.1.2) is ("’ggf)z = 2#221%2

(Eq. (2.25)). And the whole spectrum of the discrete Hamiltonian is in the interval:

7'['2

Vmin; Vmaz‘ + QIUA—RQ . (2135)
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With a transformation from z to w:

" w (2.136)

where r and g are:
At (Tfﬁ + Vmaz = Vmi'n)

r= 5 s 9= VoAt (2.137)

one obtains:
et =g e [—i,i]. (2.138)

At this step, e? is expanded in the Chebyshev series:

N
e~ appr(w), (2.139)
k=0
where coefficients a; are:
ap = eHICLI(r), (2.140)

and Cr =1 for k =1 and Cy = 2 for k > 1, Ji(r) are Bessel functions of the first
kind of order k. The high accuracy of this expansion is provided by the fact that
when k > r, Ji(r) goes to zero exponentially fast. Thus, N, has to be at least greater
than r. In the working code N, =1.2-r.

The propagation scheme is then obtained by substituting 7 = —%Ht instead of z
into Eq. (2.139) and using Eq. (2.140):

ik —iHA
U(At) ~ P(At) = Z APk ( : = t) 5 (2141)
k=0
with ox(2)

or(2) = 22¢0k-1(2) + pra(2)

wo(Z) =1, @(2)=2Z. (2.142)

The refinement of the scheme is based on increasing of the order of the expansion
and not of decreasing the time step At.

2.6.3 Hermicity in the time-dependent FGR method

In (2.135), (2.139), (2.141), it was implicitly supposed that the potential and the total
Hamiltonian are hermitian in FGR in order to the variable w will be purely imaginary.
For this, the whole spectrum of the operator H must be real. Even a small imaginary
part in the spectrum leads to the exponential error during the propagation. The
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spectrum of hermitian Hamiltonian is always real irrespective of a representation, if
this representation is complete. But, in practice, if the non-hermitian representation
is used, matrix elements are calculated numerically, and, as a sequence, the spectrum
of the matriz of the Hamiltonian has a small imaginary part because of roundoff
error of calculation of matrix elements. Thus, even if the Hamiltonian has a purely
real spectrum, the spectrum of corresponding matrix can have complex eigenvalues.
The issue is to use representations where the matrix of the Hamiltonian is hermitian
explicitly. Because of non-completeness of the used basis, This matrix is always an
approximation of the Hamiltonian, but it is better adapted for numerical calculation.
Thus, all discussions concerning the hermicity of different terms of Hamiltonian, and
also the discussion of the FGR-hermicity of the adiabatic equation are still valid and
important for the time-dependent method using the Chebyshev expansion scheme.

2.6.4 Mapping

The mapping procedure is applied to the time-dependent Schrédinger equation by the
same way as for the time-independent equation. Starting from the equation analogous

to Eq. (2.65):

1 d? d

- 1% =q— 24
VRS =it (2143)
and repeating all steps of changing of the variable R — z, the mapped time-dependent

equation in a symmetric form becomes:

1 [1 4 d? 1 - .d
(—@ [J_d_ * d—TJ ¥ V)¢ =% (2.144)

with the same effective potential defined by (2.71).

The only difference from the time-independent method is that the enveloping po-
tential is not going to zero at the asymptotic region (The time-independent approach
can use also the enveloping potential with the non-zero asymptotic energy, if reso-
nances are calculated). V¢,, must provide the free asymptotic kinetic energy of the
system. Thus, step size tends to a constant in the asymptotic region. The size of the
grid and, as a sequence, a number of points are chosen in dependence of the problem.
If the asymptotic kinetic energy is comparable with the depth of the potential, there
is no a large advantage of applying of the mapping. The mapping is favorable if the
the total energy energy is close to the dissociation limit, that corresponds to cold
collisions. In this case, the asymptotic kinetic energy is much smaller that the depth
of the potential well, and grid step can vary sufficiently, providing the effectiveness
of the mapping.

The choice of the enveloping potential depends of the potential and of the problem
and 1s discussed in details in the section 2.8.

In order to apply the Chebyshev propagation scheme to the mapped Schrédinger
equation it is necessary to estimate the energy spectrum of the Hamiltonian and,
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then, to define a volume of the time-energy phase space r from Egs. (2.137). An
interval of the energetic spectrum of the Hamiltonian in the MFGR:

2
__(p"r];az)_ + Vma:c - Vmin (2145)
i

P34 18 defined from the smallest step of the real grid AR after the coordinate trans-
formation:

™ m

= = 2.1
Pras AR,  mind(z)|;’ (2.146)
where Az is suppose to be 1.
And the argument of Bessel functions is defined in the usual way:
z=AtAE/2 (2.147)
The norm in the new representation can be written as:
1= [W(R)PAR = [ 1p(2) ) (2)dz =
1@ @I (@)de = [ |#(a)de (2.148)
Thus the form of calculation of the norm stays the same.
The energy is calculated using the fact:
Hy(R) = J77(z)He(z). (2.149)
And then
E= [ (RH$(R)AR = [ I (2)¢"(e)H(2)J (2)do =
/ ¢ (z)Ho(z)dz (2.150)

Thus, the form of calculation of the energy stays also the same.

2.7 Mapped time-dependent FGR method for cal-
culation of lifetimes.

The one of numerous applications of the time-dependent method is calculations of
lifetimes. The method using the Chebyshev expansion was successfully applied for
lifetime calculations of short-range pre-dissociated levels of symmetry 03‘ of alkali
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diatoms by O. Dulieu et al. [35]. Very often, in applications the pre-dissociated wave
function is not limited by small internuclear distances. This is a case, for example,
for the problem of ultra cold molecules, when the pre-dissociated vibrational wave
function can reach of distances till 1000 ag. The mapped time-dependent method is
adapted for this kind of problems.

In order to absorb the outgoing flux reaching an end of the grid, the wave function
is smoothly cut at the end of the grid after each time step. The procedure is similar
to the procedure proposed by R. Heather and H.Metiu [50] and have been used by
by O. Dulieu et al. [35]. The difference is that in the present calculations, instead of
transferring on the new grid, the cut portion of the outgoing flux is not propagated
at all, but it is taken into account for calculation of the norms. Using the optical
potential for absorbing of the outgoing flux seems to be more difficult since the
Chebyshev scheme is not adapted for the non-hermitian Hamiltonian (subsection
2.6.3). A discussion of the effectiveness of the absorbing boundary condition can be

found in [68] (R.Kosloff and D.Kosloff).

0

C(t) =I<¥, |¥ >|
S

10
80

Time (ps)

Figure 2.6: Two examples of C(¢t) for one pre-dissociated level of 0F (55 + 5P) symmetry of
87Rby. The energy of the level is 26.13 cm™! over the Py dissociation limit. Full line — the initial
wave function is purely pre-dissociated, dot-dashed line corresponds to the initial wave function
containing the non-pre-dissociated P/ component.
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The method of the extraction of lifetimes during the propagation is following. The
initial wave function % for the propagation is an approximate pre-dissociated wave
function. This wave function is propagated during the time. Since the propagation
works as a filter for eigen states, components of the initial wave functions which do
not belong to the exact pre-dissociated wave function, decay much faster (R.Bisseling
et al. [17], O. Dulieu et al. [35]). After enough time, only components of the exact
pre-dissociated wave function will rest in the interacting region of the potential. The
lifetime of the pre-dissociated level 9 is defined by a projection, C(t), of the initial
wave function on the wave function “filtered” by the time ¢ [35].

The projection C(t):

C(t) =< thole™ ™ |eho >=< thole; >, (2.151)

The function C(t) is called a correlation function. If the initial (pre-dissociated) wave
function is decaying exponentially with a lifetime 27 (7 corresponds to the decay of
the norm):

Y = e 2, (2.152)

then 7 is extracted from the correlation function as:

_logt; —logty
2(t; — 12)

=

(2.153)

The initial wave function %y can be calculated, for example, in the time-
independent FGR method when the coupling with continuum levels is switched off.

The graph 2.6 shows examples of the correlation function. Both examples cor-
respond to the same pre-dissociated level. Initial wave functions are different. One
initial wave function is purely pre-dissociated. The decay of this wave function is
purely exponential (full line). Another curve represents the initial wave function
containing continuum P;;; components. The initial behavior of the decay is not ex-
ponential — the dot-dashed line is not direct. After some time ({o ~ 30 ps), the
continuum components go away, the decay becomes exponential and a slope of the
dot-dashed curve becomes the same as for the solid line, demonstrating the same
lifetime.
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2.8 Choice of the enveloping potential

This section describes how the maximum kinetic energy, i.e. the enveloping potential,
must be calculated for different types of potentials.

A correctness and completeness of the representation of wave functions in FGR
depends of a choice of the expansion basis {g,}. A choice of the grid in R defines
maximum momentum, which the grid can represent (see Eq. (2.59)):

T

p(R)

AR = (2.154)

This momentum must be larger than the momentum p(R) proposed by physical
conditions of the problem:

P’ 2 Pmas (2.155)

or, defining the enveloping potential:

_ ()
Veno(R) = 2 (2.156)
2
_‘/em;(R) > Ema:c(R) = pz(‘uR) (2157)
From (2.154) and (2.157):

AR = —= (2.158)

V _2ﬂ‘/|env -

For the coordinate transformation R = f(z):

dR T

AR =—Az = 7 7, 2.
T z = (2.159)
Az can be always chosen to be equal to 1. And with J = ‘;—IE:
s
AR=J = (2.160)

V _Zﬂv;:nu .
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Thus, J determines the step of the real grid and is determined by the enveloping
potential. As it was discussed, |Veny(R)| is a curve with values which are larger than
local maximum kinetic energy E...(R).

Thus, the problem of the mapping is reduced to the definition of the quantity
Epnas(R).

The wave function does not vanish in the clas-
sically forbidden region where the momentum be-
comes imaginary. This part of the wave function
is exponentially decreasing. It previous classi-
cal consideration of the enveloping potential, it
was supposed that this exponential tail is small
in comparison with the rest of the wave function.
If it is not a case one has to include into consider-
ation a domain of the phase space (R, p), where
the wave function are not negligible.

The correlation between AR and p in the clas-
sically allowed region is defined from classical re-
lations between p and AR like Eq. (2.158). In the classically forbidden region it
can be done using semi-classical estimations. Implicitly, the present method takes
into account the classically forbidden regions, if the parameter 3 is slightly smaller
than unity. By the same way the accuracy of the representation of high momentum
components can be improved. A more elaborated semi-classical analysis rests for the
future work.

The definition of the enveloping potential depends of the problem and the po-
tential V. Here some of cases are considered. (D means the first dissociation limit
V.)

Figure 2.7: The enveloping potential
(the dashed line) for the one-channel
potential (solid line).

One-channel potential, bound levels.

If V is a one-channel potential, and only
bound states are under consideration, then the
enveloping potential is simply the potential curve

V(R):

Bound levels

Veno(R) = V(R) — D.

(2.161)

In a case of one potential curve D = V(00). As ' ——————e

it was discussed in the section 2.3, the envelop- Figure 2.8: The enveloping poten-
ing potential in the present calculations does not tjal for the one-channel potential with
repeat the behavior of the potential at small dis- a hump.

tances — from the beginning of the grid to the

minimum of the potential. The grid step in this region stays constant. In this region
the potential energy varies quickly, and the exponential tail of a wave function in the
classically forbidden region can be sufficient. The constant minimum step provides
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the correctness of the representation of wave function. This procedure introduces
only a few additional grid points.

This case of the enveloping potential is demonstrated on the graph 2.7. A length
of a full line with big arrows corresponds to the value of V.., (%) at the distance Rj.
- - If the potential has a hump at some distance
" Contin. levels’ (for example, graphs 2.8 and 2.9) with the po-
aun s tential energy larger than the dissociation limit,
from the classical estimations, the enveloping po-
tential must be zero for all R, where V(R) > D.
But due to the tunneling effect the probability
: of the presence is not zero there, and V,,, must
R B provide the representation of the wave function
in this region. In the practice, V., (R) in such
region is chosen to be constant and equal to the
minimal value of V(R) at the right side from the
hump.

If the potential never becomes lower than D (V(R) > D) at right of the hump,
then V.., (R) = 0 at the right (the graph 2.8). If not, it means that there is an outer
well, and V., (R) on points of the hump is equal to depth of the well (the graph 2.9).
The lines with two big arrows show the value V.., (Ry) of the enveloping potential for
bound level calculations.

Bound levels

Figure 2.9: The enveloping potential
for the potential with a hump and a
well.

Bound levels. Analytical mapping.

In the previous case V.., (R) can be also an analytical curve, situated under the
potential curve of V(R) — D. In this case f(z) and all its derivatives J,J’,J" are
calculated analytically [64]). The most natural choice of this analytical curve is a
curve repeating the asymptotic behavior of the potential — as a rule — a C,,/ R" curve.
A similar approach was proposed by E.Tiesinga et al. [125].

e ————————— The obvious advantage of the analytical ap-
' proach is a possibility of the exact evaluation of
quantities f, J,J', J”. (The analytical enveloping
potential could be useful for estimations of the
accuracy of the method using an analytical po-
tential curve.) This advantage becomes not so
important if the potential is not analytical — the
error of the calculation of the potential in inter-
mediate points and the error of numerical valua-
tion of f,J,J', J” are comparable.

The graph 2.10 demonstrates the case of the
analytical potential. A full line with big arrows shows again a value of V., (Ro) at the
distance Ry. It is evident, that the phase space defined by this enveloping potential
(and as a sequence — the basis size, N) is larger than in the previous case due to the
high density of points at small distances, where V,,.,(R) and V(R) are different.

Bound levels

I
I
IR

—l

Figure 2.10: The analytical envelop-
ing potential.
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One-channel potential, continuum levels

The enveloping potential for calculations of levels of continuum in potential V
is easily defined if the enveloping potential for bound levels is known. Let V2 _ is
the enveloping potential for V, determined only for bound levels calculations. Levels
of the continuum with asymptotic energies from 0 to E,, can be included into the

consideration by addition of the constant E,, to V.,,:
Venu(R) = VeI;w(R) — Eqs. (2.162)

The enveloping potential with the non-zero asymptotic energy is used for the map-
ping in the time-dependent equation for lifetimes calculations and for the simulation
of cold collisions. It is also used in the time-independent approach coupled with the
method of the optical potential where the grid must provide the kinetic energy of
the outgoing flux. This situation is demonstrated by graphs 2.8, 2.9 and 2.11. The
value Ven,(Ro) (demonstrated by the length of a full line with big arrows) must be
now increased on the quantity E,, in comparison with previous cases. (At all graphs
these lines are drawn for bound levels only.)

Multi-channel adiabatic potential.

Consider now the multi-channel problem with the adiabatic potential. Since the
non-adiabatic coupling term 7;5713,52- does not introduce the additional kinetic energy
in the Hamiltonian, it does not increase the momentum. Thus, the curve V.., (R)

coincides with the lower adiabatic curve (let say Vj(R)). For bound levels:
Voro(B) = V4 (E) — Va(c0), (2.163)
for the continuum levels:
Veno(R) = Vi(R) — Vi(00) — Egs, (2.164)

At the figure 2.11 this case of the potential is demonstrated.

The full line with two big arrows show the local value V,,, with accounting the
asymptotic energy E,;. The including of F,, provides the correct representation of
continuum levels.

Multi-channel diabatic potential.

The simplest way of the calculation of V,,, for the multi-channel diabatic poten-
tial is to compute the corresponding adiabatic curves and to use, then, the method
described in the previous case.

An example of the two-channel diabatic potential.
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An alternative way of the calculation of V,,, for diabatic potential is to estimate
how adiabatic curves can be deep. Consider the two-channel example with the adi-
abatic coupling between channels — V] 2(R). Veny(R) for bound levels is defined in
two steps. First, the preliminary enveloping potential V2 (R) is calculated for each
distance R as the minimum of two quantities

Veno () = min(Vi(R) — D, Vo(R) — D) (2.165)

= ] The second step takes into account the effect
of the coupling. The coupling changes (slightly, in
general) potential curves, that may increase the
local kinetic energy. The most change is in the
region of the crossing R.. This change is equal
to Vi2(R,). Thus, the coupling Vi 2(R) must be
_ accounted in the enveloping potential. For the
R, _ bound levels:

LE 1C_qnlii1._lgve]s i _

Vv,

C

"

Bound levels

Figure 2.11: The enveloping poten- Vo = VP —|VioR)| + |V o(c0
tial for the two-channel adiabatic po- o env | 1’2( )I | 1’2( )I
tential. The enveloping potential fol-

lows the behavior of the lower potential. . . .
Here, the enveloping potential overestimates the

maximum local energy, since the additional in-
creasing of local kinetic energy due to the coupling is smaller than |V],(R)| every-
where outside of crossings. The last term is added, since continuum states, introduced
by a asymptotic shift |V; 2(R)| at R = oo, must be excluded from the consideration.
Continuum levels can be accounted by an addition of the corresponding E,;:

(2.166)

‘/env = Vl

env

— Via(R)| + [Via(o0)| — Eis. (2.167)

Once the enveloping potential is known, the mapping functions J(z) and f(z) are
calculated using Eq. (2.160). There is a technical difficulty with a calculation of J(z).
If the potential V is quite complex, the enveloping potential, obtained as described
above, will have breaks. It occurs, for example, in the place where two potential
curves are crossing. In this region, the mapping functions J, J’, J” have big breaks
or are not defined at all. On the graph 2.12 an example of two-channel potential of
Rb; near the crossing is demonstrated (full lines on the upper panel). The enveloping
potential V,,, calculated as described above is shown by a dashed line. At the lower
panel one mapping function J’, calculated from V.,,,, is also shown. J’ is broken in
the region of the crossing . This break reduces the accuracy of representation of the
mapping and, as sequence, reduce the accuracy of obtained bound levels.

In order to obtain more smooth V,,, the next procedure of the smoothing is
proposed.

Voo (R) = — /_;w - (T_R)QVem(r)dr (2.168)

a+/m a
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Figure 2.12: Efficiency of smoothness of the enveloping potential calculated for two-channel system
0F, 5S + 5P of Rb,. Upper panel: full lines — potential curves of the 0 symmetry, dashed line —
non-smoothed enveloping potential, dot-dashed line - smoothed potential according to Eq. (2.168)
with @ = 2 ag. Lower panel: Curves represented the quantity J'(z) as a functions or R. Full line is
J'(z) calculated from the non-smoothed V,,,,, dot-dashed line represents the smoothed V..

Each point of V.o is now correlated with neighboring points. As one can see from
Eq. (2.168) that all derivatives of \va over R are defined and continuous. The new
enveloping potential is shown by the dot-dashed line on the upper panel of the graph
2.12, the dot-dashed line of the lower panel shows the new J'.

2.9 Conclusion

In this chapter of the Thesis the mapped Fourier grid representation method was
developed. Comparing with the uniform method, a main advantage and a main idea
of the proposed method is to adapt the local grid step to the local de Broglie wave
length of the most oscillating wave function. Since the ordinary FGR. basis determines
the equally-spaced grid, the coordinate R in the Schrodinger is transformed into the
new variable x in such way that in this new coordinate z, the grid rests equally-
spaced, whereas the most oscillating wave function has almost the constant frequency
in coordinate z, that reduces needed basis and, as a sequence, the computation efforts
to the minimum.

The matrix of the Hamiltonian is written in grid over the variable z in FGR. As
in the uniform method, diagonalization of this matrix gives eigen energies and eigen
wave functions of the Hamiltonian. The efficiency of the mapping is demonstrated by
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{p, R} curves in the phase space. Using the uniform distribution of grid points in the
coordinate z between oscillations of the most excited level allows also to introduce a
unique parameter (3, which controls a priori the accuracy of calculations.

The proposed phase space approach for the choice of the basis can be made more
accurate including a consideration of the classically forbidden region. This problem
rests opened.

MFGR can be used not only for calculations of bound levels. Using MFGR to-
gether with the method of the optical potential, energies and widths of levels of
the continuum levels can be calculated, that is also very frequent problem of cold
collisions.

The chapter describes also some aspects of the application of the method at the
adiabatic Schrédinger equation. It can be useful if a use of a hermitian representation
of the Hamiltonian is preferable, that is a case, for example, of the time-propagation
techniques using the Chebyshev expansion.

It was shown that MFGR can be used also for the time-dependent Schrodinger
equation. In the chapter it is demonstrated that MFGR can be coupled with the
time-propagation scheme using the Chebyshev polynomials, that can be used for a
dynamics simulations of cold collisions.









Chapter 3

Precision. Comparison with Other

Methods.

The FGR method is a spectral-type numerical technique [70]. This means that, in
principle, the error, as a function of a points number N, decreases faster then any
power of N. It is valid if a potential of the Hamiltonian is analytic - the potential
and its derivatives can be calculated exactly. R.Kosloff [70] has shown that for a
harmonic oscillator a relative precision of calculation of vibrational levels is of order
1074, It was demonstrated that the precision increases exponentially with the density
of points.

An alternative Numerov method is widely used for the solution of differential
equations. It is a finite difference method and its error is decreasing as O(N~°) with
increasing of N. Thus, the FGR method is superior over the Numerov method. On
the hand, the Numerov method have proved its applicability and can be used for the
estimation of the precision of the developed FGR method.

In practice, the potential is presented numerically by grid points and, usually, its
derivatives on intermediate points are calculated using the spline procedure (As it is
done in the present program) . It limits the precision of both methods.

This chapter is devoted to the comparing of the precision of the FGR method with
the Numerov method using realistic potentials. First, two examples, the Na, ('II,)
and Cs; (1), of potentials are taken for the comparison of results for bound level
calculation. Then, the precision of calculations of wave functions is discussed for
both methods. In the section 3.4 the precision of lifetime calculations is considered.
Time-dependent and time-independent FGR methods are analyzed with this goal.

3.1 Vibrational levels of Na, ('II,). Comparison
with the Numerov method.

a) Tests carried out in the article [64]. The text taken from the paper will be typed
again by this font.
The efficiency and accuracy of the mapped FGR method described above can be
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checked by comparison with a standard method, such as the well known Numerov Cooley
algorithm [18], as well as with the usual FGR method.

T X T ¥ T

4 ka)

v (vibrational level)

Figure 3.1: Accuracy AFE of the computed energies for the 80 lowest Nag(lg) vibrational levels in
the Naz(lﬂg, 35+ 3p) potential. The three figures represent a) - AE, from Numerov integration with
AR = 0.0025 (34000 points). b) - AE, for energies computed by the FGR method with uniform grid.
Solid line: N=950 points; dash-dotted line: N=1140 points. c) - AF, for the FGR method with the
mapping defined by Eq. (2.61), considering different values of the parameter (3. Solid line: B = 0.6,
N=170 points; dash-dotted line: § = 0.4, N =254 points; dashed line: 8 = 0.2, N=506 points.

We have performed accuracy tests computing the energies of the first 80 vibrational
levels in the potential Na, 'TI,, 3.5+3P [89] already displayed in Fig.2.1 extended at long
range by the asymptotic —6.48/R® curve predicted in [92]. We chose a grid extending
from 5.0 ao to 90 ao, and we display in Fig 3.1 the results of the convergence tests.
The precision of the Numerov method itself is illustrated in the upper panel, where we
show that the computed vibrational energies £, vary by less than 4 - 10~7 ¢m~! when
the step size is modified from AR = 0.00125 a4 (68000 points) to AR = 0.0025 aq
(34000 points). The binding energies extend from 1103.78 cm™! to 2.44 em™!. Taking
as a reference the first calculations with the Numerov algorithm, we show that a typical
107% em™! accuracy can be obtained with the FGR method using a constant step and a
number of points of the order of 1000.

The convergence tests for the mapped FGR method varying the 3 parameter are also
given in the figure. The same level of accuracy can be reached with 3 = 0.2 and N = 506
grid points, thus reducing NV by a factor of 2. We should note that the accuracy obtained
with 3 = 0.6 is already better than 10~ ¢m ™!, and corresponds only to 170 grid points for
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determination of 80 vibrational levels. In contrast, for 3 = 1, only the 20 lowest levels are
obtained accurately, the error on the energy of levels v > 40 reaching 0.5 cm 1. Finally,
we have checked that for # > 1, the method is not even yielding all the eigen-energies.
The calculated error on the energy resulting from the Numerov calculation Fig. 3.1
is clearly non-uniform. Indeed, changing the number of grid points modifies the local
description of the potential curve, which will affect mainly energy levels with outer turning
points located in the region 10 ap < R < 16 ag where the slope of the potential is large.
In contrast, the calculated error in the FGR method is uniformly distributed on all levels,
due to the global character of the method.
b) Additional tests carried out in the Thesis using an improved version of the program

2 - ‘ T

|
]

AE (10°em™)

v (vibrational level)

Figure 3.2: Improved calculations with parameters close to parameters of the figure 3.1. The
calculations using the Numerov method with 576000 points are chosen as a reference. Two panels
correspond to the b and ¢ panels of the Fig. 3.2. Panels: b) - AF, for energies computed by
the FGR method with the uniform grid. Solid line: N=953 points (3 = 0.418); dash-dotted line:
N=1141 points ( = 0.349). c) - AE, for the FGR method with the mapping defined by Eq. (2.61),
considering different values of the parameter 5. Dash-dotted line: 8§ = 0.4, N=233 points; solid
line: § = 0.2, N =465 points; dashed line: 8 = 0.1, N=927 points.

Recently (after a publication of the paper [64]), additional accuracy tests has been
done using an improved version of the program. A main improvement in the program
is a new procedure of calculations of the mapping functions, f(z),J,J’,J”, from the
enveloping potential. This new procedure is described in details in the section 2.8.

Figure 3.2 presents results obtained with the new program. Two panels (b and
¢) of the figure correspond to b and ¢ panels of the Fig. 3.2. The parameters are
slightly different on two figures.
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e A maximum calculation error for the non-mapped FGR method is the same in
new and old calculations with using of the same number of points.

e The accuracy of the mapped FGR method increases essentially in comparison
with old results ant it becomes the same as for the non-mapped method. Thus,
the mapping does not introduce a significant error into calculations.

e Starting from a density of points corresponding 3 < 0.2, the difference between
energies obtained by two methods does not decrease any more. This fact is
preliminary attributed to the error introduced into calculations by the splines
procedure, which is used in both methods.

The choice of the Numerov methods a reference for calculations is justified, since
this method is stable. It means that computed levels have limits in respect of decreas-
ing of grid step. Increasing the density of points (decreasing the parameter 3), the
FGR method also demonstrates a stability. The graph 3.3 demonstrates the difference
between calculations with two different parameters 8. The maximum difference is of
the same order of magnitude as for Numerov method with N = 68000, 34000 from
the graph 3.1. Thus, this order of the error 10=7 em™! is attributed to the procedure
of interpolation of potentials and derivatives.
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Figure 3.3: The stability of the FGR method. The difference between bound levels calculated in
the mapped FGR method with two parameters # 0.07 and 0.1.
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3.2 Example of a wave function extending at long
range: potential Csy (1,).

Considering now the example of the potential Csy(1,,6s, 6p® P5/2)[94, 92], we have com-
puted the vibrational levels up to v = 337, with a grid of extending from 4.5a, to 500q.
The number of points can be reduced from 6500, without coordinate change, to 658
with the simple transformation defined in Eq. (2.61), using a value 5 = 0.6 reducing the
memory necessary for computation by a factor 120 times. For the chosen example, the
highest calculated vibrational level has an energy as small as F337 = —0.0317 cm™?, the
v = 0 level staying at Fy = —1359.6804 cm™!. The convergence tests show a stability
better than 10~ e¢m~! when the parameter 3 is varied from 0.9 to 0.4.The diagonaliza-
tion procedure yields N eigenvalues, for which only the lower ones correspond to bound
states, the upper ones being continuum states up to a positive energy E7'*" which de-
pends upon (3. The efficiency of the mapping using the real potential is clearly manifested
in this example : for the grid considered above, choosing 8 = 0.6, mapping using the
real potential involve 658 grid points and hence 658 eigenvalues, the upper one lying at
an energy EF*" = 12729 ecm~!. The same calculations with an enveloping potential
—C3/R® (where we have taken C£™ = Cj so that the enveloping curve differs from the
real one only at short and intermediate distances), would require N = 878 grid points.
The increase in the number of points is not a substantial one, but the maximum energy
is now EF** = 87790 cm™!, so that the energy domain spanned by the method is as
high as 89000 cm~1. Such a large energy range can result into severe inconvenience for
application to time-dependent problems.

The repartition of grid points in the example has been illustrated in Fig. 2.3.
It is remarkable that vibrational energies can be obtained with accuracy better than
10~ cm™tusing only N = 564 grid points (with 3 = 0.9) for levels with a wave function
exhibiting up to 337 nodes. A possible drawback of this achievement could be that NV
becomes too small for accurate definition of the wave function : we show below that this
is not the case.

3.3 Wave function in the mapped FGR method.

In calculations employing a discrete grid, the wave function is represented on a finite
set of grid points. Values of the wave function at other distances have therefore to be
determined by interpolation. Linear interpolation then yields low quality results (see Fig.
3.4). We describe here a better approach for the interpolation of the wave function in
the FGR method, using the intrinsic properties of the Fourier representation [72].

The interpolated wave function in this case is [72]:

N _ -

¥(g) = Y_W(gi)sine |- —(a— ;)| » (3.1)
71=1 Aq

where g; is a working uniform grid (with or without mapping), ¢ is any intermediate point,

Aq is a grid step, and we have defined the function sinc(z) = =),

z
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Figure 3.4: The v = 332 vibrational wave function for the Csg (1, 63+6p2P3/2) potential (see Fig.
2.1), computed at the grid points defined with the mapping of the Eq. (2.61). Here, 20, = 500a0,
N = 564. a) - wave function at every grid point, with linear interpolation between two points ; b) - wave
function interpolated according to Eq. (3.1) choosing Ninterp = 10000 (see text). c) - interpolated
wave function in the T variable, showing only the part corresponding to large J{. Comparing c) to b),

one can appreciate the regularity of the oscillations in the mapped wave function)

In Fig. 3.4 we display the wave function, computed with sinc interpolation at a
large number (Njnterp = 10000) of ¢ values, for the 333% (v = 332) vibrational level of
Csy(1,). Comparison with linear interpolation clearly illustrates the good quality of the
second interpolation. Of course, we have checked the accuracy of the interpolated wave
functions by comparing to standard methods.

In the same figure, we show the influence of the mapping procedure on the shape
of the wave function. One can see that the two representations are quite different: the
mapping has an effect of "stretching” the grid at smaller distances, where the density of
points needs to be large. Indeed, if the unmapped grid has sufficient point density in this
region, it has too many points at large distances, where oscillations of the wave function
are not so frequent. The mapping procedure eliminates such superfluous points, yielding
an uniform distribution of the number of grid points per oscillation. It is remarkable that
with mapping good quality wave functions can be obtained with a reduced number of
points at each oscillation: indeed, the wave function drawn in Fig. 3.4 has 331 nodes and
has been been obtained using only N = 564 grid points, that is less than two points per
oscillation.

The precision of the FGR method was checked also for wave functions obtained
in calculation. The Nay(*Il,,3s + 3p) potential is used again. First, the accuracy
of Numerov method is verified. The reference now is a wave function for v = 0
obtained with N = 576000 points. (The further increasing of number of points NV
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Figure 3.5: The calculation accuracy A¢(R) of the wave function of ¥ = 0 vibrational levels of
Nag(*Il,, 3s + 3p). Upper panned: The reference is the wave function obtained with N = 576000
points. Solid line: N' = 288000 points, dotted line: N = 144000 points (the same as for N = 288000),
dashed line: N = 72000 points, long dashed line: N = 36000 points, dot-dashed line: N = 18000
points. Lower panned: the reference is the v = 0 wave function obtained in the FGR method with
B =0.07, N = 1323. The difference with wave function obtained for: solid line - 8 = 0.1, N =927,
dashed line - 8 = 0.2, N = 465.

in the Numerov method does not improve the result with the available program of
the Numerov method.) The upper panned of the graph 3.5 shows a comparison with
results for different number of points. Thus, the accuracy is limited by error of order
1078,

The same test was made for the FGR method (the lower panned of the graph
3.5). The interpolation is made according to Eq. (3.1). The error is the same (or
slightly less), than the error given by the Numerov method. For a completeness of
the description the difference between wave functions obtained in two method with
the smallest steps (the graph 3.6) is given. This graph together with the graph 3.7
gives an idea about the mutual trustworthiness of two method. This difference is
larger than AW “inside” both methods (graph 3.5). Thus, the best precision of the
FGR method with using the available code and calculated potentials for calculations
of wave functions can be estimated as 10~%.

The graph 3.7 represents the precision of wave function calculations as a function
of the parameter . The reference is the calculations with 8 = 0.07. Again, the best
precision can be estimated as 1078 for 3 < 0.2. At the other hand, the wave function
is still calculated with a good accuracy 2-107° with 8 = 1.

In conclusion, it is necessary to mention another method - the recently developed
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Figure 3.6: The difference between wave functions calculated by two methods. The smallest step
1s chosen for both methods: N = 576000 is used in the Numerov method, # = 0.07 is chosen for the
FGR method. This difference larger than A for each method with indicated parameters. It gives
an idea, how small can be 3, and what is a order of accuracy of both methods

integral equation method (IEM) by R.Gonzales et al. [46]. It is also (as the FGR
method) a spectral-type numerical method. Its main feature is that the Schrodinger
equation is converted into the integral equation. This integral equation is solved using
so-called spectral Clenshaw-Curtis quadrature method. Authors of the mentioned
paper compare also a precision of this method with results given by the Numerov
method. Two analytical potentials are used for precision tests — V = [(l + 1)/R?
(the theoretical solution is available) and V = 1/(R + R*). Several wave functions
with positive asymptotic energies were calculated. The accuracy of IEM was verified
comparing these wave functions with theoretical values. The accuracy of Numerov
method is better than results presented in the Thesis — of order 0.2 — 0.7 - 10~2 for
N = 12000 — 410000. The accuracy of IEM is much better — 1.3-1071* —2.107!3 for
different wave functions.

The IEM accuracy is much better than the accuracy of the method considered in
the Thesis because IEM uses the analytical potential for tests, but the FGR method
is checked here only on numerical potentials. The accuracy tests with analytical
potentials were carried out by R. Kosloff [70]. The results is comparable with the
work [46] — the accuracy is of order 1071 — 10713,

Advantages of IEM are relative simplicity, very high accuracy, a possibility to
apply to the scattering at high energies. Nevertheless, a number of disadvantages
in comparison with FGR method seem to appear, as follow: calculation only one
wave function at one running of the code, impossibility to calculate bound levels
and impossibility to generalize for the time-dependent Schrodinger equation and for
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Figure 3.7: The precision of wave function in the FGR method as a function of the parameter g.
The reference is the calculations with 8 = 0.07

calculation of lifetimes.

3.4 Comparison of methods for calculations of life-
times

In this section two methods of lifetime calculations for long range potentials are
discussed and compared. They are the time-dependent and the time-independent
FGR methods, described in sections 2.5 and 2.7. Both of them use the same mapping.

3.4.1 Considering example

The considering system is a two-channel potential of the 0} (55 + 5P) symmetry of
8Rb,. Two potentials '3, and 3II, having the same dissociation limit are coupled
by the constant spin-orbit coupling (for details, see the section 4.2). This coupling
corresponds to the spin-orbit splitting of the 5P atomic level into two levels- 5P; /, and
5P3/3. Thus, the 0} (55+5P) symmetry with accounting of the spin-orbit interaction
has two dissociation limits 55 + 5P/, and 55 + 5P;/,. For a simplicity the first limit
will be refereed as Py/;, and second as Ps/;. Diagonalization of such potential (two
1%, and 3II, curves plus the coupling) gives two new curves, which have different
dissociation limits — P;/; and Ps/;. These curves, for a simplicity, will be called also
as Pyj, and P3/, curves and a corresponding basis of molecular states will be called
as the adiabatic representation, since it corresponds to the adiabatic form of the
Schrédinger equation. A representation using 'Y, and ®II, curves and the coupling
will be refereed as diabatic. Vibrational levels with energy between P;;; and Py
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limits have finite lifetimes due to the spin-orbit interaction with continuum spectrum
beginning above the P/, limit. Thus, the accuracy of calculations of lifetimes of
these vibrational levels is under consideration in this section.

A choice of the enveloping potential is discussed in the section 2.8 as an example.
For Rb(5P) the atomic spin-orbit splitting is 237.6 cm ™.

A right border of the grid is limited by distances 100 — 200 ay.

3.4.2 Time-dependent method

In the time-dependent FGR method the first step in lifetime calculations is a definition
of the initial wave function 1. %o is computed in the time-independent method. The
approximated initial wave function 1 could be taken from calculations with the single
P32 potential curve with the energy superior than the Py, limit . But, since both Py,
and Ps/y states are strongly mixed at small internuclear distances, this approximation
is very rough. In the calculation it is demonstrated by a non-exponential decaying of
the level during the propagation. Thus, the initial wave function must be calculated
for two channel potential.

The function %)q is calculated with the mapping providing only bound levels, since
without using the optical potential the continuum states are always disturbed by
ends of the grid. Thus, only a “bound” part of the pre-dissociated wave will be well
presented. The wave function o with the energy larger than the first dissociation
limit (Py/2) contains 0 (P/;) component which belongs purely to the continuum
(disturbed by ends of the grid). In the adiabatic representation the P;/; component
can be separated.

A relative population of two adiabatic components of the pre-dissociated wave
function, obtained in the bound state calculations with the finite grid, is defined
by the length of the grid. What does not depend on the length of the grid, is a
ratio between amplitudes in the interaction region and in the asymptotic region. A
lifetime is defined by this relation. The asymptotic amplitude is linked to the flux
going out from the interaction region, the last is connected to the lifetime of the
state. In the bound calculations the total norm of the wave function is finite and
equal to 1, whatever the length of the grid is. Therefore, the relative population of
the P;/, component is smaller for larger grid. The Fig. 3.8 shows one pre-dissociated
wave function of Rbs given by bound calculations in the diabatic and the adiabatic
representations. Asymptotic oscillations are very small (|¢(R)[*> = 1075) for this wave
function and they are not visible on the figure. One can see that the P/, component
(middle right panel) of the total wave function looks like a bound state, whereas its
Py, component (lower right panel) considerably differs from a bound state. As the
P, /3 component belongs to the continuum, it slightly disturbs the exponential decay of
the initial wave function. (The continuum component does not decay exponentially.)
Thus, in lifetime calculations, the 07 (P;/;) component is explicitly eliminated from
¥o. As the transformation from the diabatic to the adiabatic presentation is known,
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Figure 3.8: Diabatic (left panels) and adiabatic components (right panels) of a two-channels pre-
dissociated wave function of 8"Rb, (0}); E = 210.52cm™! above the Py, asymptote. At left panels:
up - the 3I1, component, middle - the %, component, down - the total wave function. At the right:
up - the P/, component, middle - the P33 component, down - the total wave function. For I
and P3/; components relative fractions in the total norm are marked. Arrows mark the position of
the crossing.

this procedure can be done easily.
P gt vp = 0,4% o P (3.2)

1,[-;“ and 1/_;d are the initial wave-function 9y in the adiabatic and the diabatic presenta-
tions. The figure 2.6 gives examples of the correlation functions for the pre-dissociated
levels with energy E, = 26.13 em™! of " Rb,.

The figure shows also the correlation function for the initial state, for which the
Py /5 component is not extracted . At the beginning, the P/, component disturbs
the exponential decay of the correlation function. A propagation during the time
t € (0 ps, 30 ps) works as the time filter for the pre-dissociated wave function [35] —
it selects from the initial wave function only a part belonging to the resonance level.
After the time o = 30 ps, only this resonant pre-dissociated part stays, decaying
exponentially. A slope of the curve becomes the same as for the correlation function
for the initial wave function belonging “purely” to the P3/, state.

Small oscillations at the bottom of lines on the Fig. 2.6 are due to high frequency
components, presented in the initial wave functions. Since grids in the bound calcu-
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lation and in time propagation are not the same, the initial wave function ¥y in the
propagation is transfered from one grid to the other. This transfer introduces new
components in the spectrum (mainly, high-frequency components). High components
disturb the correlation function and are not eliminated by the time filtering.

The method of the propagation using the Chebyshev expansion is a very precise
tool for solution of the time-dependent equation. It is used as a benchmark for
other propagation schemes (C. Leforestier et al., [77]). Its uniform error is less than
1071, In the present calculations there are different sources of errors. First source
is a uncertainty of the definition of the slope of C(t) in a logarithmic scale. The
second source is disturbing components of the continuum presented in the initial
wave function. When the initial wave function is transfered from a grid of the time-
independent method into a grid of the time-dependent method, it introduces an
additional error due due high frequency components which disturb the exponential
decay of a pre-dissociated level. It is a third source of error. Thus, there is a room
to improve the present calculations.

3.4.3 Time-independent method

The method of lifetime calculations using the time-independent approach and the
optical potential is described is the section 2.5. One advantage of the method is its
simplicity. Another and, maybe, the main advantage of the time-independent method
in comparison with the time-dependent is that all resonances are extracted during
only one running of the program.

In the calculation the optical potential of Eq. (2.129) is used with parameters:
As = 0.00029, N = 13.22, L = 4.8 a.u., Ry is a starting point of the optical po-
tential. Ry was chosen at 80 ao. The increasing of Ry (and the length of the grid)
does not sufficiently change results. An increasing of the length L of the optical
potential also does not change results, that is in agreement with results of A.Vibék
and G.G.Balint-Kurti [131, 132]. Note, that in the time-independent method one
can control the efficiency of the absorbing of the outgoing flux. It can be controlled
also in the time-dependent method. If this propagating wave function is not zero at
the region behind the optical potential, the absorption does not work properly. The
absence of the reflection from the optical potential can be controlled using the anal-
ysis of components going back in the asymptotic region before the optical potential.
computation It seems that in the time-independent method has smaller of sources of
errors than the time-dependent approach.

3.4.4 Comparison of results

The figure 3.9 shows results obtained by two methods. The energy domain cor-
responds to the splitting between two dissociation limits. The time-independent
method computes all resonances at one running of the code, whereas the time-
dependent method determines only one lifetime at one running. Therefore, not all
resonances have been calculated in the time-dependent method.
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Figure 3.9: Lifetimes of vibrational levels of the 0} symmetry of 8Rb,, calculated by two meth-
ods - time-dependent and time-independent. Circles represent the time-dependent calculations;
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Although, both methods give comparable results, that proves a capacity for work
of both methods, the difference in lifetimes is quite large. It is about 4%. As it was
discussed, this error is mainly attributed to the time-dependent method due to the
uncertainty of definition of the slope of C'(¢). This uncertainty of the slope is caused
by two factors: by the initial non-exponential decay of 1y and by a limitation of the
propagation time (or by a time).

3.5 Conclusion

This chapter examines the precision of the mapped Fourier grid representation
method. All tests are made using numerical potentials.

First, the precision of the time-independent method is compared with the integra-
tion method of Numerov. It was found that using numerical potentials, precisions of
both methods are comparable (of order 1078) and, probably, are limited by a spline
procedure used for calculations of potentials at intermediate points. In principle, the
precision of the mapped FGR method with using of analytical potentials should be
the same as for the uniform method, i.e. of order 1074.

The second test concerns a precision of calculations of wave functions. It was
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found that the precision of the FGR method (the best is & 1078) is not worse than in
the Numerov method and even, probably better. The accuracy limit was attributed
again to the spline procedure.

Disadvantages of the Numerov method, such as difficulties of a generalization
for multichannel potential, difficulties near the dissociation limit and others, are not
discussed in the Thesis.

Finally, the precision of the MFGR method in calculations of lifetimes is checked.
Two methods of lifetimes calculations are compared. Both, time-dependent and
time-independent approaches use MFGR. Results show that both methods give same
lifetimes. Unfortunately, there is some discrepancy between results — of order of
several percents. The source of error is attributed to the time-dependent approach,
in which the lifetime is defined from the correlation function. For a better precision
of lifetimes in the time-dependent method the propagation time must be larger.









Chapter 4

Photo-association Spectroscopy of
Alkali Diatom near the
Dissociation Limit.

The mapped Fourier grid representation method, developed in section 2.1, can be
applied to solve the Schrodinger equation of many physical problems. As it was
discussed, the method is especially adapted for equations with the long-range poten-
tial. This chapter is devoted to an application of the method for the investigation
of 0F spectra of the long-range potentials of Rby and Cs;. The energy domain un-
der and above the dissociation limit is considered, corresponding to the problems of
highly-excited and pre-dissociated vibrational levels.

4.1 Introduction

The symmetry 0} (nS + nP) of alkali diatoms including, in the diabatic description,
two curves (!X}, *IL,) and a spin-orbit interaction between them, is well known as
an example of strong perturbations between vibrational levels of discrete spectra of
two molecular states (H. Lefebvre-Brion and R.W. Field [76]). The perturbations
are manifested by a non-regular behavior of two vibrational series, not following the
dissociation law of Leroy-Bernstein [78§].

The perturbations have been intensively studied for all alkali diatoms: many
theoretical and experimental studies have been performed for Li, [107, 110, 114, 115],
Na, [37, 61], K, [59], Cs.[130], and Rb; [7, 16]. The study of perturbations can help
to determine the coupling between molecular states, i.e., the spin-orbit coupling, as
it was done, for example, for Na, by C. Effantin et al. [37].

An equivalent representation of the 0} symmetry is the adiabatic representation,
including two adiabatic curves, asymptotically connected to two different .5 +n P/,
and nS + nPsy; dissociation limits of two free atoms, and non-adiabatic coupling
between these curves. Over the first dissociation limit, nS 4 nPy/;, the strong non-
adiabatic coupling is responsible for the pre-dissociation of vibrational levels, be-
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longing to the highest potential curve (asymptotically connected to the nS + nPsy
limit).

The recently developed precise photo-association spectroscopy of cold atoms has
opened new possibilities. It became possible to observe vibrational levels close to the
dissociation limit and to measure the lifetimes of pre-dissociated levels of different
molecular systems, in particular, of the 0 symmetry. The experimentally measured
lifetimes of pre-dissociated levels of the 0F spectrum have been reported for Rb, by
R. Cline et al. [27] and for K; by H. Wang et al. [139].

Due to the spin-orbit coupling, the perturbations in spectra of heavy alkali diatoms
(Rb and Cs) must be much stronger than for light alkali diatoms. Indeed, C. Amiot et
al. [7] have recently reported strong perturbations in the experiment with Rb,, using
Fourier transform spectroscopy. The observed perturbations have been successfully
interpreted by calculations using the uniform FGR method [7]. The domain of bound
energies of vibrational levels from —2500 cm™ to —500 cm™! has been explored.

An example of potential curves of the symmetry for a rubidium diatom is shown
at the left panel of the Fig. 4.1 (diabatic curves). The curves diagonalized taking
into account the spin-orbit coupling (adiabatic curves) are shown at the right panel
of the figure.

The reason of relatively strong perturbations in the 0} spectra of all alkali diatoms
is in the behavior of two potential curves, '£} and *II,, of the 0 symmetry. The
splitting between them is small for a large domain of internuclear distances (approx-
imately from 10 ag to 20 a). If the spin-orbit coupling between these two molecular
states is comparable to the splitting between potential curves (cases of alkali molecules
Rb; and Cs;), the strong mixing of vibrational levels of the two molecular states is to
be expected. Both molecular states cannot be considered as independent any longer.
As a consequence, a spectrum of such a two-channel system presents two series of
lines, strongly perturbed by one by other. (The atomic spin-orbit interaction between
excited atomic states 2P1/2 and 2P3/2 is for Rb - 237.6 cm~! and for Cs - 554.1 cm™L)
The strong mixing of molecular states has also an effect on lifetimes of pre-dissociated
vibrational levels above the nS + nP;, dissociation limit.

The goal of this chapter is to study the perturbations and the pre-dissociation in
0t spectra of heavy alkali diatoms - Rb, and Cs,.

In the present calculation, potential curves at small distances (up to 20 ag) for
Rb, and Cs; are taken from the accurate ab initio pseudo-potential calculations by
M. Foucrault et al. [43] for Rb, and by W. Meyer [94] for Cs,. The long-range part of
the curves is matched to asymptotic curves taken from Ref. [92] (M. Marinescu and
A. Dalgarno). The precision of these curves is not sufficient to reproduce the accuracy
of high-precision experiments such as the Fourier transform spectroscopy and photo-
association experiments. Depth of the wells of the potentials is defined with several
cm™! of uncertainty. The position of internal repulsive walls is also not well defined.
Another source of uncertainty is the spin-orbit coupling. The coupling is very well
known for free rubidium and cesium atoms. But the molecular spin-orbit coupling
varies with the distance, since atomic wave functions are disturbed by the presence
of the second atom. For Cs, there are calculations of W. Meyer [94] describing the
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Figure 4.1: Rby potential curves without (a) and with (b) spin-orbit coupling. (a) - Hund's case a
A'YF (55 + 5P) (broken line) and %1, , (5S + 5P) (dash-dotted line) curves from reference [43]
(b) Hund's case ¢ OZ'(PI/Q) and OI(P;;/Q) potential curves correlated respectively to the dissociation
limits (55 4 5Py/2) and (55 + 5P3/2). The inset at the right panel shows the region of the pseudo-
crossing.

variation of the molecular spin-orbit coupling. For rubidium, there is no data.

All these uncertainties influence the results of calculations. An exact comparison
with the experiment becomes impossible, especially for low-lying vibrational levels
that correspond to motion in the well. Since the asymptotic behavior of the curves
is known quite well, highly-excited vibrational levels can be described in calculations
much better. For them, the uncertainty of the depth of the well is manifested in a
global shift of all these levels. This shift can be described in the frame of the quantum
defect theory (QDT). Using QDT, a difference between experimental and theoretical
behavior of highly-excited levels can be described by only one parameter — a quantum
defect 1 (do not confuse with the reduced mass p). Experiments, considered in this
thesis, concern highly-excited vibrational levels of the 0} symmetry. The uncertainty
of the coupling can be described the same way. Namely, for highly-excited levels,
the unknown short-range part of the coupling can be represented only by a single
parameter, which varies weakly from one vibrational level to an adjacent level.

For two coupled channels, there are three parameters, representing a deviation of
numerical and real potentials — two quantum defects, corresponding to two channels
and one parameter describing the short-range coupling. Changing slightly the poten-
tial and the coupling at small distances, agreement with the experiment for highly-
excited levels can be obtained. Assuming that the three parameters change slowly
with energy, one can predict the behavior of the vibrational and pre-dissociation series
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in energy domains, unreachable by experiment.

The organization of this chapter as follows.

Section 4.2 is devoted to perturbations in the 0} spectra of Rb, and Cs;. The
influence of the masses of different isotopes and the influence of the spin-orbit coupling
on the perturbations are investigated. Then a comparison with the experiment [27]
(R. Cline et al.) is discussed. The strong perturbations in the discrete spectrum
obtained in calculations are interpreted in the frame of the two-channel quantum
defect theory (2QDT) using the method of the Lu-Fano plot.

Section 4.3 presents lifetime calculations of pre-dissociated levels of Rb, and Cs,
for the same symmetry 0F. The comparison with the experiment of the Heinzen
group is discussed. A strong isotopic effect in lifetimes is predicted between isotopes
%Rb; (reduced mass is 77392.38 a.u.) and 8"Rb, (reduced mass is 79212.88 a.u.).
The comparison with the experiment of C. Wallace et al. [134] is discussed. For Csg,
a dependence of lifetimes upon the molecular spin-orbit coupling is analyzed. The
interpretation of the obtained results is also based on 2QDT. The quantum defect
and transition probability are extrapolated continuously through the nS + nPj/,
dissociation limit.

4.2 Perturbations in spectra 0] of Rb, and Cs,.

4.2.1 Perturbations in the Rby spectrum
Details of calculations

The mapped Fourier grid representation method can easily be generalized to calculate the
energies of the ro-vibrational level considering several coupled molecular electronic states.
We have shown previously [34] that the FGR approach is particularly well-suited for such
a goal, compared to more traditional approaches like Numerov integration methods. We
describe below calculations considering two coupled states in a diabatic representation.
The implementation of the calculation from chapter 2 is straightforward provided the
same mapping procedure is applied to both channels. For a grid of NV points, we now
consider three operators T, V(R) and W(R), each represented by a 2N x 2N square
matrix as follows:

T, 0 Vi 0 Wy Wio
(5 a)e-(5 De-(i %),

The kinetic energy matrix T is block-diagonal, each block deduced from Egs. (2.72)
and (2.73). The potential energy matrix V(R) is diagonal in the FGR representation:
each diagonal block V; and V;, should contain the mapping of the corresponding potential
energy curve. In contrast, in a diabatic representation, the coupling matrix W(R) contains
both diagonal (W;, W,) and non diagonal (W;, and W) blocks terms. Obviously,
this procedure may be generalized to any number of coupled electronic states. The
diagonalization of the full matrix provides the energies of the levels of the coupled system.
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Figure 4.2: Rotational constants B, (in cm_l) for vibrational levels of the OI symmetry of Rbg
(see the potential curves on Fig. 4.1). Neglecting fine structure coupling (Hund's case a) — full lines;

neglecting radial coupling (Hund's case ¢) — dashed lines; and considering two coupled channels — circles.

The problem is to generalize the mapping procedure: this can be done by considering an
enveloping potential adapted to the two different potentials and eventually to the coupling
term.

As an example, we use this method for the calculation of the bound vibrational levels
of the A'Y7F(07) and the b%IL,(0]) excited electronic states in Rby, coupled by spin-orbit
interaction. Both states are behaving asymptotically as R=3, and are correlated to the
first excited dissociation limit 55 + 5P.

The spin-orbit effective operator is assumed to be R-independent and proportional to
the atomic fine structure splitting AE,. The coupling term is then Wy, = AEj, (\/5/3)
while the energy of the b°II, electronic state is corrected by W, = —AE;,/3, shifting
down its dissociation limit. The mapping function is deduced from Eq. (2.63), using for
the enveloping potential:

Vro(R) = min(Vi(R), Va(R)), B > min(Re1, Rez) (4.2)

‘/en'u(R) S min(Vl(Rel), %(Rd)), R < min(Rel, Rez) (43)

where R.; and R, are the positions of the minima of the potential curves Vi(R) and
Va(R) respectively. The potential curves are drawn in Figure 4.1 in Hund's case a (A'X]
and b’II, states) and Hund's case ¢ (07 (55 + 5Py /,3/2)) states) representations.
The procedure of choosing of the enveloping potential is discussed in details in
section 2.8. The example of the 0} (55 + 5P) symmetry of Rb; was considered.
Through use of the mapped FGR method, the eigenvalues (4.1) are calculated up to
the dissociation limit (55 + 5P, ) hereafter referred to as P, limit. (Indeed, our choice
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Figure 4.3: Same as figure 4.2, close to the (55 + 5Py /2) dissociation limit (labeled P /3 and located
at energy £ = 0). Squares and triangles represent B, for non-coupled P1/2 and P3/2 potentials

respectively.

for an enveloping potential excludes accurate representation of continuum levels.) We
have considered a grid extending from 5 to 200 ao, and found convergence for the value
B = 0.5 of the mapping parameter. With such values, 525 bound vibrational levels can
be found, the upper one having a binding energy E,(v = 524) = —0.015 cm™.

Rotational constants of calculated levels

We present in Figure 4.2 the rotational constants B, =< 1/(2uR?) > for the vibrational
levels of the ®Rb, isotopes (assuming J = 0) computed in three different cases: for
Hund's case a or Hund's case ¢ coupling schemes, considering two independent vibra-
tional channels and for the coupled channels. The independent channel calculations yield
two curves, rather different in case of A'Y} and b°II, channels, more similar and even
crossing in case of the 0} (55 + 5Py /33/2) channels -hereafter referred to as 0} (Py/;) and
0} (Ps/2). Coupled-state calculations show that the spin-orbit coupling has a strong effect
and introduces important mixing between the two channels, as many B, values are not
lying on any of the four preceding curves. Besides, strong perturbations are found, man-
ifested by oscillations in the computed constants. In contrast with lighter alkali dimers
like Liz [114, 107], Na, [37, 61], K [59], we predict that the whole spectra is concerned
by these perturbations, and can not be described neither in the framework of the Hund's
case a nor Hund's case ¢ independent channel representation . In a standard spectroscopy
experiment, one may expect strong irregularities in the observed spectra, making a full
identification very difficult.

An example of the irregularities predicted by the present calculations is analyzed in
more details in Fig. 4.3 where we have represented the variation of the rotational constant
in the vicinity of the Py, dissociation limit. Let us note that the mapping represents a
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Figure 4.4: Two vibrational wave functions for Rbg(OI) close to the P1/2 dissociation limit. The upper
panel shows the wave function with vibrational number v = 445 and energy E, = —20.414 cm™!
with the relative population of the P53/, component [ |\113/2(R)|2dR = 0.31. The lower panel — the
wave function with v = 451, energy £, = —15.997 cm™! with |\I’3/2|2 = 0.033. The rotational

constants for those levels are indicated by arrows in fig. 4.3.

crucial improvement to obtain accurate results in this energy range. The oscillatory
behavior of B, shows that the Hund's case ¢ picture is adapted only to a few levels that
we may assign to the lower electronic state 0} (P;/2), most of the others being perturbed.
When the B, value is minimum, the corresponding wave function is indeed very close to
unperturbed vibrational motion in the single channel 0} (Py/), as is illustrated in Fig.
4.4,

In contrast, the maxima of the oscillations correspond to an important admixture of
a 0} (Ps/2) wave function, where the vibrational motion is confined to shorter distances,
with an outer turning point which in the example chosen for the figure is close to 22 g
instead of 50 ag. Preliminary results [6] seem to confirm this oscillatory behavior of the
rotational constant.

Wave function. Relative population of components.

The perturbations of vibrational levels are manifested in the wave functions by com-
parable relative contributions of both, P/, and Ps/;, components. A perturbed level
means that its wave function does not belong only to one state, P,/ or Ps/,. Fig. 4.4
displays wave functions for two vibrational levels near the P;/, dissociation limit. The
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Figure 4.5: The relative population of the Ps /2 component of the total wave function of 'Rby (0F)
as a function of the binding energy. There is not any bound level with energy > —5715 cm~! (this
limit is marked by an arrow and corresponds to the bottom of the well of the P /2 potential), which
could be purely the P/ or P/, vibrational state. The norm of the P; /2 component never becomes
0 or 1. All vibrational levels are perturbed. The inset shows a domain of the energy near the
dissociation limit. Pg/5 levels look like pre-dissociated levels with finite lifetimes.

upper panel represents the wave function for a level with the largest P3/; component
(in the considered energy region), corresponding to one maximum of the rotational
constants, indicated on the Fig. 4.3 by an arrow. Both components are present. The
fraction of /2

a3 = [ 193(R)PdR (4:4)

of the P3/; component in the total norm is 0.31. Thus, contributions of both compo-
nents are comparable. The two maxima of the wave function correspond to different
turning points on the two coupled potentials, 0F (P;/2) and 0} (P5/;). The lower panel
shows the wave function for a level with the smallest Ps/; contribution, that corre-
sponds to the minimum of the rotational constant in Fig. 4.3 (also marked by an
arrow). Both components are also present, although the first maximum of the wave
function corresponding the turning point on the 0} (Ps/,) potential is much smaller,
the relative population of the P5/; component being only 0.033.

The effect of the perturbations can be demonstrated also by the relative population
of two components of the whole vibrational wave function for the entire range of
bound energies. Fig. 4.5 shows the relative population of the Ps/ component for all
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bound levels. Vibrational levels never become neither purely Ps/, levels nor purely
P12 levels - the relative population of the P3/; component almost never becomes 0
or 1.

Close to the P/, limit, the relative population of the Ps/; component tends to
0. Even maximum values of oscillations of the P53/, population become smaller near
the Py, dissociation limit, as the inset of the figure 4.5 demonstrates. It means that
for highly-excited Ps/, vibrational levels, the coupling with the P,/ molecular state
stays strong.

0.003

E, (cm )

Figure 4.6: Rotational constants of two isotopes, 3*Rb; (triangles) and 37Rb; (circles).

Rotational constants for two isotopes of Rubidium

A comparison of rotational constants B, for two isotopes of Rubidium, 3*Rb, and
87Rb,, is presented in Fig. 4.6. The distance between consecutive peaks corresponds
to the distance between consecutive bound levels calculated for the single P;/, po-
tential. But the “widths” of these peaks are different for two isotopes. For ®Rb,
the “widths” are larger (the quantitative estimation will be done below). It means
that for 8Rb, more vibrational levels of the Py, state are perturbed by the coupling
with the P3; channel. Thus, the “effective” coupling in ®*Rbs, is larger than in *Rb,.
(Note that the spin-orbit coupling is the same for both isotopes.) It also means that
for pre-dissociated levels lying just over the P/, limit, the pre-dissociation will be
more effective for 8Rby where the coupling with the continuum states of the P/,
is larger. Thus, the lifetimes of pre-dissociated levels of ®*Rb; must be smaller in
comparison to the levels of the 3’Rb, isotope.



90 Photo-association Spectroscopy of Alkali Diatom near the Dissociation Limit.

Quasi pre-dissociated levels of the discrete spectrum near the P/, limit.
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Figure 4.7: The same figure as shown in Fig. 4.5 near the P, /2 dissociation limit. Circles represent
the relative population of the P3;5 component. The solid line is an adjusted function of Eq. (4.5)
with T' = 1.22 cm~!. The left tail of the resonance is not reproduced by the analytical curve because
the shape of the resonance is perturbed by a neighboring peak.

Lifetimes of pre-dissociated levels lying near the P/, dissociation limit can be esti-
mated assuming that the “effective” coupling is not sufficiently different for energies
near (over and below) the dissociation limit.

Since the density of Pj/; bound levels near the first dissociation limit is much
higher than the density of P;/; levels, the discrete spectrum near the P, limit can
be viewed as a set of P/, “resonances” situated in the discretized continuum of Py,
levels. For such P;/; “resonances”, one can determine “widths”. Widths can be
defined from the decreasing of the relative population of Ps/, levels with energy (as
it is shown in Fig. 4.5. It can be done only in the region where the density of Py,
levels is quite large.

Fig. 4.7 shows in detail the last Ps;, vibrational levels under the Py, dissociation
limit. The shape of the resonance is adjusted by the Lorentzian L(E), describing the
decay of the level due to the dissociation:

C
(B = Eo) + (T/27
The width T’ is equal to 1.22 cm™!, corresponding to the lifetime 7 ~ 4.4 ps. This

is a very rough estimate of the lifetime. The accurate calculations (the next section)
gives T = 4.89 for the first pre-dissociated levels above the P, /2 asymptote.

L(E) = (4.5)

Interpretation of perturbations using the QDT method.

Figures 4.3 and 4.5 and the previous discussion show that the 07 spectrum near the
Py, dissociation limit can be considered as two strongly-perturbed series of bound
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levels corresponding to 0f (Pi/2) and 0} (Ps/2) molecular states. There is an efficient
tool for the interpretation of perturbed series — the quantum defect theory (QDT)
(see, for example, H. Friedrich [44]). At the beginning, QDT was created for the
description of energy levels in the Coulomb potential disturbed at short distances.
The theory is based on the fact that shifts of energy levels in the perturbed Coulomb
potential in respect to levels in the purely Coulomb potential can be described by
only one parameter, which changes weakly with energy of levels. But the theory is
easily generalized for other types of potentials.

For the simplicity of the following discussion consider, at first, the case Coulomb
potential. In the purely Coulomb potential, Vo(R) = D — &, bound energies are
described by the Rydberg formula:

R
E,=D-— 3 (4.6)
where R is the Rydberg constant.
If the potential V(R) is perturbed at small distances, but it is still coulombic
at large distances (V(R) — D — %) the series of bound levels is described by the
modified form of Eq. (4.6):

R

E,.=D— ————.
(n = pn)?

(4.7)
If the potential V(R) only slightly differs from the the purely Coulomb potential
Vo(R), values p, (quantum defects of levels) will be almost the same for all levels.
At the limit, n — oo, values p, converge to a constant value. This fact can be
understood from the semi-classical Born-Sommerfeld quantization condition. For the
purely Coulomb potential the condition is:

%SO(E) = /ab \/2,u(D — Vo(R))dR = m(n + pg,), n =0,1,2... (4.8)

where p4, is a constant, a and b are turning points.

The influence of the short range part of the potential V(R) on positions of the
levels can be found by replacing the action Sy in Eq. (4.8) by the the action .S on
the potential V(R):

%S(E) N /b V(D —V(R))dR = n(n + pg), n = 0,1,2... (4.9)

It is supposed that the outer turning point b is the same for both V5(R) and V(R)
potential. A difference, S..(R), between So(£) and S(E):

Ser(E) = S(E) — So(E) =

2/b V2u(D = V(R))dR ~ 2/b V2u(D = V(R))dR (4.10)
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converge to a constant, when F — 0 and n — oo. The quantization condition for
the potential V(R) can be now written in terms of quantum defects with respect to
levels of the non-perturbed potential Vo(R):

1
§S(E) =m(n+ pg, + pn), n=0,1,2... (4.11)

where p,, is defined by:

Hn =— gser(En). (412)

When £ — D, u, converge to a constant.

It is useful to complement the quantum defects p, = p(E,), defined at the discrete
energies F,, by a continuous defect function p(E) which describes the influence of
the short ranged difference between V4(R) and V(R) potentials. In the semi-classical
approximation an extension of the formula for the quantum defect function is:

W(E) = 51;56,(19). (4.13)

From the previous semi-classical discussion, it is clear that quantum defects u,, and
quantum defect function p(F) should be equal near the dissociation limit D.

The previous results can be generalized for other long-range potentials. Let po-
tentials Vo(R) and V(R) have the same asymptotic behavior for large R and different
behavior at small distances. The potential V(R) is considered as the perturbed V,(R)
potential. Let the bound series of the V4(R) is E©(n). The series can be viewed also
as n(O(E). The potential V(R) determines another progression - E(®)(n) or n(?)(E).

One can define quantum defects u(?)(n) of E®)(n) levels in respect to the series
E®©(n). Considering dependence E®(n*) as a function of the continuous argument
n*, energies E®)(n) of V(R)-levels can be expressed in terms of effective quantum
numbers n* of the Vo(R) (n* is not necessary an integer number):

E@P(n) = EO(n"). (4.14)
Defining quantum defects p, as
Pn =1 —n, (4.15)
bound levels of the potential V(R) can be written as:
EP(n) = EO(n — u,). (4.16)
where
pin = n —n* =n —nO(EP(n)). (4.17)

The two last equations are always valid. But they are useful only if quantum
defects p, change slowly with the energy. If the potentials V5(R) and V(R) have
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the same asymptotic behavior, the main results of the quantum defect theory can be
applied to the case.

Using the quantum defects, one can determine the degree of the deviation of the
potential V(R) from the Vo(R) potential. If, for some energy domain, the quantum
defects p, are constant, the potentials can be considered as equivalent. Therefore,
the degree of the deviation of V(R) from V,(R) can be described by a derivative
dp [dn = p(n + 1) — p(n).

If Vo(R) and V(R) have finite number of bound levels, the convergence of u, to a
constant value should be understood as a small changing of y, for the most excited
levels.

As an example, the P;/; long-range potential of the 0} symmetry of Rb, is con-
sidered. Its asymptotic behavior is C3/R® with C3 = 12.268 a.u. Therefore, the
potential C3/R? will be considered as non-perturbed V5(R). The perturbed potential
V(R) will be the P/, potential.

The #Rb, isotope is taken for the calculation. The dissociation limit D is chosen
at zero.

Positions of bound levels v in C3/R® potential are described by the law of Leroy-
Bernstein [78]:

E©(v) = —[Ha(v, — v)]° (4.18)

v, and Hs are constants. Hs is determined as:

_10@/3) 1 [(2m\'*
= ST G ) 9

For 8Rb,, Hs = 0.0015453 a.u. or 0.012002 cm ™.

Therefore, for excited vibrational levels |

........................

E®)(v) of the Py, potential one expects 0s |
= 06"
EW(v) = EO®v — p,) = —[Ha(va — (v — p))]® 3 .
(4.20) =°
02+
where quantum defects depend only weakly 0l S
330 340 350 360

upon v.
Fig. 4.8 shows the quantum defects of
highest vibrational levels of the P/, po- Figure 4.8: Quantum defects y, (modulo 1)
tential, defined from Eq. (4.20). There is of vibrational levels of the P;,, state, calcu-
a slow variation of the defects due to the lated in respect to levels of the purely Cs/R®
small deviation of the potential P/, from P otential Eq. (4.20).
the purely C3/R® curve due to the Cg/R® term, present in P, , potential. The second
reason of the deviation is the fact that the P/, molecular state is determined by
the R-depending mixing of components of the °II, and the 'Y states, which have
different values C3. The whole P/ potential can be viewed as the C3/ R3 potential
with R-dependent coeflicient Cj.
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At small distances (for lower bound energies), the P, /; potential differs markedly
from the C3/R® term, which is manifested by the fast variation of quantum defects.

Fig. 4.9 represents the quantum defects (modulo unity) as a function of energy.
As one can see, the quantum defect, defined in respect to the pure C3/R® potential,
grows on 7 units at the energy domain from P;/; — 300 cm™ to Pi/s.

In principle, both potentials, V5(R) and
V(R), can be numerical. In this case, the

> b both progression series E()(v) and E®(v)
== ! are calculated numerically. The use of the
S04 % quantum defect approach for this case is
02+ " useful for the fitting of existing potentials
ol—" . > to the experimental data.
% _200Ev(cm_') 1% Consider now a two-channel potential

and the generalization of the two-channel
Figure 4.9: the same as the figure 4.8 but quantum defect theory for the non-Coulomb
for larger domain of energies. two-channel potential.
The description of the MQDT for the
Coulomb potential can be found in the book by H.Friedrich [44].
Some QDT formulas, important for the present consideration, are review below.
Consider, first, two non-coupling Coulomb series following the Rydberg formula:

E®n) = D; — = (4.21)

-
D; (i = 1,2) are two dissociation limits and n are integer numbers. The coupling
between these two series leads to the shift of all levels of both series. Perturbed
atomic levels are reproduced now by the modified formula:
R R
Ei(p)(n) =Di— ————=D:—
(n — fii(n))
where n numerates perturbed levels, fi;(n) are quantum defects defined in respect to
both non-perturbed series.

(4.22)

fii(n) = n —n} = n — 0B (n)) (4.23)

Due to the coupling between two potentials, the quantum defects fi;(n) in Eq.
(4.22), in general, vary strongly with n. In the case of coupled series, the quantum
defect theory (A.Giusti-Suzor and U.Fano [45], H.Friedrich [44], M.Aymar et al. [11]))

gives the connection between effective numbers n} and nj:

Rl
tan[m(n] + 1)) = ta,n[7r(n§'+ il (4.24)

where the parameters R; 5, 1 and p, are varying slowly with energy [44, 45], similarly
to the parameter y, in the one-channel case (R, is not the Rydberg constant R).
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The method of the Lu-Fano plot consists in plotting of the dependence fi;(fi2)
(or nf(n%)) for perturbed vibrational levels. When the quantum defect fi; becomes
larger than 1, it means that a new bound state is introduced in the non-perturbed
series {n;} due to the coupling with the second series. From the Lu-Fano plot the
parameters R; 2, p1, and pq can be easily extracted.

Parameters y; and po are the quantum defects, defined with respect to the non-

perturbed series. The parameter R ; is related to the coupling between channels (H.
Friedrich [44], H. Lefebvre-Brion and R. Field [76]):

1
|<WﬂHW2>P=E#ﬁ2 (4.25)

Consider now the case of the 0F (nS + nP) symmetry of a molecule. As discussed
above, the potentials 0F (P;/2) and 0f (Ps/2) have the asymptotic behavior slightly
different from C3/R® and, therefore, can not be described exactly by the Leroy-
Bernstein formula. Instead of the Leroy-Bernstein law, Eq. (4.22), the numerical
analogue E©(v) will be used. Thus, the numerical laws Ez-(o)(v) or vfo)(E) are deter-
mined numerically using the MFGR method. For highly excited vibrational levels,
the function E®(v) coincides with the formula of Leroy-Bernstein (with a correction
of the Cg/R® term).

Fig. 4.10 displays a dependence fi; (modulo unity) as a function of v} (an analogue
of n3}) for 0F of both isotopes of Rb; for several perturbed levels (full circles) under
the Py, dissociation limit.

Eq. (4.24) describes the behavior of the effective quantum numbers v} (note that
taking the modulo unity function {z} = Mod(z, 1) from both side of Eq. (4.23), one
gets {f1;} = 1 — {v?}). Adjusting the analytical curve

R3,
{,ul _1 arctan l L2 ]} (4.26)
™

tan[m(v; + p2)]

to perturbed vibrational levels, parameters, contained in the formula, are found to be:
pr = 0.82, pa =0.185, Ry, = 0.74 for 85Rby and p; = 0.37, g2 = 0.64, Ry, = 0.47
for 8Rb,. (Parameters v, v} and fi; are connected as corresponding parameter in Eq.
(4.23).)

Parameters p;, p2, and Ry do not significantly change for a large domain of
energy from the P, j, limit to —1000 cm™" below it. This domain of energy corresponds
to about 70 non-perturbed levels of the P;/, potential from v = 100 to v = 167
(v = 168 for 8"Rb,), that means that about 70 levels are introduced into the P/,
series.

For the bound levels under the Dy = Py, limit, Eq. (4.24) describes the positions
of pseudo-resonances in the discrete spectrum. Moreover, it can be considered as
a definition of Ps/; pseudo-resonances in the P/, quasi-continuum and well as a
definition of P/, pseudo-resonances in the P/, quasi-continuum. It does not mater
that the density of levels of the “continuum?” is smaller than the density of pseudo-
resonances.
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Figure 4.10: The Lu-Fano plot for bound levels for two isotopes of Rby. The upper axis of both
panels shows energies corresponding to non-perturbed Ps/y levels. These levels are shown at lower
axes of both panels. Circles represent levels of the coupled 0} potential. The full lines are the
results of the fitting.

Certainly, near the P/, dissociation limit, only the P;/, pseudo-resonances have
a physical sense — they become real resonances above this limit. Positions of P/,
pseudo-resonances in the discrete spectrum are defined from Eq. (4.26) and are
described by the condition {v;(E,.s) + p2)} = 0, positions of Py, resonances are
defined by {vi(Eyes) + 1)} = 0. The 2QDT theory allows to define widths of such

resonances [44, 45]. For example, for the Py, pseudo-resonances widths are defined

as:
2dvy dFE
[(vy)=—=—"2— 4.27
(v2) T dvf dvy (4.27)
where derivatives jﬁ%% are calculated at points of resonances. At these points,
1
jZ’f. = —Rfﬂ. The derivative % is simply difference between consecutive Py, levels
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AE(Ps/;). Therefore:
2
I(v3) = ;Rf,zAE(PS/z) (4.28)

The probability P of transition from the P/, state to the P/, state is related to
the matrix element | < U(Py/)|H|¥(P3/2) > |* and, as a consequence with R; . For
small P (P < 1), the relation is:

P == 47l'2| < \II(P1/2)|H|§[;(P3/2 >)|2 == 4Ri2 (429)

Since the parameter R;, depends weakly upon the energy, the transition proba-
bility varies also weakly with energy.

Above the D, threshold, the P;/; pseudo-resonances become real resonances —
pre-dissociated levels. Widths and lifetimes of pre-dissociated levels can be estimated
using the parameters ps, g1, and Ry 2. Consider one, vy = v P35 level. A shift of
the pre-dissociated level with respect to the non-perturbed level v is defined by the
parameter po:

dE
SE(v) = pag— R p2(Evt1 — Eu), (4.30)
2

the width is defined using the parameter R, »

2 dE 2

I'(v) = ;Rizd_vz ~ ;R%,2(Ev+1 - E,), (4.31)

and the asymptotic shift § of the pre-dissociated wave function is defined by the
parameter p;:

§(v) = muy (4.32)

In section 4.3 the results obtained from the Lu-Fano plot will be compared with
the results given by the calculations of pre-dissociated widths of levels over the P/,
dissociation limit.

QDT parameters fitted to the experiment

As described above, the precision of the Mapped FGR method is of order 10~°
cm™! that allows comparison with the experiment. For this goal, besides the pre-
cise method, one needs the exact potentials. Unfortunately, the potential curves (for
Rb, and Cs;) used in the calculations are not very precise in the region of small
internuclear distances. For example, the uncertainty of the depth of the well is about
several cm~!. Also the position of the inner wall of the potentials is not exactly
known.

Thus, there are two outcomes from the this situation. One is to calculate exact
curves — it could be a subject of another thesis. The second approach is to try to

modify the potential in order to obtain the observed results.
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The generalized quantum defect theory can be a very useful tool to fit the results
of calculations to experiment. It is especially useful in the case of perturbations and
pre-dissociated levels. In the frame of QDT, perturbations and pre-dissociated levels
can be described by only few number of parameters (such as g, R;3), which change
slowly from level to level.

Comparison with experiment

There are two experiments with the 0f symmetry of Rby. These are the Fourier
transform spectroscopy experiment by C. Amiot et al. [7] in the Laboratoire Aimé
Cotton and the photo-association spectroscopy experiment carried out by the group
of Heinzen [27]. The comparison with the experiment is discussed in this paragraph.

The experiment carried out by C. Amiot et J. Verges [5, 7] explored the region of
bound energies of the 0} symmetry between —1500 cm™! and —200 cm™! under the
P/, dissociation region for #*Rb,, 8Rb, and #*Rb® Rb species. Strong perturbations
effects have been observed. This effect has been attributed to the strong coupling
between molecular states of the 0 symmetry (C. Amiot et al. [7]). The interpretation
was done using the 2-coupled-channel calculations together with the uniform FGR
method, that allows to calculate vibrational levels up to —500 cm™' under the P, /2
limit, that corresponds to the maximum internuclear distance Ry, = 20 ao. ( The
typical number of grid points for such a potential with R, = 20 ag is about 1400.
The precision of both methods, as it was discussed above, is almost the same.) The
results of calculation of Ref. [7] have been also verified using the MFGR method
developed in the Thesis. The uniform FGR method gives the same results.

The MFGR method, as it was shown above, allows to include into the considera-
tion the whole spectrum of 0F (Rbs) up to the highest vibrational levels. Therefore,
in contrast to the results by Amiot et al. [7], here calculations and the analysis of
the entire spectrum are presented. The analysis of the data of the experiment by
C. Amiot will be described in future work.

The second example of comparison with the experiment is a comparison with the
photo-association experiment of Heinzen group with the 0} symmetry of 8Rb, just
under the P;/; dissociation limit. These experimental results have been demonstrated
firstly at the workshop “Cold Atomic Collisions: Formation of Cold Molecules” in
March 1999 together with qualitative explanation using similar techniques of calcu-
lations (for the method see, for details, Tiesinga et al [125]). At the same workshop,
the results of calculations described above in the Thesis were presented as a prediction
for the behavior of the 0] symmetry near the dissociation.

The figure 4.11 displays the experimental results (open circles). The behavior of
the rotational constants is very irregular. In fact, it means simply, that B, of coupled
channels oscillates between B, values of non-coupled potentials, as it was discussed
above. The results of calculations with the variable spin-orbit coupling is shown also
at the same figure. The results of calculations repeat qualitatively the measured
data, except the region near the dissociation limit, where, probably another effect is
important in the real physical system.
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Figure 4.11: The experimental data for dependence B,(E,) for 0} (3*Rbz) from [52] (open
circles) comparing with the results of calculations (squares). In the calculations, the variable spin-
orbit coupling is used (Fig. 4.15). Triangles and diamonds shows also B, (E,) for P/ and Ps/,
non-coupled potentials.

Comparing the results of calculations with the constant and the variable spin-
orbit coupling, it was found that later results are closer to the measured results,
even if the variation of the coupling is very approximative. On the other hand, the
differences between consecutive levels are not very different for two couplings, since
this difference is determined mainly by potential curves, which are the same in both
cases. In contrast, rotational constants are more sensitive to the coupling. (In the
work by Amiot et al. [7], the constant spin-orbit interaction was used.)

Comparing the results of calculation with the experimental data, the potential can
be fitted as following. First, the parameters py, p2, R;2 are defined for the initial
potential used in the calculations. Then, comparing with the experimental data,
one estimates discrepancies Auy, Aps, AR;, between py, pa, R, of calculated
and experimental results. The parameter Au; can be defined from a comparison
of positions of calculated and measured levels. It can be done quite accurately for
low-lying levels (assuming that p; does not change with energy, as predicted by
calculations). The parameter Apu, is defined quite easily. The defect p, defines the
position of the P;, series in respect to the P/, dissociation limit. The most efficient
way to compare is to represent experimental and theoretical results on one Lu-Fano
plot. The needed corrections Apy, Apg, AR}, will be clearly demonstrated. (The
Lu-Fano plot is not done since the exact experimental data are not yet available. The
presented experimental results are taken from the graph figure in the paper).
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4.2.2 Perturbations in the Csy spectrum
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Figure 4.12: Cs, potential curves without (a) and with (b) spin-orbit coupling. (a) - diabatic
AT} (6s + 6p) (dot-dashed line) and b3IL, (65 + 6p) (full line) curves from Ref. [94] (b) adiabatic
0F (P1/2) (dotted line) and 0Ff (Ps/2) (dashed line) potential curves correlated respectively to the
dissociation limits (6s + 6p 2P1/2) and (6s + 6p 2P3/2).

Curves

In this subsection the main results concerning the perturbations in the 0} (65 + 6P)
symmetry of Cs, are presented.

In the calculation, ?II, and !X, potentials are taken from accurate quantum chem-
istry calculations [94] (W. Meyer et al.), matched at large R to asymptotic calculations
[92] (M.Marinescu and A.Dalgarno). Curves are coupled by the molecular spin-orbit
interaction. In present calculation the spin-orbit coupling is chosen to be constant
for all internuclear distances. The potential curves of the symmetry 0} (65 + 6P)
of Csy, used in the calculation, are presented on the figure 4.12. The figure shows
curves with (the right panel) and without (the left panel) the molecular spin-orbit
interaction. Right curves are obtained from left ones by a diagonalization accounting
for the spin-orbit coupling. In the asymptotic region, adiabatic curves are separated
by the atomic spin-orbit interaction (V;o(00) = Ps/ — Pijz = 554.1 cm™ for Cs).
Diabatic curves have the same dissociation limit.

Results for the constant spin-orbit coupling.

Fig. 4.13 demonstrates the rotational constants for non-coupled and coupled poten-
tials of the 0f symmetry. In comparison with the case of Rbs, vibrational levels of
two molecular states, P/ (0}) and Psjy (0F), are less perturbed. B, for coupled
potentials is much closer to the curves representing the non-coupled calculations. Vi-
brational levels of the two series are not so strongly mixed as in the case of Rb,.
There are few vibrational levels with B, lying far from both curves. Thus, almost
all levels can be attributed to one or to the other molecular potential (P;/; or Ps/s).
The non-adiabatic coupling between two adiabatic states, Py, (0F) and Py (07),
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Figure 4.13: Rotational constants B, of vibrational levels of 0 symmetry of Cs,. Triangles and
squares show B, for vibrational levels of non-coupled P;;; and P3/, potentials respectively. Circles
represent B, in coupled channel calculation (the R-independent spin-orbit coupling).

is much weaker than in the case of Rbs. Thus, for this particular potential with a
constant spin-orbit coupling, in contrast to Rb,, Pi/; (0F) and P/, (0F) are only
weakly mixed.

As a consequence, lifetimes of the pre-dissociated levels of Ps/; (0}) with energy
greater than P/, must be relatively long. Indeed, as it will be shown in the next
section, lifetimes for this potential are longer than 1000 ps.

In order to give a more complete description of the perturbations and compare
them with the perturbations in Rbs, the Lu-Fano plot is shown in Fig. 4.14. The
upper panel represents the dependence of fi,(E.) as function of {vp, /z(EC)} for the
energy domain corresponding to the whole discrete spectrum of the F5/, molecular
state. The lower panel shows the region near the P,/; dissociation limit together with
the analytical curve of Eq. (4.26).

Most of the levels are situated at vertical {vy} = 0.04 and horizontal {ji,} = 0.05
lines. Thus, quantum defects u;, ps are very small. It was found from the fitting
procedure of Eq. (4.26) that parameters pu; and po change slowly from 0 to y; =
0.0483, p2 = —0.046 when the energy changes from the lowest Ps), level to the P/,
dissociation limit. In contrast, the parameter R; . varies quite fast and can not be
fitted to a unique value. It is demonstrated by the lower panel of Fig. 4.14, where
only levels situated between two Ps/, resonances, v, = 179, v, = 182, are well fitted
by the analytical curve. For smaller numbers v, the R}, must be larger.

Thus, the effective non-adiabatic coupling in the 0} symmetry of Cs, is much
smaller than in case of Rb,. Matrix elements R, , differ by a factor 25, giving a
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Figure 4.14: The Lu-Fano plot for the 0F symmetry of Csy. Circles represent coupled levels. The
upper panel shows quantities of fi;(E.) and {v3(E.)} for the energy domain corresponding to all
non-perturbed levels of the state P/ from v = 0 to v = 182. The lower panel shows the dependence
fi1(v3) for the energy region just below the P; /2 limit. The full curves represent analytical curve of
Eq. (4.26) with parameters R; 2 = 0.03, p1 = 0.0483, pa = —0.046.

difference in transition probabilities of 625 times.

Dependence upon the spin-orbit coupling.
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Figure 4.15: The variation of the molecular
spin-orbit interaction used in the calculation.
Full line - calculated for Cs, . Dashed line -
for Rbs,.

In previous consideration the spin-orbit
coupling was constant. But, in fact, it
is varying with the internuclear distance.
Since, as it was shown, perturbations strong-
ly depend of the reduced mass of the di-
atom, it is worth to see whether perturba-
tions depend on the coupling or not.

The reason of a variation of the molec-
ular spin-orbit splitting with the internu-
clear distance is the fact that the molecular
states 3II, and '3, at small internuclear dis-
tances are sufliciently influenced by atomic
states more excited than 6 P. For more ex-
cited atomic states the spin-orbit coupling

is smaller and makes the molecular spin-orbit splitting weaker for short distances.
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Here the influence of this factor on the perturbations in the 0} spectra of Cs; and
Rb, is considered.

The variation of the molecular spin-orbit interaction in Cs, was calculated by
Meyer [94] and is shown in Fig. 4.15. As there is no corresponding data for Rb,, the
same curve as for Csy, scaled for all internuclear distances by factor Vso (Rb)/Vso(C's)
(Vso is atomic spin-orbit interaction) is used for Rby. Thus, results for Rb, have only
the qualitative character.

Fig. 4.16 shows the results of calculations with the constant (upper left panel)
and the variable (lower left panel) spin-orbit coupling for Cs;. The perturbations
in Cs, are more significant for the case of a variable molecular spin-orbit coupling.
With the variable spin-orbit coupling, vibrational levels are perturbed even more
than in case of Rb,. All B, constants are situated completely non-regularly — both
descriptions (diabatic and adiabatic) of the potential cannot approximate the entire
coupled situation.
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Figure 4.16: Rotational constants for 237Cs, (left panels) and 8 Rb, (right panels), calculated
using two different molecular spin-orbit couplings. Upper panels show rotational constants for the
potential with R-independent molecular spin-orbit interaction, lower panels — with the variable
coupling according to the Fig. 4.15

The atomic spin-orbit splitting in Cs, is sufficiently large. This constant molecular
spin-orbit coupling in Cs, is sufficiently strong that the total potential (two curves
plus the coupling) can be considered as almost purely adiabatic. The P/, and Ps/,
molecular states are only weakly coupled by the non-adiabatic coupling. In contrast
to the Rbs, it that allows to attribute all vibrational levels to one or to another
molecular state.
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The variable coupling, as it is shown in the figure 4.15, is weaker for small dis-
tances. Qualitatively, it can be viewed as if the potential could be considered as a
pair of non-coupled diabatic °II, and '¥, curves at the region of small spin-orbit
coupling. It gives perturbations in a corresponding region of energies, i.e. region
of vibrational levels for which a short-range part (where the coupling is smaller) of
wave functions is quite important. Two P;;; and Ps/, channels can not be treated
independently any more. For more excited levels, for which wave functions is situated
mostly at the region, where the non-adiabatic coupling is small, the non-adiabatic
coupling between adiabatic P/, and P/, states is much smaller and in this region,
E > —200 cm™!, perturbations are small.

] This effect is manifested also in
| the Lu-Fano plot (the Figure 4.17).
| As one can see from the figure, the
parameters R;o, p1, p2 vary from
, one quantum number v(Ps/;) to the
1 consecutive number v(Ps/2) + 1. It
{ means that adiabatic approximation
- (two non-coupled, Pj/» and Psj,, vi-
brational series) does not work well
anymore.

Figure 4.17: Lu-Fano plot for 0 symmetry of Cs, As a result, pre—dlssoc1ate(% levels
with the variable spin-orbit coupling (full circles), of the P3/; molecular state with en-
fitted with constant parameters: R; 5 = 0.1, u; = ergies above the Py/; limit must have
0.097, p2 = —0.096 (full lines). smaller lifetimes in comparison with

levels computed for the potential with the constant spin-orbit coupling. The parame-
ters Ry 3, p1, p2 determining the positions and widths of resonances above P/, limit
are the following: R; 2 = 0.1, py = 0.097, po = —0.096. But these parameters slowly
change with the energy (on 1-5% for two consecutive vibrational levels) and can be
considered as constant only for several resonances close to the Py, threshold.

As another demonstration of the effect of the variable coupling, qualitative calcu-
lations for Rb, are presented on the right lower panel of Fig. 4.16. The coupling is
shown on Fig. 4.15. For Rb, vibrational levels also becomes less adiabatic and more
close to the levels calculated for non-coupled *II, and %, potentials, especially, in
the intermediate region of energies, from —3000 cm™! to ~200 cm™.

4.3 Lifetimes of pre-dissociated levels of 0} sym-
metry of Rby and Cs,.

ad .

In the previous section perturbations in the discrete spectrum 07 were considered.
Above the P/, limit, the mixing between two components, Py/; and P/, leads to the
fact, that bound vibrational P/, levels are pre-dissociated due to the coupling with
the P;/, continuum levels. The P;/, series of vibrational levels lying above the P/,
asymptote becomes a series of resonances.

In this section the pre-dissociation of the Ps/, vibrational levels is discussed. First,
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the example of Rb, is considered. As it was found in the previous section, that
perturbations in spectra of two isotopes are different. The parameters py, pa, Ri2
were extracted from the perturbations in the discrete spectrum, that allows to predict
widths and positions of pre-dissociated levels. Since the parameter R; , is different
for two isotopes, the lifetimes for two isotopes should be different (approximately by
a factor 3). The variation of the p; parameter must lead to a difference in shifts of
pre-dissociated levels in respect of the non-perturbed series.

The results of lifetimes calculations for both isotopes of Rubidium were obtained
by two methods - time-dependent and time-independent. The comparison and the
effectiveness of two methods have been considered in the chapter 3.

Second example of lifetime calculations is the 0} symmetry of Cs,. It was found
in the previous section that parameters p;, pa, Ri2 are not constant and they vary
at several percents (1 — 10%) from one vibrational level to the neighboring one.
Therefore, the prediction concerning the widths and positions of pre-dissociated levels
can be made only for several resonances close to the P/, limit, for the energy domain
from 0 to 100 cm™!. Indeed, the lifetimes calculation will show that the parameters
p2, Ry change sufliciently on the energy domain between P/, and Ps/; asymptotes.

Third, the influence of the variable spin-orbit coupling between two states are
investigated for both species - Rubidium and Cesium as it was made for the discrete
spectrum for Cesium.

4.3.1 Rby

This subsection presents first results of lifetime calculation for two isotopes of Ru-
bidium. The results are analyzed using the 2QDT approach, the parameters p; and
R, , are extracted from the results and compared with parameters for the discrete
spectrum. Excellent agreement is found. The strong difference in lifetimes (and in
Ry ) for two isotopes 8Rb, and 8"Rb, is discussed and qualitatively explained. A
dependence of lifetimes upon the variable coupling between channels is considered.
Finally, the comparison with experiment are discussed.

Results of calculations

Fig. 4.18 represents the results of time-independent calculations with the optical
potential for pre-dissociated levels located between the 25 +2 Py/; and 2S5 +% Py
asymptotes for two isotopes of Rb, ®¥Rb, with reduced mass u = 77392.376 a.u. and
87Rb, with p = 79212.883 a.u.. The upper panel of the figure shows lifetimes 7, the
lower panel — the widths I' = 771 of levels. A relation between 7 in ps and I' in GHz
is:

1000
I'GHz) = ——— .
(GH?z) 377 (o) (4.33)
The figure also shows the lifetimes and widths (triangles) for ®*Rb, with the R-
dependent spin-orbit coupling as it is shown at the figure 4.15. The detailed discussion
of the influence of the R-dependent spin-orbit coupling will be presented below.
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Figure 4.18: Lifetimes (upper panel) and widths (lower panel) of pre-dissociated levels for two
isotopes: diamonds - 8°Rbs, squares - 3’ Rbz. The experimental value for 8Rby from [27] (T & 20 ps)
is presented by a big star. Triangles represent the model calculations with the variable coupling as
it shown at Fig. 4.15 for 85Rb,.

Lifetimes are calculated using the time-independent MFGR coupled with the op-
tical potential.

QDT parameters, comparison with the discrete spectrum

Compared with bound vibrational levels of the single P3/; molecular state, vibrational
levels, pre-dissociated into the P, , state, can be characterized by three parameters:
w1 — the asymptotic phase shifts of the pre-dissociated wave function, uy — the quan-
tum defect, which defines the energetic shift of a level in respect of the corresponding
non-coupled Ps/, level, K, 2, which defines the transition probability and width of the
pre-dissociated level. All these parameters are defined from the discrete spectrum
and should be continuous when energy cross the P/, threshold.

Fig. 4.19 shows quantum defects p; for pre-dissociated levels for two isotopes
(open diamonds and squares). They are almost constant for all domain of energy
between Pj/, and P/ asymptotes. The first calculated value p, for 8Rb, is 0.190,
and 0.638 for 8"Rb,. The value obtained from the discrete spectrum are 0.180 and
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Figure 4.19: The quantum defects py (open diamonds and squares) and quantities R%'Q (full fig-
ures) for P/, pre-dissociated levels for 8Rb; (diamonds) and 3"Rb (squares). Triangles represents
calculation for 83Rb, with the variable coupling.

0.636 respectively. The figure 4.19 demonstrates also the behavior of the Rf‘l’g. It is
almost constant for both isotopes for whole energy domain of pre-dissociated levels.
R} ,, defined for the discrete spectrum using the Lu-Fano plot, is R}, = 0.547 for
8Rb, and R?, = 0.212 for 'Rb,. R}, defined from the lifetime calculation is 0.648
for 8Rb, and 0.207 for 8"Rb,. As it was found, parameters uo, Rig do not change
for the energy domain from —1000 cm™ to P;/,. They do not change above the P/,
limit up to the Py/; threshold. Therefore, one can say that they stay constant for the
range of energies from P/, — 1000 cm™! up to Ps/3). The parameters p; were not
determined. The asymptotic shifts of the P;/; component of the total wave function
with and without the coupling should be compared to obtain p; (see Eq. (4.32)).

The previous discussion means that all perturbations in the discrete spectrum,
position shifts and line widths can be described only by three parameters p;, w2 and
P (or Ry ). In more general case, these parameters vary weakly with the energy, but
they change weakly for consecutive levels.

Transition probability
The norm n of a P/, pre-dissociated level decreases exponentially with the time #:
n=nee (4.34)

The transition probability P from Pj/, state on Py, during one classical period T,
of oscillation is defined from the rest of the norm n = 1 — P after the time T, if the
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initial norm was 1:
1-P=e¢ 7 =TT, (4.35)

The period of classical oscillations is:

e ® 4R
T.= o || Vo

where V(R) is the Ps/; potential, R, and R, are turning points for the energy E.
The period T, is connected with the difference AE between consecutive vibrational
levels. From the WKB quantization condition [78]:

(4.36)

[ (4.37)
Then:
T, = z—g, (4.38)
and
P=1—exp(—TT,) =1 — exp (_%) | (4.39)
Using Eq. (4.31):
P=1-exp(—4R?,). (4.40)
For small P (¥ << 1):
P = % (4.41)

As the parameter R;, is almost constant for all pre-dissociated energies, the
transition probability is constant also (but it is not small, especially for ®*Rb,). The
transition probability for #Rb, is 0.93 and for 3" Rb, is 0.56.

Since the probability is constant the lifetimes of pre-dissociated levels increases
with the energy as the period of classical motion increases:

0>|U\

T. g .
i _ln(l — P) V 03 g EP3/2 - E) (EP3/2 . E) 6,

The integration is made as in Ref. [78] (R.Leroy and R.Bernstein). The parameter
o is 190 ps(cm™1)%/ for ®*Rb, and 630 ps (cm™!)%/¢ for 8'Rb,. Fig. 4.20 shows the
variation of calculated lifetimes together with the fitting function of Eq. (4.42).
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Figure 4.20: Lifetimes of pre-dissociated Ps/; levels: *Rb; - diamonds; and 87Rb; - squares fitted
with functions (4.42) with o = 190 ps(cm~1)%/6 for 85Rb, (full line) and with a = 630 ps (cm~1)%/¢
for 8"Rb, (dashed line).

Although the classical approach gives the correct behavior for the lifetime curve,
it does not explain the big difference in the lifetimes of two isotopes. The difference
between classical periods of oscillations for two isotopes is as small as:

I 2L (4.43)

T2 H2

For ¥ Rb,; and ®Rb,, the difference is lower than 1 %. Lifetimes, calculated in the
quantum approach are different with a factor 3.2.

Comparison with the Landau-Zener transition probability

The Landau-Zener probability (Prz) of transition from the Ps/, adiabatic term to
the P;/, term during one period of the classical motion is:

P =2Ppz(1 — Prz) = 0.489 (4.44)

where Prz is a transition probability of one passage through the crossing (Prz =
0.573). The difference for two isotopes is only about 1%. The quantum calculations
give a factor 1.7. Thus, this isotopic difference of the lifetimes is a purely quantum
effect.

Semi-classical attempt at the explication of the strong isotopic effect

A first natural assumption for the explanation of the isotopic effect is to suppose
that the difference between the lifetimes of the isotopes is caused by the difference
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between Stueckelberg phases of paths for two isotopes (see, for example, [102, 76]) -
a transition probability from the P;/, term to the P/, term is different because the
wave function of one isotope (*’Rb,) has a node at the distance of crossing, and the
wave function of second (®*Rb,) isotope has a maximum there. The phase difference
A® between two paths (along P/, and P/, terms), accumulated during the passage
of region AR of internuclear distances, is:

A® = /2 /A VB = Ur,u(R) = \/Bo = Ur, ,(R)] dR (4.45)

This phase is 80 radians. The isotopic difference is about 1 % or 0.8 radian. But the
space period (& 0.05 a.u.) of oscillation of wave function in this region of the potential
is much smaller than the width of the coupling (& 1. a.u.). Thus, the interaction
between two terms does not “feel” the nodal structure of both components of the wave
function. Another argument against the nodal approach is that one must observe an
oscillatory behavior of lifetime with the energy of pre-dissociation. This behavior is
monotonous.

The explanation of the isotopic effect in lifetimes
The lifetime is calculated [76] (H.Lefebvre-Brion and R.Field):

1
T =
2m < Yp, o HIYE, ), 8 >?

(4.46)

(Here wave functions ¥p, 12w @0d ¥p, /2,E are normalized in energy.) In the region AR,
where the interaction between terms is varying slowly, for the qualitative description
of the transition, one can consider the overlap between two components —

F= - f(R)dR = /AR VP, 0 PP, 1, EAR. (4.47)

Looking at the potential curves one sees that the crossing occurs in the region where
the kinetic energy of highly excited vibrational levels is almost the same for both
potentials (in both diabatic and adiabatic representations). It means that both com-
ponents of a wave function oscillate with almost the same frequency for distance
+1 ag. As a consequence, the factor f(R) is modulated by a slow frequency equal to
the difference between frequencies corresponding to the motion in the two potential
wells. The period of these modulation is of order of 2 a.u. near the crossing. Since
there is a phase shift between two wave function components, positions of maxima
and minima of slow oscillations of f(R) are different for the two isotopes near the
crossing. Integrating over the domain of crossing (=~ 1. a.u.), we obtain different
values F' for the two isotopes and, therefore, lifetime for the two isotopes will be
different. Fig. 4.21 shows products f(R) for both isotopes. Slow modulations are
shifted one in respect to other in the region of the crossing. Outside of the region
of the crossing, modulations are much frequent because the separation between po-
tential terms are not small in comparison with the kinetic energy. In panel ¢ we
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Figure 4.21: The quantity f(R) = ¥E,p,,,(R)¥E,p,,,(R), calculated for two rubidium isotopes.
a — 8Rby (energy of level E = 15.7 cm™? over Py, limit), b — 8"Rby with the energy £ = 19.4
cm™~!. The panel c represents the non-adiabatic coupling between two components — P; /3 and Pss.
Transitions occur only in the region where 7 3 is quite large.

present also the non-adiabatic radial coupling (712(R),) between two components of
0 Rb,. ( We use a form of non-adiabatic coupling V", where 71 5(R) is introduced
as: V™ = —%T(R)%.)

In contrast to the sensitivity of lifetimes to the isotopic mass, there is no significant
dependence of the pre-dissociated energy. On the figure 4.22 we present f(R) for three
energies near the dissociation limit for #Rb,. For all range of pre-dissociated energies
from Py, to P;/; and even for highly excited bound levels there is no significant shift in
positions of maxima and minima of f(R). Therefore, lifetime increase monotonously
for energy between Py, to Psp limits. This result means that the phase shift Asja_1/2
between two components (P, and Ps/3) of a wave function in the vicinity of the
crossing changes slowly with the pre-dissociated energies and the shift changes fast
with the reduced mass.

Therefore, the standard approach using the Stueckelberg phases and considering
simply the nodal structure of wave functions (not the nodal structure of modulations),
does not work.

The difference between shifts As/,_y 2 for two isotopes due to the different Stueck-
elberg paths is of order 1% or 0.8 radians (Fig 4.21), that gives easily the strong
isotopic effect. In this form the approach, using Stueckelberg phases, explains the
monotonous lifetime behavior with the pre-dissociated energy and strong dependence
of the reduced mass.

In order to demonstrate again the strong isotopic effect, we have calculated life-
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Figure 4.22: Factor f(R), calculated for levels of the 0} symmetry of 87Rb, with different energy
near the Py, dissociation limit. a—bound level with energy E = 13.6 cm~!, b and c - pre-dissociated
levels with energies £ = 19.4 cm™! and E = 174.1 cm™! respectively. For any energy positions
of maxima and minima of the slow modulation stay the same. It provides the monotonic (not
oscillating) increasing of lifetimes for the all pre-dissociated levels between P; /2 and P35 limits.

times for fictitious isotopes of Rb, with different reduced mass. The lifetimes is very
large for an “isotope” with the mass equal to 75000 a.u. (o = 7000), but it becomes
again small, as for #Rb,, with the mass 70000 a.u.

Quantum defects

The qualitative explication of isotopic difference in quantum defects p; and py can
be easily done using the previous consideration, i.e. using the the isotopic difference
in the effective coupling between P;/, and Ps/s. _

Consider, for example, the discrete spectrum and the defect p,. This quantity is
defined in respect to the non-coupled single potential P3/;. Following the ordinary
definition of the quantum defect (H.Friedrich [44]), ys can be written as:

Ry Rz
fs = .71; [/R, \/2;.£(E — Ve(R))dR — /Ra \/QIL[E B V(R])dRJ ' (4.48)

where V(R) is the P3/, potential, V.(R) is a some fictitious “effective” potential,
which has a same effect on the phase shift as the coupling with the P;/, potential.
It is clear that at large distances, where the coupling is small and potentials V(R)
and V.(R) are equal, contributions of both integrations Eq. (4.48) are almost equal
and compensated. Thus, for different highly-excited vibrational levels p, is almost
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the same, but not 0. It gives the constant quantum defect p2. The situation does not
change when energy becomes larger than the Py, threshold.

For the defect p; the situation is exactly the same for bound levels. Eq. (4.48) is
valuable also for energies above Pj/5. py in this region stays the same as for bound
levels, but now it means the asymptotic shift (modulo unit) of the wave function.
For resonances, similarly to us, it changes slowly with energy.

4.3.2 Csy
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Figure 4.23: Widths of vibrational levels of Cs; 0F for two different molecular spin-orbit interac-
tions Vso (R) between 311, and ¥, curves: circles - the molecular spin-orbit interaction is varying
as shown in Fig. 4.15; squares - constant molecular spin-orbit interaction (Vso = 554.1 cm™1).

The calculations for the discrete spectrum of the 0} symmetry of Cs, with the con-
stant spin-orbit coupling have shown that the mixing between adiabatic components
of vibrational wave functions is much smaller than in the case of Rubidium. Parame-
ters pu1, pi2, R}, were found much smaller that 1. The results for rotational constants
demonstrate also that vibrational levels of P/, and Py, states are only slightly per-
turbed by the adiabatic coupling between these molecular states. It means that one
should expect relatively large lifetimes of pre-dissociated levels in comparison with
lifetimes of Rb,. In contrast, calculations with the same potentials but with the R-
dependent spin-orbit coupling demonstrates the very strong mixing of adiabatic (and
diabatic) components of vibrational wave functions. The parameter R; ; increases in
three times comparing with the case of the constant spin-orbit coupling, what must
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give nine times smaller lifetimes for the case of the variable coupling. Another pre-
diction, which can be made using the analysis of the Lu-Fano plots for the discrete
spectrum, is that the parameters p;, po, Ri2 are not constant for both constant
and variable coupling. For the Cs, they should change slightly with the energy. For
pre-dissociated levels just over the P/, dissociation limit, positions and widths of
resonances can be predicted using Eqgs. (4.30) and (4.31).

Below, the results of lifetime calculation are presented. For the case of Cesium,
the time-independent approach with the optical potential and the mapping is used.

R-independent coupling
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Figure 4.24: The parameter R?, for pre-dissociated levels of the 0f symmetry of Cs, with the
constant (upper panel) and the variable (lower panel) spin-orbit coupling.

The upper panel of Fig. 4.23 represents the results of calculations with the constant
coupling, corresponding to the atomic spin-orbit coupling 6?P3/, — 62P;;, = 554.1
cm™! in the free 6°P atom. As one can see, lifetimes are indeed much larger in
comparison with Rby. The upper panel of Fig. 4.24 shows the R}, parameter as a
function of energy. As in the discrete spectrum, this parameter varies slowly with
energy. For neighboring levels, this parameter is almost the same. The small value of
RiQ demonstrates again that the adiabatic approximation works well for the constant
molecular spin-orbit coupling. Another interesting feature of the results is a strong
increase of lifetimes (R; 2 &~ 0) near the energy £ = 140 cm™?.
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R-dependent coupling

The variable spin-orbit coupling changes the order of magnitude of R} ,. As it can pre-
dicted from the bound calculations, the lifetimes of pre-dissociated levels are much
smaller than lifetimes for the constant spin-orbit coupling. This result can be ex-
plained as following. The reducing of the spin-orbit coupling at small distances leads
to the total potential which is “more diabatic” than with the constant coupling. — In
the adiabatic representation (two channels P, /2, P53/ and the non-adiabatic coupling),
a reducing of spin-orbit orbit interactions leads to the increasing of non-adiabatic
coupling between P;/;, P32 channels, that leads to more strong perturbations in the
spectrum.

4.4 Conclusion

In this chapter it was demonstrated that the mapped time-independent FGR method
developed in the Thesis is very powerful tool for calculation of bound and pre-
dissociated levels of long-range one- and multi-channel potential.

As an application of the method, the 07 symmetry of two alkali molecules, Rb,
and Csz, has been investigated. Especially, bound and pre-dissociation levels close to
the first dissociation limit P,/ have been investigated.

The example of the 0 symmetry was chosen since it demonstrates the strong non-
adiabatic coupling between two states, that is manifested in strong perturbations in
the discrete spectrum and in the strong pre-dissociation of vibrational levels over the
Py /3 limit. Therefore in the experiment it is observed that the vibrational series of
the discrete spectrum are very irregular, and levels over the P/, limit are broaden
due to the pre-dissociation. Since wave functions of highly excited vibrational levels
of the symmetry are situated mainly at large distances, the choice of this potential
allows to check once again the method.

The calculations with the rubidium diatom have reproduced the perturbations
in the discrete spectrum. Using the method, it was confirmed (as it was done by
C.Amiot et al.) once again, that the spin-orbit coupling is responsible for the strong
perturbations in the spectrum, observed in the experiment.

The same calculations have qualitatively explained also the “strange” behavior of
the rotational constant of vibrational levels in 83*Rb; near the P, /2 dissociation limit,
observed in the experiment of the Heinzen group [52].

For the interpretation of the results, the quantum defect theory has been adapted
for two perturbed vibrational series. 2QDT allows to parameterize the behavior of
the two coupled vibrational series near (below and above) the P/, dissociation limit
only by three parameters, p1, p2, R 2. Under the dissociation limit these parameters
describe shifts of vibrational levels due to the coupling. Above the threshold, the pa-
rameters define also lifetimes of pre-dissociated levels. Since these parameters change
weakly with the energy, by extracting them from the discrete spectrum, the lifetimes
of pre-dissociated levels and asymptotic shifts of corresponding wave functions can
be predicted.
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In a case of Rubidium, two isotopes have been investigated, ¥Rb, and 8" Rb,. A
large difference (3 times) in lifetimes was found for these two isotopes. This result
can explain another experimental effect — the isotopic difference in the trap loss in
Rubidium [134]. This experimental effect initial was attributed to the different hyper-
fine structure for two isotopes.

It was investigated an influence of the molecular spin-orbit coupling on pertur-
bations and lifetimes of levels of the 0} symmetry of Rby and Cs;. It was found
that in Rubidium, the variable spin-orbit coupling does not change qualitatively the
results. In contrast, the results for Cs; with the constant and variable molecular
spin-orbit interaction are very different in the discrete spectrum and in the spectrum
of pre-dissociated levels.









Chapter 5

Other Applications of the Mapped
Fourier Grid Method.

In the previous chapter, the MFGR method was applied for the detailed investigation
of vibrational and pre-dissociated levels of the 0F symmetry of Cs; and Rb,. In
this chapter two other experiments carried out in the laboratory Aimé Cotton are
interpreted using the developed method.

5.1 Tunneling in the Cs; 0, photo-association spec-
trum.

In the recent photo-association experiment in a cesium trap [41], two vibrational
series were observed. These series have been attributed to the 0, (65 + 6Ps/;) and
to the 1, (65 + 6P3/2) molecular states.

The 0, (65 +6Ps/2) potential curve has two wells separated by a potential barrier
at 15 ag. In the experiment, only vibrational levels of the outer well are observed.
This double-well shape of the potential gives rise to a tunneling between the inner and
the outer wells for vibrational levels lying under the barrier. The tunneling affects
positions of vibrational levels situated near the potential barrier.

In the experiment, besides two vibrational series, which are assigned to two molec-
ular states, the observed spectrum contains two rotational structures, which cannot
be assigned to any series.

M. Vatasescu [128, 129] has used MFGR to compute the vibrational levels and
their wave functions in the double well of the 0; (65 + 6F3/2) potential, showing
evidence of tunneling. She demonstrates that multichannel tunneling is important,
due to the coupling, in the inner well, between the 0, (65 + 6P5/3) and the 07 (65 +
5D3/,) molecular states. Due to the tunneling, a part of the wave functions of such
levels is in the outer well, and, thus, the levels can be populated in photo-association
experiment.

Using the MFGR method and changing slightly the 0, (65 +5D3/2) potential and
the coupling, M. Vatasescu has fitted calculated positions and rotational constants of
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these two levels to the observed ones. She defined also the exact height of the barrier
of the 0, (65 + 6P5/,) state.

5.2 Symmetry breaking between BT, and 1'1I,
states in °Li’Li.

This section describes another application of the MFGR method - an interpretation
of an experiment with the 'II, — 'II; (25 +2P) symmetry breaking in the molecule
6Li"Li. The motivation of the this work was a recent experiment by N. Bouloufa, P.
Cacciani, and R. Vetter [22] studying the !II, symmetry of Li,. In this experiment,
an unexpectedly strong pre-dissociation of vibrational levels of the I, (25 + 2P)
electronic state of the isotope ¢Li’Li was observed.

In this section, an explanation is proposed for this strong effect, assuming that
the observed pre-dissociation is due to the coupling with the 'II; (25 + 2P) state.
This coupling arises from the ¢ — u symmetry breaking in the ®Li’Li molecule.

Hereafter in this chapter the origin of the energy will be at the dissociation limit
of the !II, (25 + 2P) potential, potentials 'II,, (25 + 2P) and II, (25 + 2P) will be
called simply as 'II, and II,.

5.2.1 Introduction

The potential 'II, of Li; demonstrates a barrier at the distance 11 ao (Fig. 5.1).
Due to the barrier, the potential has, for ®Li’Li and the total momentum J = 1,
four vibrational levels with the positive energy in addition to 13 bound levels. These
levels are pre-dissociated and have finite lifetimes.

Among the four pre-dissociated levels v = 13 — 16 (J = 1) of ®Li’Li, only the
upper level (v = 16), situated close to the the top of the barrier, is strongly pre-
dissociating. Three others have very long lifetimes because the barrier is sufficiently
large. With increase of the quantum number J, the energies of all vibrational levels
(bound and pre-dissociated) move up. This leads to the fact that for some J the
energy of the v = 12 levels becomes positive — this level becomes pre-dissociated.
Increase of J leads also to the disappearance of the highest v = 16 level, when its
energy is above the top of the barrier. For very large values J ~ 70 the !II, does not
contain vibrational levels any more.

The pre-dissociation of upper levels for different J values from 1 to 72 has been
observed in the experiment by N. Bouloufa et al. [22] for “Li,. The observed pre-
dissociation widths have been found in very good agreement with the results of quasi-
classical calculations [22]. These calculations show also, that only the pre-dissociation
of one the highest level (for a given J) can be observed in the experiment. Widths
of other pre-dissociated levels are smaller than the experimental resolution limit, 1
MHz. For simplicity, these levels with very small widths will be referred to VLL-levels
(very long-living levels).
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Figure 5.1: Potentials B'II, (full line) and 1'II, (dashed line) of Lis (25 + 2P).

However, in the same experiment, the pre-dissociation of such VLL-levels for
"Li®Li was observed. This effect could not be explained by tunneling through the
barrier. There are levels lying very close to the dissociation limit with relatively large
widths. The largest widths are about 60 GHz.

This observed strong pre-dissociation was the motivation for the present model
and calculations.

The explanation of the effect can be done taking into account the fact that nuclei
in the “Li®Li molecule are not equivalent, so that u and g symmetries no longer
correspond to good quantum numbers. The permutation of 25 and 2P atomic states
between two nuclei in the molecule change the total molecular wave function, since
these atomic states 25 and 2P are not the same for nuclei with different mass. The
g—u symmetry breaking leads to the coupling between 'II, and 'II, molecular states.
This coupling causes the pre-dissociation of VLL-levels of the 'II, molecular states
through the 'II, state.

5.2.2 The pre-dissociation through the potential barrier

First, the results of semi-classical calculations for the upper levels pre-dissociated due
to the tunneling effect has been confirmed. In the present calculations the MFGR
method with the absorbing potential was used.

For the calculation, the potential 'II, was taken from Ref. [22], the potential
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T, was taken from Ref. [87]. Both potential, fitted to the experiment, are very
precise. Bound levels, calculated with the MFGR method using these potentials, and
experimental levels are found in agreement, expressed in terms of quantum defects,
better than u(v) = 0.04.

Below, the results of calculations for 8Li’Li are presented and discussed.
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Figure 5.2: Two typical pre-dissociated wave functions of the 'II, molecular state of SLi’Li with
J = 1. The lower panel shows the wave function of the highest (v = 16) pre-dissociation level, the
upper panel shows the lowest (v = 13) pre-dissociated level. Insets show asymptotic tails of both
wave functions.

For calculation of widths the time-independent method with the absorbing po-
tential was used.

The figure 5.2 shows two typical wave functions of pre-dissociated levels, obtained
in MFGR calculations for éLi’Li only with the II, potential. Both wave functions
are normalized to unity in a box from R = lag to R = 50ao. The upper panel of the
figure shows the lowest pre-dissociated vibrational level with energy 77.3 cm™! for the
J = 1. The width of the level is 0.3 Hz. The lower panel shows the upper vibrational
level, v = 16. The energy is 450.3 cm™, the width is 1.008 GHz. (For J = 1, the
height of the barrier is 499.5 cm™!.) Two insets show the asymptotic parts of wave
functions.

The figure 5.3 shows pre-dissociation widths of seven vibrational levels from v = 10
to v = 16 as a function of the total rotational momentum.

The plan of the section is following. At the beginning, the pre-dissociation only
due to the tunneling through the barrier is considered using the MFGR method. The
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Figure 5.3: Widths of IT, (SLi’Li) levels, pre-dissociated due to the tunneling through the

potential barrier, as a function of the total momentum J.

results for "Li, are in agreement with the experiment and the semi-classical calcu-
lations [22]. Then, a simple model of the symmetry breaking in ¢Li’Li is proposed,
and the non-diagonal coupling element of the 'II,~'II, interaction is defined, using
the isotopic splitting of 2P and %5 atomic levels in Lithium. Then, widths of vibra-
tional levels of 'II,, pre-dissociated due to the tunneling and the coupling with the
I, state, are calculated, using the MFGR method with the optical potential. The

results are compared with the experimental data.

5.2.3 Theoretical model for coupling between B'II, and 111,
states in SLi'Li.

The order of the magnitude of the coupling between 'II, and 'II, states for large
internuclear distances can be estimated from the energy difference between atomic
levels for two isotopes. Relation between energies of atomic levels for two isotopes is
connected to the relation between reduced (nucleus + electron) masses of isotopes.
Since this isotopic difference is small, it can be taken into account as a perturbation.
One can still consider two molecular states, 'II, and 'II,, but now, they are coupled.

The whole potential energy operator of the system 6Li’Li is written as 2 x 2

matrix:
V(R) = U(R) + Vi, (5.1)
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In the molecular basis U is the potential of non-perturbed system, 6Li,. Vj is con-
sidered as a small perturbation and it is responsible for the coupling between the

states.
U in the molecular basis is represented by a matrix containing potentials 'II,, and
I, as diagonal elements:

U= ( Us(R) ; ) : (5.2)

Vi can be defined in the basis of products of atomic states (atomic basis). This
basis consists from following electronic states (anti-symmetrized over the permutation
of electrons):

1 . .
la; >= —2(|6Lz',25, r1> |"Li, 2P, ry > —|®Li, 28,7y > |"Li, 2P,y >)

L (710,28, m > PLi, 2P,y > —[TLi, 28, 7y > PLi, 2P, 1y >)
V2 (5.3)

|(12 >=

r; and r, are coordinates of electrons.
The two representations (atomic and molecular) are connected through a trans-
formation S:

1 1 1
S=7§(1 _1), (5.4
y(R) = \/%(Ial > +laz >)

bu(R) = \/%(Ial > —laz >) (5.5)

Vi is diagonal in the atomic basis. Diagonal matrix elements can be calculated in
the atomic basis. They are determined by differences of energies of electronic states
of atoms with different mass of nuclei:

< a1|Vhlay >= E(°Li,2S) + E("Li,2P) — (E(°Li,2S) + E(°Li,2P)) =

E("Li,2P) — E(°Li,2P) = ¢

< ap|Vplaz >= E(°Li, 25) — E("Li,285) = ¢, (5.6)

In the previous formulae, the quantities €; and e, are calculated with the condition,
that atomic wave functions are not disturbed due to the interaction between atoms.
Strictly speaking, it is justified only at infinite separation of atoms. In the following
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consideration it is supposed that interaction between atoms does not change atomic
25 and 2P states. Thus, the quantities ¢; and €, will be considered as R-independent.
Thus, the whole potential operator in molecular basis is written:

V(R) = ( Ul ) Uu((’R) ) + S( o 602 ) s (5.7)
im=(0 o )es(ate arE). e

The term Vj shifts both potentials by the energy €; + €; and mixes them by a
constant interaction (e; — €2)/2.

At the infinite separation, the quantity € = ¢; — €3 is determined from Eq. (5.6)
as difference between atomic transitions 2P — 25 for two isotopes:

€= ’U(2P — 25)7[,2' - ’U(2P - Q‘S)GLi' (59)

From the experiment, e(co) & 0.349 cm™!. On the other hand, since the largest part
of wave functions of II, levels are situated at short distances, the matrix element
Vio(gm) =< %u(v)[Va|thy(v) > of transition *II, — II, between two components, 1 (v)
and ,(v), of the total wave function 1(v) is defined by values of € at small distances.
For the small internuclear distances, this quantity is not known and, in general, it
should be fitted to the observed widths. In the present calculations, the experimental
value €(00) & 0.349 cm™! is used at small distances also.

For the fit the following observations can be useful. The matrix element V}, (4 .)
can be written in a form:

Vigomy =< Vi >< $u(0)(v) > (5.10)
where the value < Vj, > is defined as

<) [Thl,(0) >
<= @)

The quantity < V, > can vary from one level to another. Taking the notation F for
the Franck-Condon factor < 9, (v)|ty(v) >, the matrix element is written as:

(5.11)

Vi(gw) =< Vo > F. (5.12)

Since the value ¢ is small, its small variation does not change the total wave function
and the Franck-Condon factor. Therefore, the matrix element varies linearly with e.
Widths I' are defined by the equation

I'=2r|Vi ol (5.13)

Increasing € by a given factor leads to an increase of I' by the square of this factor.
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Figure 5.4: Two typical pre-dissociated wave functions of the !II, molecular state of®Li?Li with
J = 1 perturbed by the coupling with the 'II; molecular state. The lower panel shows M-
components of wave functions.

5.2.4 Results of calculations

Introducing the described two-channel potential with the coupling Vj, into the pro-
gram of calculations of pre-dissociated levels is performed similarly as it was done for
the 0} symmetry of Cs, and Rbs.

Results of calculations including the coupling with the II, show a large increasing
of pre-dissociation widths for VLL-levels. The figure 5.4 shows again pre-dissociated
wave functions v = 13 and v = 16 of the 'II, state, but now perturbed by the coupling
with the 'II; state. Therefore, both wave functions have a II,-contribution. Two
lower panels shows these contributions.

Pre-dissociation widths I' now arise from two sources, from the tunneling and
from the dissociation through the 'II, state. The total width is a sum of widths
given by two contributions. Widths due to tunneling are much larger for the highest
pre-dissociated levels. Comparing the figure 5.4 with the figure 5.2, one sees that the
coupling does not change the short-range parts of 'II,-components of wave functions.
In contrast, for the VLL-levels the contribution to the pre-dissociation due to the
coupling is much more important than the contribution due to the tunneling. It is
manifested in the v = 13 wave function. At large distances the amplitude of the
'II,~component is much smaller than the amplitude of the !II,-component.



5.2 Symmetry breaking between B'II, and 1'II, states in 6Li"Li. 125

100 ! T T T T
o—eo v=10
»-my=11 T
> —oy=]2 )
80 | o | .

<+ <vy=14 :

S i 1

o !

<) :

~ . -

600 800 1000 1200

0 200 400
E(cm)

Figure 5.5: The variation of T as a function of the energy for vibrational levels v = 10 — 16.
Calculations with different J from 1 to 60 are represented on the figure.

In order to see a variation of widths for different values of J, calculations were
performed for J from 1 to 60. The figures 5.5 and 5.6 represent widths as a function
of energy for several pre-dissociated vibrational levels for two different domains of
I'. The first figure shows the region where widths are determined mainly by the
tunneling through the barrier. The values of I', shown in the plot are almost the

same as in Fig. 5.3.

The figure 5.6 shows a region of small widths. In the figure, the competition
between two contributions is clearly manifested, when widths caused by tunneling

becomes comparable with the widths caused by coupling.

Widths of levels, for which the contribution into the pre-dissociation due to the
coupling with 'II, is larger than the tunneling effect, demonstrate slow variation with
J (or with energy). For example, the width of the level v = 8, is increasing from
0 MHz at the energy 0 until a value 5 MHz at the energy F = 300 cm™!, then it
decreases almost to zero again. Other levels display a similar behavior. This behavior
is defined by the Franck-Condon factor F, which changes slowly for each level with

variation of J.
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Figure 5.6: Same as the figure 5.5 by for the region of small I'. Vibrational levels from v = 4 to
v = 16 are represented. Large symbols represent experimentally-observed widths, the convention

for their geometric form being the same as for calculated values.

5.2.5 Comparison with the experiment

The goal of the experiment [22]was the spectroscopy of the !II, state of "Li,. The
effect of tunneling through the barrier was investigated. The spectroscopy of the
SLi"Li molecule was also observed due to a small fraction (13%) of ®Li’Li presenting
in a beam. But the signal was weak, so the pre-dissociation was not systematically
investigated for this species. In particular, the pre-dissociation due to the coupling
with the 'TI, state was not expected.

At the present moment, only a few pre-dissociation rates are experimentally mea-
sured for 6Li"Li. In addition, values of the observed pre-dissociation rates are not
very precise since the signal-to-noise ratio is small.

The experimentally observed rates are represented by large symbols on Fig. 5.6.
The order of magnitude of experimental and calculated values are the same. For a
more precise comparison, one needs more precise experimental data. Then fitting of
the coupling to the experiment will be possible.

Following the proposed model and the present calculation, a new experiment is
prepared now in the Laboratory Aimé Cotton with a purpose of complete investiga-
tion of the pre-dissociation of the II, state of 6Li’Li.
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5.2.6 Conclusion

In this section the pre-dissociation of vibrational levels of the I, (®Li’Li) state are
discussed. In the experiment the observed widths are much larger than one could
expect from the tunneling through the potential barrier of the !II, state. In this
section, a simple perturbation model, describing this observations is proposed. It
is based on the fact that in ®Li’Li the 'II, state is coupled with the 'II, state due
to the symmetry breaking under a permutation of non-equivalent nuclei ®Li and
"Li. Calculations for two-channel coupled potential, using the MFGR method, have
shown a good agreement with experiment data, existing at present. The experiment,
preparing now in the Laboratory will allow to compare experimental and theoretical
results more closely.
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Chapter 6

Conclusion and Perspectives.

The main object of the present Thesis is the development of theoretical and numerical
methods for the study of diatomic systems near the dissociation limit. A diatomic
system near the dissociation means a molecule in a weakly-bound vibrational level,
if the energy is lower than the molecular dissociation limit; two atoms with a small
relative kinetic energy, if the energy is slightly larger than the dissociation energy.

A particularity of a diatomic system with energy close to the dissociation is the
fact that wave functions of levels with such energies have important long-range tails,
located in a region where the kinetic energy is comparable with the energy of the
inter-atomic interaction. The C,/R" character of the diatomic potential at large
distances together with a small relative kinetic energy give at asymptotic region
slowly oscillating wave functions. On the other hand, one cannot neglect the short-
range part of wave functions, that determines, for example, the asymptotic phase
shift. In this region, the inter-atomic motion is faster, and wave functions oscillate
more. Thus, a full consideration must take into account both long- and short-range
parts of the diatomic potential.

Therefore, the Thesis describes how existing methods of solution of the time-
dependent and the time-independent Schrodinger equations are adapted for physical
problems, where the both, short-range and long-range parts of the potential is im-
portant.

Using the developed method, several applications to experiments with cold alkali
molecules near the dissociation limit are considered.

Potential curves needed for applications are taken from different sources. In the
present state of quantum chemistry calculations, the accuracy of the potentials is
not yet spectroscopic accuracy, but using the generalized quantum defect theory, a
qualitative analysis of results and the comparison with the experiment are possible.
It is shown, that fitting some parameters, such as quantum defects, an agreement
with the experiment can be obtained. The fitting of the quantum defects is made by
small change of the potentials at small distances, where ab initio potentials have the
the largest certainty (about 1 cm™1).
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6.1 Results obtained in the Thesis

The main results of the Thesis are the following:

I. The method developed in the Thesis is based of the Fourier Grid Representation
(FGR) method [72] (R. Kosloff). An important feature of FGR is its ability to
represent a wave function as an expansion on a basis of functions (e’P®) or by values
of the wave function on grid points. The ordinary FGR method make use an equally-
spaced grid, that corresponds to basis functions with fixed frequencies p.

A new method of representation (the mapped Fourier grid representation) devel-
oped in the Thesis is adapted for a Hamiltonian containing a long-range potential.
This new representation uses a basis of exponential functions with varying frequencies
p, such that these basis functions oscillate more in the region where the maximum
possible energy is larger and, therefore, wave functions oscillate more. In a region
where oscillations are less frequent, the frequencies of basis functions are smaller.
Since a maximum frequency of local oscillations of wave functions is defined by the
maximum local kinetic energy, the functional basis is connected to the local kinetic
energy. From a grid point of view, the density of grid points is higher in the region
where oscillations are more frequent. It means, that the working (mapped) grid is
more dense at distances, where the wave function of the most excited bound state
oscillates fast, and it is less dense at distances, where the wave function oscillates
slowly.

This basis choice reduces the number of basis functions to the minimum, since the
basis functions, chosen by this way are adapted to the potential in the most natural
way. Typically, the number of basis functions is slightly larger than the number of
quantum states and to close the absolute minimum (the number of quantum states
is defined by the volume of the phase space of the highest state of the interest).

The eigen-energies and eigen-functions are obtained by a diagonalization of a
matrix of the Hamiltonian written in the mapped Fourier grid representation.

The determination of the new (mapped) grid is done numerically, using the max-
imum possible local kinetic energy. This numerical evaluation of the mapped grid
does not introduce an additional error into calculations when a numerical potential
is used in the Hamiltonian.

The idea of the mapped Fourier grid is not new. It was discussed by E. Fattal
et al. [38] and by E. Tiesinga et al. [125]). But in these works, the mapping was
applied only for very special cases of the potential. They used analytical forms of
the mapping adapted to some coordinate regions and did not estimate its efficiency.
In contrast, the Thesis present general techniques for determination of the mapping
adapted for any potential and for any number of channels.

The proposed method was for one- and two-channel potentials and can be easily
generalized for larger number of channels.

With use of the method of optical potential, the mapped time-independent method
is adapted for calculations of widths (and lifetimes) of pre-dissociated levels of long-
range potentials.

II. Tt is proposed a simple and effective techniques for the pre-estimation of the
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size of needed basis and, thus, the pre-estimation of a calculation cost. The techniques
is based on a estimation of the phase space occupied by the Hamiltonian. The shape
and volume of the occupied phase space is determined from the maximum local
kinetic energy. For this goal the concept of an enveloping potential is introduced.
This potential reflects simply the maximum local kinetic energy (multiplied by -1).
Use of an enveloping potential is very useful for a problem with several channels,
where the maximum local kinetic energy is not always obtained by the minimum of
the potential curve.

In the present version of the method, only the classically allowed region is ex-
plicitly included into the procedure of determination of the basis. The classically
forbidden region is included implicitly when the density (= 1/83) of points per one de
Broglie length is increased.

II1. The precision of the mapped time-independent Fourier method, developed in
the Thesis is checked. In the present form, the precision is limited by the accuracy
of calculations of a potential at grid points, using a spline procedure. Comparing
with the Numerov method, it was found that the present precision of bound state
calculations with the numerical potential is of order 10~7. But, in principle, if the
spline procedure could be avoided, the precision must be of order of the uniform
Fourier method, i.e. about 10~'* [70].

IV. The same method of representation of wave functions and Hamiltonian with
a long-range potential is applied to solution of the time-dependent Schrodinger equa-
tion. The MFGR method coupled with the time-propagation approach of R.Kosloff
is an efficient tool for the simulation of collisions, when the long-range interaction
is important (for example, collisions of cold atoms). Using techniques of extraction
of lifetimes from the correlation function, it has been shown that the mapped time-
dependent method can be used for lifetime calculations.

Since lifetimes can be calculated by time-dependent and time-independent ap-
proaches, these calculations have been used as a test for the reliability of both meth-
ods. As an example for the test, the symmetry 0} was used. Both approaches have
given approximately the same results.

As applications of the developed method the following examples are discussed in
the Thesis:

I. The symmetry 0} of two heavy alkali dimer molecules Rb; and Cs, has been
considered. Two vibrational series of spectra of this symmetry are strongly perturbed
one by the other for all domain of bound and pre-dissociated energies (approximately
for 6000 cm™!) due to the strong non-adiabatic coupling between two adiabatic chan-
nels, 0} (Py/2) and 0} (Ps/2), of the symmetry. The perturbations are manifested
by the fact that wave functions of the vibrational levels contain both components,
0f (Py/2) and 0F (Ps/2), in comparable proportions. Since the vibrational motion is
extending at large inter-nuclear distances, the mapped FGR method is especially
adapted for this kind of problem.

It was found that the perturbations are much stronger in the case of rubidium. In
the spectrum of Rb; there are vibrational levels, which cannot be attributed to any
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molecular state — the mixing is very strong. In the case of cesium, the non-adiabatic
mixing near the first dissociation limit Py, is much weaker.

A qualitative agreement for Rb, has been found between results of calculations and
perturbations of highly excited vibrational levels, observed in the photo-association
experiment of D. Heinzen et al. [52]). Also, the results of calculations by C. Amiot
et al. [7], explaining perturbations in the low-lying part of the spectrum observed in
Fourier Transform experiments (experiment by C. Amiot and J. Vérges), have been
reproduced and confirmed.

The precision of results is limited by the present precision of potentials at short
distances. In order to see how the results depend upon the coupling, calculations
with HR-independent and R-dependent spin-orbit coupling have been done. For ce-
sium, the R-dependence of the molecular spin-orbit coupling has been computed [94].
For rubidium, a model dependence was used (see the Thesis). In the case of cesium,
a strong dependence of perturbations upon the coupling was found — with the R-
independent spin-orbit coupling, two adiabatic molecular states (Pi/2 and Py/3) of
the symmetry almost do not interact, and the perturbations are very weak. In a
case of R-dependent spin-orbit coupling, the perturbations are very strong. In con-
trast, in Rubidium, the R-dependent spin-orbit coupling does not change a picture
qualitatively, but do change quantitatively.

I1. An analysis of a type of Leroy-Bernstein was applied for obtained results. For
one-channel potential, if the potential is not exactly a C,,/R" curve, instead of the
exact Leroy-Bernstein dependence of the level energy, E(v), on the number of a level,
v, it is proposed to use the calculated dependence E(v). This numerical dependence
is useful for the analysis of shifts of vibrational levels when the potential is changed
or perturbed by a coupling with the another potential curve. For this analysis the
quantum defect theory is applied.

Using the two-channel quantum defect theory, a whole complexity of perturba-
tions is described by only three parameters, p1, p2, Rj2, weakly depending upon
the vibrational levels. Since these parameters stay almost the same when the P/,
threshold is overcome, lifetimes of the pre-dissociated levels, lying just over the P/,
threshold, can be predicted from py, p2, Rz, calculated for the discrete spectrum.

It was found for Rby, that p1, g2, Ri2 stay almost constant for a large energy
domain from —1000 e~ under the P, limit up to the Py, limit. These parameter
change less than by 1% from one vibrational levels to the neighboring and by 10%
for whole this energy domain. For the case of cesium, these parameters are slowly
changing (from 1% to 10% for neighboring levels).

An important conclusion of the 2QDT analysis is the fact, that if the asymptotic
behavior of potentials is known, only three parameters determine perturbations of
highly-excited vibrational levels and the pre-dissociation of resonant levels. Even,
if the short-range part of the potential is not known, fitting these parameters, an
agreement with the experiment for positions of bound levels can be obtained. Ex-
trapolating these parameters outside the experimentally-accessible energy domain,
lifetimes and perturbations can be predicted.

III. Using the developed method together with the optical potential method,
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lifetimes of pre-dissociated vibrational levels lying between two thresholds, P/, and
P33, of the symmetry, have been directly calculated for Rb; and Css.

It was found an agreement between lifetimes defined by a direct calculation and
with using parameters u;, p2, R, extracted from the discrete spectrum.

Comparing the results of lifetime calculations with the photo-association experi-
mental data for pre-dissociated levels of ®*Rb, (D. Heinzen et al.), some discrepancy
was found. This discrepancy was attributed to the low accuracy of the spin-orbit
coupling, used in the calculations. It was shown, that by a small variation of the
potential and the coupling, the agreement with the experiment can be obtained.

A large isotopic difference in lifetimes of pre-dissociated levels and in perturbations
in the discrete spectrum has been predicted for two isotopes of Rubidium #*Rb, and
8"Rb,. It should be seen in the photo-association experiment, for example, as a
strong difference in a trap loss due to the fine-structure transition. Thus, this effect
can explain the difference in the trap loss between 8Rb and ®"Rb observed in the
experiment by C. Wallace.

IV. Using the mapped Fourier method developed in the Thesis, two vibrational
structures observed in the cesium photo-association spectrum have been interpreted
by M. Vatasescu et al. [129]. These two features are caused by the multi-channel
tunneling through the barrier of the 0 state. An analysis of experimental data and
a fit of potential have allowed to define the coupling between the 0, (6s +6P5/2) and
the 0; (654 5D3/2) molecular states and to precise a height of the barrier. (The work
has been done by M. Vatasescu.)

V. As another application of the mapped Fourier method, the dissociation of
vibrational levels of the 'II, symmetry of 6Li’Li due to the interaction with the
I, symmetry has been investigated. A simple perturbation model, describing a
g — u symmetry breaking in states !TI, and 'II, in 6Li"Li, was proposed. Results of
calculations explain the dissociation observed in the experiment by P.Cacciani.

6.2 Some perspectives

Among the most close perspectives of the continuation of the work, presented in the
Thesis, can be noted following.

I. There are several applications of the mapped Fourier method to experiment,
which can and must be considered:

e The interpretation of non-explained lines, experimentally observed in the photo-
association spectrum of Cs, near the Py, limit. These lines are, probably,
caused by perturbations in the spectrum of one of symmetries of the 65 + 6P
manifold of cesium.

e The detailed analysis of the 0} spectrum of Rb,, obtained in the Fourier trans-
form spectroscopy experiment of C.Amiot and J.Verges and in the experiment
of D. Heinzen et al.. To improve the potentials and the spin-orbit coupling at
small distances comparing with the experiment.
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e Investigation of a scheme of formation of cold molecules in the ground molecular
state obtained by a spontaneous emission from the excited 0;' (65 + 6P) state.
(Rb; — the experiment by G.Pichler).

II. A generalization of the mapped Fourier grid representation to multi-dimen-
sional potentials. Advantages of the multi-dimensional mapping are even more es-
sential than in the case of a one-dimensional problem. A multi-dimensional version
would allow to solve many problems such as calculations of bound and pre-dissociated
vibrational levels of multi-dimensional potentials (triatomic molecules), three-body
collisions, calculations of potential curves and surfaces.

ITI. Since the propagation of wave packets in the solution of time-dependent
problems leads to heavy calculations, the creation of a parallel version of the algorithm
seems to be useful, especially for multi-dimensional or (and) multi-channel potentials.
The parallelization could be useful also for the time-independent approach, if, for
example, there are many channels. Now, the parallel version of the propagation code
without the mapping is already written on a parallel language BSP. The perspective
to unify abilities of the parallel computing with the MFGR seems to be very fruitful.

In conclusion, the Thesis opens very different opportunities for the future: a
systematic use of the existing code for calculations of bound states and for the inter-
pretation of experimental spectra, a following theoretical development of the method,
and the purely algorithmic work.
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6.3 Résumé

L’objectif principal de la These est le développement des méthodes théoriques et
numériques pour traiter soit les niveaux de vibration d’une molécule diatomique
proche de la limite dissociation, soit les collisions entre atomes froids. Ce travail
est motivé par de nombreux résultats expérimentaux récents sur la formation de
molécules froides.

Dans les problémes consideéres, le mouvement relatif des deux atomes s’étend a de
grandes distances internucléaires, ou le potentiel est tres faible et ou la fonction d’onde
oscille tres lentement, alors que dans la zone interne elle oscille rapidement. Pour
résoudre cette difficulté, on a propose une nouvelle méthode de représentation de grille
de Fourier ou le pas d’intégration est ajusté sur la longueur d’onde de Broglie locale.
On a montré qu’une fonction d’onde peut étre représentée avec précision en utilisant
moins de deux points par oscillation. La méthode a été appliquée a la prédiction
de spectre de photoassociation de Cs; et Rb, et a I'interprétation d’expérience de la
violation de symétrie en Li,.

Résultats obtenus dans la These.

Résultats principaux obtenus dans la These sont suivants

I. La méthode développée est fondée sur la représentation de grille de Fourier
(FGR) [72] (R. Kosloff). Une propriété importante de la FGR est sa capacité a
représenter la fonction d’onde comme un développement sur la base des fonctions
e'PR ou par ses valeurs sur des points de grille. La méthode FGR originale utilise une
grille 3 pas constant, correspondent & une base des fonctions e’P? avec des fréquences
p constantes.

La méthode proposée dans la These (MFGR - FGR avec le “mapping”) utilise
une grille & pas variable [64]. Pour la représentation par les fonctions de base cela
signifie que les fréquences p dépendent de R. Les fonctions e?(BE sont choisies de
telle facon qu’ils oscillent plus dans la zone R ou les fonctions d’onde oscille le plus.
Mais la fonction d’onde oscille plus ou ’énergie cinétique est grande. Le pas de la
grille et la fréquence locale p(R) sont choisis liés a ’énergie cinétique locale.

Si la base de fonctions (la grille) est choisie a partir de 1’énergie cinétique lo-
cale, le nombre de fonctions de base (le nombre de points de la grille) est minimum
pour un potentiel donne. La base des fonctions (la grille & pas variable) est définie
numériquement a partir du potentiel.

Les niveaux liés et les fonctions propres sont détermines par une diagonalisation
de la matrice de Hamiltonian, écrite dans représentation MFGR. Pour résoudre de
I’équation de Schrédinger dépendent de temps on utilise la méme représentation.

La méthode de MFGR est généralisée ensuite a plusieurs voies. En ce cas il faut
prendre l’énergie cinétique maximale pour toutes les voies pour ajuster le pas de
grille.

En introduisant un potentiel absorbant au bord de la grille, la méthode indépen-
dante du temps est utilisée a calculer des largeurs (des durées de vie) des niveaux
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pré-dissociés.

II. Une technique simple et efficace est proposée pour estimer le nombre des fonc-
tions de base (le nombre des points de grille) pour une précision donnée. Ca permet
a pré-estimer les efforts numériques pour un potentiel et une précision donnés. La
technique est basée sur ’estimation d’espace de phase occupée par le potentiel de
I’Hamiltonian. Le volume d’espace de phase est détermine par 1’énergie cinétique lo-
cale. On a introduit une notation le potentiel enveloppe qui donne la valeur d’énergie
cinétique maximale a chaque distance R donne. La définition du potentiel enveloppe
est tres utile pour les Hamiltonian avec un potentiel a plusieurs voies.

II1. La précision de la méthode Mgr est comparée avec la méthode de Numerov.
Dans la version présente la précision est limitée par des calculs du potentiel sur les
points intermédiaire en utilisant la procédure de spline. L’ordre de grandeur de la
précision actuelle des calculs des états liés est de 10~7. In principe, si on évite la
procédure de spline, on doit attendre la précision de I’ordre de 1074, comme pour la
méthode FGR ordinaire [70].

IV. La méthode MFGR de représentation des fonctions d’onde et de ’Hamiltonian
a été appliquée a ’équation de Schrodinger dépendent de temps [66]. Pour la propa-
gation en temps, ’expansion de Chebyshev de I'opérateur de propagation ést utilisée.
La méthode MFGR couplée avec la propagation en temps permet de traiter des col-
lisions a tres basses énergies. En utilisant la méthode dépendant du temps, la durée
de vie des niveaux pré-dissocies peut étre calculée. On a comparé les resultats a ceux
qui obtenus par la dépendent de temps pour tester la precision de deux méthodes.
(Ca a permis a vérifier la surete des résultats donnes par deux méthodes. Comme un
exemple, la symétrie 0} de Rb, et Cs, est considérée.

Applications de la méthode MFGR sont considérées dans la These.

I. On a étudié le spectre de photoassociation 0} (n.S+nP) des molécules alcalines
lourdes, Cs; et Rbz. Les deux voies corrélées aux asymptotes Py/; et Ps/; sont forte-
ment couplées, ce qui crée des perturbations dans le spectre sur un domaine d’énergie
de plus de 6000 cm~!. Comme le mouvement vibrationnel atteint en ce cas de tres
grandes distances (potentiel 1/R?), la méthode MFGR est particulierement adaptée.

J’al trouvé que les perturbations sont plus important pour le rubidium que pour
le césium. Des potentiels utilisent pour Rb, et Cs; ne sont pas tres bien connus. La
dépendance des positions des niveaux et des perturbations dans le spectre avec de
changement des courbes potentiels et du coulage spin-orbite ont été étudiés. Il y a des
données expérimentales pour le rubidium: spectres de fluorescence pour les niveaux
vibrationnels les plus bas (C. Amiot et al. [7]), spectres de photoassociation (D.
Heinzen [52]). Un bon accord a été trouvé entre des calculs et expérience. Résultats
des calculs pour le césium sont actuellement utilisés pour interpréter les spectres de
photoassociation de I’équipe de Pierre Pillet.

I1. Une analyse de type de Leroy-Bernstein a été applique aux niveaux calcules.
En modifiant du potentiel, un déplacement des niveaux peut étre décrit par un seul
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paramétrer p (défaut quantique). L’intérét d’utiliser du défaut quantique est qu’il
varie peu avec |’énergie. Si le comportement du vrai potentiel est connu aux grandes
distances et inconnu aux petites distances, en changeant le défaut quantique (le po-
tentiel numérique) on peut arriver a une série vibrationnelle calculée identique a la
séries expérimentale. On a généralisé la théorie du défaut quantique pour des po-
tentiels de type non-Rydberg a deux états. Dans ce cas-la on arrive décrire toute la
complexité des niveaux perturbés seulement avec trois parametres py, w2, Ri2 (dé-
fauts quantiques sur les deux voies et couplage). La méthode graphique de Lu-Fano
a été appliquée aux perturbations entre deux états moléculaires [65].

On a trouvé des parameétres p1, g2, Ry 2 pour la symétrie 0f de Rb, et Css.

Un résultat important de la théorie du défaut quantique a deux états (2QDT) est
que si on connait les parametres py, pg, K2 juste au-dessous de la premiere limite de
dissociation nS + nP, /2, on peut prédire des positions et des largeurs des résonances
(niveaux pré-dissocies) au-dessus de lu limite [65].

III. En utilisant la méthode indépendante de temps avec le potentiel absorbant,
des largeurs et positions des niveaux pré-dissocies ont été calculées pour la symétrie
0 de Rby et Csy. Un excellent accord a été trouvé entre les parametres pq, p2, R,
définis pour le spectre pré-dissocie et pour le spectre discret. Ca justifie la prédiction
des largeurs de résonance a partir de spectre discret,

En comparant les largeurs calculées avec des largeurs expérimentales pour ¥Rb,
[52] une divergence a été trouvée et attribuée a la précision insuffisante des potentiels
et du couplage. J’ai montré que cette divergence peut étre éliminée par un petit
changement du potentiel.

Un effet isotopique important sur les durées de vie pour deux isotopes de Ru-
bidium, #¥Rb, et 8’Rb,, a été prédit. Cet effet doit étre observe dans ’expérience
de photoassociation comme une différence en pertes d’atomes due au couplage spin-
orbite.

IV. En utilisant la méthode de MFGR deux structures vibrationelles observées
dans le spectre de photoassociation du césium, ont été expliquées [129]. Ces deux
structures sont attribuées a I’effet tunnel a travers la barriere du potentiel moléculaire
0;. On avait pu méme déterminer la hauteur de la barriere d’état 0.

V. Comme autre application, la pré-dissociation des niveaux vibrationels d’état
1L, de Li, était considérée. La motivation de ce travail était ’expérience du group de
Cacciani [22]. Des largeurs des niveaux d’état 'II,, de 'isotope 8Li’Li prés de la limite
de dissociation sont beaucoup plus grandes que pour l'isotope “Li;. On a attribué
cet effet a la violation de la symétrie ¢ — u. La différence en masse de deux noyaux
casse la symétrie et introduit un couplage entre des états 'II, et 'II,. Dans la These
j’ai développé un modele qui décrit ce couplage. J’ai calculé des largeurs des niveaux
pré-dissocies. Un bon accord a été trouvé avec I’expérience [24]. Maintenant, a la
suite des résultats obtenus dans la These, une nouvelle expérience se prépare.
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Appendix A

Classification and Calculation of
Molecular Terms

Since the Thesis refers very often on the Hund’s cases a and ¢ of molecular terms, it
seems to be useful to bring the details of the construction of Hund’s case ¢ curves from
Hund’s case @ and connections between corresponding quantum numbers, nevertheless
this scheme of construction is well-known. Thus, this appendix is devoted to a brief
description of calculations of electronic molecular terms of symmetries n.S + nP and
nP + nP of alkali diatoms with accounting the spin-orbit coupling. Curves of the
Hund’s classification a were used as a starting point.

It is be assumed in the appendix that the total potential operator includes the a
potential curves plus the spin-orbit non-diagonal coupling. Since there is no a term
of the first derivative in the corresponding Schrodinger equation, this representation
will be refereed as diabatic. The ¢ curves are obtained diagonalizing this potential
operator. In this representation the potential does not contain non-diagonal terms
but the corresponding Schrédinger equation contains the first derivative mixing the
molecular states. This representation of the potential will called, as usually, adiabatic
representation.

The first part of the appendix is briefly describing the well-known scheme of the
construction of electronic molecular wave functions of the diatom (not only alkali)
from atomic electronic wave function (see, for instance, the book by E. Nikitin and
S. Umanskii [102]). It is given quantum numbers of molecular terms for two Hund’s
cases — a and c¢.

The details of calculation ¢ curves and references of sources of a curves are given
in the second part of the appendix.
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A.1 General scheme of the construction of molec-
ular terms

A.1.1 Symmetry groups and quantum numbers of electronic
states of the diatomic system

The classification of molecular.terms is directly related to the symmetry group of
the system. For homo nuclear diatom the symmetry group is Do, (E.Nikitin and
S.Umanskii, [102]). D s is direct product of symmetry groups: 1) permutations
of electrons, 2) rotations around the inter-atomic axis, 3) reflections in any plane
containing this axis, and 4) inversion. Thus, correct quantum numbers are following:

o () - the absolute value of the projection of the total electronic angular momen-
tum along diatomic axis;

e o(0 = +,—) - the character of reflection of the total wave function in the plane
containing the diatomic axis;

o w(w = g,u) - the parity of the total wave function on inversion through the
center of a diatom;

e ¢ - others quantum numbers, which can specify different terms inside each
symmetry.

The physical conditions of the problem can increase the symmetry of the system,
and therefore, the further classification can be done and additional quantum numbers
is defined. In the case of interesting , when the spin couples weakly with the orbital
momentum, it is appeared the additional group of symmetry — the group of geometric
transformation is reduced into the direct product of the group of rotations in the spin
space and the group of geometrical transformations acting only in the coordinate
space. The corresponding additional classification is a specification of the total spin
and the projection of the electronic orbital angular momentum. Quantum numbers
in this classifications will be: .

Quantum numbers will be:

o A - the absolute value of the projection of the electronic orbital angular mo-
mentum along diatomic axis;

e o'(0’ = 4, —) - the character of reflection of the spatial part of the wave function
in the plane containing the diatomic axis;

o w'(w' = g,u) - the parity of the spatial part of the wave function on inversion
through the center of a diatom;

e 5 - the total spin;

o §'(6 # 4') - others quantum numbers, which can specify different terms inside
each symmetry.
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Let these states are called as a.
In the non relativistic case, the inversion does not involve the spin variables for
both classifications. For this reason:

w =w (A.1)

A.1.2 Molecular wave functions on large internuclear dis-
tance

At large internuclear distances wave functions of atoms are only slightly perturbed
one by other, that permits to construct approximate molecular wave function from
product of atomic function. Accepting this approximation, the problem of molecular
wave functions is reduced to constructing of linear combinations of those product,
which transform correctly under group operations, imposed by the symmetry of the
diatomic system.

Hund case «

Consider first the Hund’s case a, when the spin is independent of the orbital angular
momentum.
Let atomic wave functions for atoms A and B will be:

|y1S1ms, Limy, >4

|v259ms, Lymr, >p (A.2)
Wave functions of the basis a transforming correctly under the group operations are:

|7172L/~\Sms >= A Z Z Clllll’l,\ml;Lg,mz C‘IL,A

.1
M S35, S,
lemL2 m51m52

|11 S1ms, Limy, >4 |v2S2ms, Lamp, >B . (A.3)
Here

A=-2Y6,P (A.4)

is the anti-symmetrization operator, P stands for the electron permutation operators,
the factor &, are +1 for even, and -1 for odd permutations, and the summation is over
all permutations of two electrons. The functions (A.3) are antisymmetric with respect
to all electrons and correspond to definite values of the total spin S, its projection mg
on the diatomic axis, and the projection A of the total orbital angular momentum on
this axis.
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Expressions for quantum numbers

Quantum numbers of wave functions (A.3) are defined symmetry properties of
the Clebsh-Gordon coefficients under transformations of the symmetry group of the

diatom.

The projection of the orbital angular momentum A

A=Al (A.5)

Reflection index o'

For a case A = 0:
0" = wlwg(—l)L, (AG)

Here w; and w, are parities of atomic states: wy = (—1)1’1'2.
If A # 0 when functions transforming correctly under the action of the operator d,:

'71772, L, A, S, ms,p >=

|:|'71772aL1K7 Sa ms > +(—1)p|71772aL7 —K7 Sa —mg >] /\/§

p=0,1 (A.7)
1e.
o' = wywy(—1)P(=1)EA, (A.8)
Parity v’

When atomic states are the same, parity of the molecular state is given:
w = (=1)5tL (A.9)
When atomic states are different, functions transforming correctly on inversion:
My LASmsp, >=

|:|71’727L,K7 S7m5 > +(_1)pw|72a71aL7K7S7 mg >] /\/5

and parity:

,w’ — w1w2(_1)51+52—5+L1+L2—L+Pw_ (All)
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Hund case ¢

When the spin-orbit coupling is comparable or stronger than the electrostatic inter-
action (Hund’s case c), wave functions are constructed by another way. Namely:

l71ajla727j2ajaﬁ >= A Z C_}?’;S,)ml;jz,mglf)/hjl)ml >A |’Y27j2am2 >B;
my,m2 (A.12)

where functions |y, j,m > are constructed from atomic wave functions of Eq. (A.2):
Iy, 7,m >= Z C’};’glnms’msh, S,mg, L,mp, > (A.13)

mL,ms
Expressions for quantum numbers Quantum numbers of wave functions (A.12)

are calculated as following.

The projection of the orbital angular momentum 2

Q=19 (A.14)

Reflection index o

If Q = 0:

o = wiwy(—1) (A.15)
When Q # 0 correct wave functions will be:
1715 91572, 92, 5, 4 p >=

[|7lvjla72’j27j7ﬁ > +(—1)p|717j17727j21j7—ﬁ >] /\/‘§

p=0,1 (A.16)
o = wywy(—1)""% (A.17)

Parity w

If both atoms are in the same state, parity of molecular state will be:

w= (1) (A.18)
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When identical atoms are in different states, correct functions transforming under
inversion are:
|71’j1’727j2ajaﬂapw >=

[|71’j1a727j2aj7(2 > +(_1)pw|727j2,717j17jaﬁ >] /\/—2—

with parity:

w = w1w2(_1).7'1+j2—]'+17w. (A20)

A.2 DMolecular terms of nS+nP and nP +nP alkali
diatoms.

This section is devoted to the details of calculations of ¢ potential curves for nS +nP
and nP + nP symmetries of homo nuclear alkali diatoms. The starting a potential
curves of Nag, K;, Rb; and Cs,, correlating to the nS + nP dissociation limit were
accurately computed by the effective potential techniques up to the large internuclear
distances, where the curves were continued by C,/R" terms with C, defined by M.
Marinescu and A. Dalgarno [92]. At intermediate distances the a potential curves
were calculated by S. Magnier et al [89] for Na,, by S. Magnier and Ph. Millié [91]
for K, and by M.Foucrault et al [43] for Rb; and for Cs;. Only ¢ potential curves of
Na; were considered for the nP + nP symmetry. Corresponding a potential curves
were defined by S. Magnier et al.

A.2.1 Quantum numbers
nS 4+ nP symmetry

Since for the n.5 + nP symmetry additional quantum numbers y of @ wave functions
are:

Ll = 1, L2 = 0, — L = 1, wiwe = —1 (A21)

The correct quantum numbers A, o/, w' of a wave functions are defined from Egs.

(A.5), (A.6), and (A.11)
A=Al
o = (_1)L+1 ! _I_/
w' = (—=1)5t7e (A.22)

The correct quantum numbers 2, o, w of ¢ wave functions are defined from Eqs.

(A.14), (A.15), and (A.20)
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Q=0
o= (_1)j+1
w = (_1)j1+1/2_j+pw+1 (A.23)

where j; = 1/2 or 3/2 is a total momentum of the nP atom.

nP + nP symmetry

Additional quantum numbers v of a wave functions, which are the same for all molec-
ular terms inside the nP + nP symmetry, are:

Ll = L2 = 1, — wjwg =1 (A24)

The correct quantum numbers A, ¢/, w’ of a wave functions are defined from Egs.

(A.5), (A.6), and (A.9)

A = |A]
o = (—l)L
w' = (—1)5+F (A.25)

The correct quantum numbers §2, o, w of ¢ wave functions are defined from Eqgs.

(A.14), (A.15), and (A.18)

Q=19
o= (-1)
w=(-1) (A.26)

where j is a total momentum of the diatom.

A.2.2 Transformation matrix between a and ¢ bases.

The potential curves with the spin-orbit coupling are calculated by the diagonalizing
of the total potential operator:

U=U0@ 4V, (A.27)

where U@ and V5° are a potential operator and the operator of the spin-orbit
coupling. U(® is diagonal in the a basis, V¢ is diagonal in the c basis. The trans-
formation between bases is carried out either through the basis of products of atomic
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functions using Eqs. (A.3) and (A.12) or directly using the 9 — j symbol (see the
book by E. Nikitin and S. Umanskii [102]). In the Thesis the first approach is used.

The basis of products of atomic wave functions (it will be refereed as AO basis)
are defined

|L1,mL1,msl,L2,mL2,m52 >= A(,Ll’mL111/27 mg, >A |L27mL271/2am52 >B)
(A.28)

For simplicity these functions will be referred as ¢, functions of basis a as ¢ and a
notation ¢f is for c-basis functions. Here ¢ includes a full set corresponding quantum
numbers. All bases have the same number of wave functions.

Equations (A.3), (A.10), (A.7), (A.12), (A.16), and (A.19) defines the connections
between wave functions in different bases. For an atom in p-state (L =1, s = 1/2)
there are 6 states with different projections of the spin and the angular momentum.
There are 2 states for s-state (L = 0, s = 1/2. Hence one has 36 states for 3p + 3p-
manifold. For the 3s+ 3p-manifold with accounting of Eq. (A.10) there are 24 states.
Transformations matrixes are:

9‘9? Z TAO_MQOJ

Z TAO—)c AO

Where matrix 749 TAO=¢ are constructed from evident combinations of the
Clebsh-Gordon coefficients. The transformation matrix between ¢ and a bases

Ta—e _ mAO—c (TAO—m)_1 (A.29)

In the Thesis, the matrix of the total potential operator is calculated in the a
basis. For this, the operator of the spin-orbit coupling is transformed into the a basis
and added to a potential curves. Then, this total matrix is diagonalized, giving the
adiabatic potential curves.









Appendix B

Adiabatic Schrodinger Equation
for the Alkali Diatom

This chapter of the appendix discusses the Schrodinger equation of the diatomic
system with accounting the spin-orbit coupling and the Coriolis interaction.

Among alkali diatoms, both interactions are important for K, and for Rb,, for
which these interaction are comparable on intermediate internuclear separations. For
more light species, Na; and Li; the spin-orbit interaction is much smaller on in the
region of effective transitions between molecular states and, thus, in can be neglected.
For Cs; in the intermediate region, the spin-orbit coupling is much larger than the
Coriolis interaction. In addition, the hyperfine structure becomes comparable with
the the Coriolis coupling for the Cesium.

The most general form of the Schrédinger equation for the diatom can be written
as (E.Nikitin And S.Umanskii [102]):

HU'M = EyiM, (B.1)

Where J, M are quantum numbers of integrals of motion — the squared total angular
momentum J? and its projection J, on the space-fixed axis Z.

Each symmetry of molecular states specified by the pair of indexes J, M does not
interact with others. The molecular states inside one J, M symmetry can be further
specified by additional quantum numbers, but in general case there is a coupling
between them.

The first step to the system of coupled equation is the definition of the adiabatic
states and adiabatic molecular terms. The adiabatic molecular terms are defined as
eigenvalues of the electronic part of the Hamiltonian, when the nuclei are supposed to
be fixed. The internuclear distance is introduced into the electronic molecular states
as a parameter.

Ha(R)|Y(R) >= V,(R)h(R) > (B.2)

e ris a set of all-electrons coordinates (not specified explicitly here),
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e R is a distance between nuclei,
e H,(R) is the electronic Hamiltonian of the system including the spin-orbit coupling,
o |y(R) > is electron wave-function with fixed nuclei — adiabatic states,

e V,(R) is energy of a state v(R) >.

Thus, the set of numbers v numerates the adiabatic states. (Hereafter, v will be
contains all quantum numbers not specified explicitly.) Since the rotation around the
internuclear axis does not change the symmetry, the corresponding quantum number
can be specified here - the projection of J on the internuclear axis — . The second
quantum number is J as in Eq. (B.1). Since the adiabatic states and terms are
defined in the molecular-fixed MF basis and Eq. (B.1) is written in the space-fixed
SF basis one should transform the Schrodinger equation in MF basis. The following
form of the equation is taken from [102] (E.Nikitin and S.Umanskii).

( 1 & J(J+1) -

~ 2. dR? + S + V. ,Q,J) Yy,,0+

, d
Z (< 7’Q|VR|7,7QI >+ < 77Q|VCOT|7 7QI >) 1/}’)",9’,.7 . Zdtd)’y,QJ

¥ (B.3)
Interaction
<, VR, >=qa(— 1< QI | Q> e
v R|7 = 00,0 p e ) dR
1 p 22 21 A

® 1, q g is nuclear wave function,

® jz, Jy is a operator of the projection of the orbital electronic momentum j on the X
and Y axes of body-fixed coordinate system

is a non-adiabatic radial coupling between the states with the same (.
Interaction < v, QVeor |7, ' > is due to correlation between the motion of elec-
trons and the rotation of internuclear axis:

: 1 o
<7, QYVeor |y, ¥ >= —w(/\-i-(e]) <Y, A+ 1> daq 0+

)\-(J) <7, QI]£|7,, N—-1> 69_1191) (B5)

M) =J(JFQIT£2+1) (B.6)
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From rest of indexes 4 the projection w of the electronic angular momentum
on the internuclear axis can be specified. Since the vector of molecular rotation is
always orthogonal to the inter atomic axis, it does not give any contribution into the
projection of the full momentum on the inter atomic axe. And hence:

w=10 (B.7)

Matrix elements < v, Q|52+ 5217, > and < v, Q|jz|7',2+1 > can be calculated
in jj-representation (Hund’s case ¢ basis).

Let {|¢ >} is a basis of the ¢ representation, and let two bases MC and ¢ are
connected by the transformation S

[y >= %:S'v,ww > (B.8)
The number ¢ numerates functions |p >. The next indexes must be specified explic-
itly in order to calculate < v, Q|52 4 j2|7', Q' > and < v, Q|j.|y',Q £ 1 > elements:
® ji1,j2 are total momenta of separated atoms,
e jis a sum of 7; and js,
e () is a projection of j on the diatomic axe.

The matrix elements are:

i i 1 = .
< Qpliel, @ = 1,9 >= 5/ + Q) — Q + D106 (B.9)

And for < Q, |7/ + 1,¢" >:

. 1 ;
<]+ 1, >= 5\/(J +Q+1)(J — Q)dar1,0:000- (B.10)
For ;2 -|-j§ term:
<@, 05132+ 7' X, 5 >=< 0, Q, 5|5 = 321, ¥, ' >=
(G +1) = @%b pba0d;; (B.11)

Finally matrix elements of the operator V¢,, is written in |¢ >-basis:

! 1 .
< 0, YVoor|', ¥ >= —5¢,w'm(/\+(J))\+(J)59+1,nl

+A7 (DA (7)da-1,07) (B.12)

XEG) = JiFQGE+1) (B.13)
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Operator % in the basis 7 is written:
0S.y
<7| 17> ZS’YLP wap’<‘P| I‘P>+ 3R <<P|<P>

05y,4
%j Sre—sr (B.14)

because the basis functions if the ¢ basis does not depend of R:

Olp >

on =" (B.15)

82 .
Operator z5:

0%S.y
< 7I8R2|7 >= ZS’Y’W 0]%2190 (B16)

The whole operator Vg:
<7, QIVRl’yI, Q >=

L aS v aSvtp (j+1)_92
59'9’21442( 25y OR dR — Sve Fpr OR? + Sy05y, w—Rg— B 17)

%)

Using Eq. (B.8), Eq. (B.5) will be:

n r 1 .
<%, QVoor [y, ¥ >= _W ZS’Y,sas'y',w(’\+(J)’\+(.7)59+1.9’+
@

A (DA (5)da-1,9) (B.18)
The full equation has a form:

1 d? J(J+1)—-Q?
Epy a5 = <_2_dR2 + ( 2#}%2 + V,Q,J) Yya7+

1 S, 028, G +1) -2
2 3, a0 o = S T+ S )

1 . I
Tz e Sy AT (AT (1)0arr0r + A7 (J)A7 (10010 Ny -
(B.19)

For the program it is more convenient a form:

1 d? 1 1 d (2)
Y+ S (VM‘,’d [2 M = 4701 g, = z—wq,
2 v Ty
2udR v Q,u dR (B.20)
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where
: J(J+1)—Q? 1 jG+1)-Q?
Vi = ( 2wk V”) i EZ,Z‘S“'“’SWS”""T
¥ ¥
1 . _ .
= 3 3 s S S D (DN (e + X (TN () s}
,YI’QI @ IJ’ (B.21)
and
(1 _ 85 l’
Y, = %: Srepr" (B.22)
@ _ 0 Sy,
o = %: S (B.23)

are the matrices of the non-adiabatic coupling between diabatic components.
For the homo nuclear alkali diatomic system numerating indexes v and ¢ besides
others explicitly mentioned contains also the following quantum numbers:

e parity of state - w,

o for {1 = 0 - a sign of a state - o,
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Numerical calculations of vibrational levels of alkali dimers close to the dissociation limit are
developed in the framework of a Fourier Grid Hamiltonian method. The aim is to interpret
photoassociation experiments in cold atom samples. In order to avoid the implementation of very
large grids we propose a mapping procedure adapted to the asymptotic R™" behavior of the
long-range potentials. On a single electronic potential, this allows us to determine vibrational wave
functions extending up to 500a, using a minimal number of grid points. Calculations with two
electronic states, A '3} and b *I1, states, both correlated to the Rb(5s)+Rb(5p) dissociation limit,
coupled by fine structure are presented. We predict strong perturbation effects in the Rb,(0;)
spectrum, manifested under the 5s, 5p 2P, dissociation limit by an oscillatory behavior of the
rotational constants. © 1999 American Institute of Physics. [S0021-9606(99)00519-X]

I. INTRODUCTION

Due to rapid progress in experiments with cold atom
samples, there is an important need for modelization and
theoretical interpretation. Numerical tools should be con-
stantly refined for the treatment of atomic collisions at very
low energy or for the determination of the bound vibrational
levels of an alkali dimer close to the dissociation limit.
Among the many applications, we may emphasize the fol-
lowing:

(1) The determination of cross sections for fine-structure
transitions' or predissociation® in a magneto-optical
trap.

(2) The population of vibrational levels of an excited elec-
tronic state by photoassociation of cold atoms (see, for
instance, Refs. 5-7.

(3) The study of long-lived cold molecule formation by
spontaneous emission from the later state, as recently
observed.®

Grid numerical methods using fast Fourier transform
have proved to be very efficient for quantum molecular
dynamics.”'® Wave functions are then represented on grids
with a constant step in the momentum or coordinate spaces.
However, their application to the present class of problems is
not straightforward due to the coexistence of two regions of
space with very different physical properties. There is a long-

*Electronic mail: fmasnou@lancelot.lac.u-psud.fr

0021-9606/99/110(20)/9865/12/$15.00
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range region where the relative motion of the atoms is very
slow, so that the de Broglie wavelength is very large, up to
hundreds of atomic units ag (1¢7=0.052917 72nm). In
contrast, in the inner region where chemical attractive forces
become important, the kinetic energy is large so that the de
Broglie wavelength is smaller than 1ay. In the long-range
region, the interaction potential is decreasing as R™", R be-
ing the internuclear distance: we shall focus on examples for
which n=3 —relevant to problems with dissociation limit
A(ns)+ A(np), one alkali atom A being in the ground state,
the other in the first excited state—and n=6 —relevant to
dissociation into A(ns)+ A(ns).

As the maximum grid step in the position space is nec-
essarily linked to the maximum momentum p,,, considered
in the physical problem, the choice of a constant grid step
leads to the definition of a domain in the phase space with
rectangular shape and area 2L X p,,,,, where L is the length
of the grid in the position space. Therefore this rectangular
domain is too extended in the long-range region, where only
very small momenta should be included. In order to optimize
the efficiency of the representation of the grid, Fattal er al."”
have suggested a mapping procedure, a change of variable
dealing for the dependence of the local wavelength with the
distance. They give an application to the solution of the
Schrodinger equation with a Coulomb potential. Our aim in
the present paper is to extend their work to potentials asymp-
totically varying as R ™", considering both one channel and
multichannel applications.

For such potentials, a change of variable, already sug-

© 1999 American Institute of Physics



135

9866 J. Chem. Phys., Vol. 110, No. 20, 22 May 1999

gested in the book of Landau and Lifshitz,'” has been used
by O'Malley et al.'? for electron atom scattering and later on
by Gribakin and Flambaum'* in their semiclassical treatment
of cold collisions. Their aim was to obtain analytical solu-
tions in the asymptotic region.

Change of variables for grid-based methods have been
analyzed by Bayliss and Turkel' and employed by Gygi'®
or, more recently, by Pérez-Jorda'” for electronic structure
calculations as well as by Tiesinga et al.'® for obtaining
bound vibrational states of alkali dimers by a filter method.
In the latter work, however, the emphasis is more on the
filtering method to extract eigenvalues by means of the
Green’s function approach. The formalism is applied to the
many-channel problem of rovibrational levels coupled by hy-
perfine structure in the vicinity of the first excited asymptote
of Na,. In contrast, our goal in the present paper is to analyze
in detail the implementation of a mapping procedure to im-
prove the efficiency of grid method calculations for bound
vibrational levels in the class of potentials described above.
Starting with a one-channel problem, we shall compare the
efficiency of an analytical change of variable, close to the
one used in Ref. 18, with a purely numerical one. The accent
will be put on the optimization of the phase space occupa-
tion, and on the definition of a symmetric representation of
the Hamiltonian on the grid convenient for numerical accu-
racy. Indeed, Tuvi et al.'® have pointed out that a simple
change of variables results in non-Hermitian Hamiltonian
representation and suggested a way to symmetrize. We shall
propose another procedure, better adapted to coupled chan-
nels with d/dR radial coupling. Section II is devoted to the
description of the mapping procedure, particularly in the case
of R~ asymptotic potentials, with an estimation of the oc-
cupation of the phase space. In the two following sections we
describe applications to the calculation of bound vibrational
states, close to the dissociation limit, for examples relevant
to photoassociation studies. In Sec. III, we have considered
two cases of a single potential corresponding, respectively,
to the l1'[‘;(3.s'+3p 2P) excited state of Na,, and the 1,(6s
+6p 2P4) excited state of Cs,. Indeed, the spectroscopy of
those dimers can be interpreted using Hund’s case a repre-
sentation for Na, and Hund’s case ¢ for Cs,. In contrast, Sec.
V is devoted to the study of perturbations in Rb, fluores-
cence spectrum, considering two coupled potentials 0: (5s
+5p 2Py,) and 0, (55+5p *Pypp)

Atomic units will be used except when otherwise stated.

Il. MAPPED FOURIER GRID METHOD
A. Mapping procedure

In order to compute bound vibrational states of a di-
atomic molecule, a method, originally proposed in Refs. 9
and 20, was further developed by Monnerville and Robbe?!
and by Dulieu ef al.?? Let us recall briefly the principle of
this method, hereafter referred to as Fourier Grid Method
(FGH): the radial Schrodinger equation for eigenvalues prob-
lem is written as

[T+ V(R)]Y(R)=Ey(R). @1

Kokoouline et al.

A grid of N points equally spaced over coordinate R is
defined as R;, (i=1,N). We introduce a set of functions
defined at the grid points:

@i(R)=68R;—Rj) (i,j=1N). (22)

In this basis, both T and V(R) are represented by N
X N matrices. The potential operator V(R) is diagonal in this
representation, while the kinetic energy T is diagonal in the
momentum representation, which is connected by a Fourier
transform to the coordinate representation. Using well-
known properties of the Fourier transform, the elements of
the operator T can be written explicitly as a function of the
number of points N—assumed to be even—and total length L
of the grid:*

w2 N?+2
T.-..-——f#L A (2.3)
T; ;=(—1)"7J l ! 2.4
W=(=1) uL? sin’[(i—j)w/N}’ 24

In Egs. (2.3) and (2.4), u is the reduced mass of the
system. Eigenvalues E; are obtained by diagonalization of
the NXN matrix T+ V.

Is is important to note that for the vibrational levels con-
sidered, the energy is close to the asymptotic value of the
potential, hereafter taken as the energy origin. The maximum
kinetic energy in the problem can be estimated by the depth
(Vimax—Vmin) Of the potential well. In most applications
Vmax =0, nonzero positive values corresponding to situations
where the potential has a hump. For a grid of length L, the
two-dimension phase space should occupy at least a
rectangular-shaped area:

AZLpnay, 25)

where p., is the maximum momentum that has to be con-
sidered, corresponding to the maximum value of the kinetic
energy:

Pmax= Vzﬂ‘(vmax_vmin)x

In practice, for a grid with N points, with a constant grid
step AR=L/N, the Fourier method'? considers a momentum
domain extending from —pgq t0 +pggg S0 that the phase
space is a rectangle with area:

AN=27TNﬁ=2Lpgrid’

(2.6)

@7

where, using atomic units, i = 1. Therefore the constant
grid step should verify

o T
Y S S—
V2/-L( Vinax— Vmin)

P grid

When the vibrational motion extends at very long range,
the length L has to be very large and calculations involve
diagonalization of huge matrices H=T+ V. In fact, the grid
contains too many points in the asymptotic region: indeed, at
each distance R, the grid step needs only to be small enough
to represent correctly the local kinetic energy. It is then suf-
ficient to consider a local grid step s(R) satisfying the con-
dition

(2.8)
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FIG. 1. Examples of potential curves used in the paper. (a) Two potentials
with R™? asymptotic behavior. Solid line: Naz('Hg,3s+3p). dashed line:
Csy( lg,6s+6p2P3,2). (Indeed, Hund's case a representation is better
adapted for Na, and Hund’s case c for Cs,.) (b) Two ground state potentials
with R™® asymptotic behavior. Solid line: Nay('S},3s+3s), dashed line:
Csi('E;',6s+6s). For all curves, the energy origin is taken at the dissocia-
tion limit.

m

VZ,LL[Vmu"‘V(R)] .

For the class of problems that we are considering (see
Sec. III) the computation effort of the diagonalization proce-
dure scales as the cube of the number of grid points. We
propose to apply coordinate transformation in order to
“‘compress’’ the grid at large distances. To that purpose, we
define a transformation function g(R) to set a working grid
x;=g(R;), i=1,N, with a constant step Ax related to the
variable step in the physical grid through

Ax
8'(R)’
The transformation function is obtained, by comparing
Egs. (2.10) and (2.9) as

R\2u[Vo— V
x=g(R)=J"‘r udh

s(R)= 2.9)

s(R)= (2.10)

(2.11)

It is easy to check that in the working grid the minimum
step is

Ax=1. (2.12)

In Eq. (2.11), the integration domain starts at a distance
Ry slightly smaller than the position of the repulsive poten-
tial wall at short range. Now the physical grid is well adapted
to different regions of the potential, since in the asymptotic
region the local step s(R) becomes much larger than at short
internuclear distances. In Fig. 1, we have illustrated this be-
havior considering various potentials for Na,** or Cs,? with
either R~ or R ™% asymptotic behavior. For a constant step
Ax=1 in the working grid, we have represented in Fig. 2 the
variation of s(R) as a function of the distance R. The marked
dependence upon the value of the n exponent manifests itself
clearly, the step s(R) increasing more rapidly with the dis-
tance in case of a R™¢ potential. Besides, due to the mass
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FIG. 2. Variation of the grid step s(R) in the physical grid, for the four
potentials in Fig. 1. Dotted line: Naz('22,3s+ 3s), dashed line:
Csy('S;,65+6s), solid line: Nay('Il,,35+3p), dash—dotted line:
Csy(1,,65+6pPyy).

factor present in Eq. (2.9) the R variation is more rapid for
Na, than for Cs,. These features, as well as the role of the
position R of the inner repulsive potential wall, will be dis-
cussed more explicitly in Sec. IIC.

Altemnatively, in Eq. (2.9) defining a maximum local
grid step, the real potential V(R) can be replaced by another
potential V., (R), provided the local kinetic energy stays
larger than or equal to the real one. We shall call V,,(R) an
“‘enveloping potential’’ as the corresponding potential curve
lies below the real one. The local grid step is now such that

=s(r). (2.13)

T
Sem(R) = m————————
O AV V)]
Therefore the number of points on the grid is necessarily
increased compared to the previous one. We discuss in Sec.
11 C examples where the asymptotic expression of the poten-
tial is considered.

Finally, for the discussion of the convergence of the cal-
culations, it is convenient to introduce an auxiliary parameter
Br=Seny(R)/s(R). If the enveloping potential differs from
the real one, Br depends upon R, with the restriction Bg
=1 so that the number of grid points is sufficient. Moreover,
we can, starting from the real potential, calculate s(R), and
choose a constant 8<<1 (for instance, the minimum value of
Br) in order to define a local grid step such that sg(R)
=fS4(R). It means that the density of points is 1/8 times
larger than the critical density defined by (2.12), the step in
the working grid being now

Ax=p8,

corresponding in the physical grid to a larger extension
of the momentum, from —p g t0 Parig=Pmax/B-

(2.14)

B. Transformation of the Hamiltonian
Changing in the Schrodinger equation
dZ

1
—E;W¢+V(R)¢=El/l, (2.15)

the variable R into another x with the transformation
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R=f(x), dR=J(x)dx, J(x)=f"(x), (2.16)
one gets
R CR &
2.17)

“2ur a2l @) VT VIY=EY,

where J'=dJ/dx. As discussed in the Appendix, the ele-
ments T; ; and T';; of the Kinetic energy operator in the FGH
representation are generally different, leading to the diago-
nalization of a nonsymmetric matrix.

In order to introduce a Hamiltonian matrix symmetric in
the FGH representation, we define a new wave function

d(x):

Y(x)=J""2(x) $(x), (2.18)
so that the Eq. (2.17) becomes
1 4> J d 1 5N 14"
Tl aldx ﬂ('ZT*EF)}
X §(x)=E d(x). (2.19)

We can rewrite this equation in a symmetrical form as

1 {1 d& d° _
[_E(FEZ+WF +V ¢=E¢, (220)
where we have introduced an effective potential by

- 1 (72 1J"
Vix)=V(x)+ m(z 7——773' i (2.21)

We can check that the indexes i and j now play the same
role in the expression of the kinetic operator T matrix ele-
ments:

.y - 1 1 + 1
w= (1) 2uL? sic’[(i— j)mINJ\J? " J3)’
(2.22)
if i+ j, while
w2 N?2+2 1
(2.23)

T s T

As a consequence, the FGH representation yields a sym-
metrical Hamiltonian matrix, so that efficient diagonalization
procedures designed for triangular matrices can be imple-
mented.

C. Mapping using R~2 and R~° analytical potentials
and a repulsive wall

In the derivation of the mapping procedure, we can use
as an ‘‘enveloping potential’’ in Eq. (2.13) any analytic po-
tential V,,(R)=— C;""/R", such that the corresponding po-
tential curve lies below V(R).

The Schrodinger equation for a potential with R™" be-
havior, n being an integer value such that n=3, was dis-
cussed by many authors: in Refs. 12-14, a change of vari-
able is introduced in order to transform the Schrodinger
equation into the Bessel equation for which analytical solu-
tions can be found. In the present approach, performing in-
tegration of the right-hand side of Eq. (2.11), we obtain:

Kokoouline et al.
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FIG. 3. Distribution of the grid points for a potential with asymptotic R ™3
behavior: example of Csy(1,.65+6p>Py;,). (a) Without mapping; (b) with
the mapping defined by Eq. (2.24).

2e,, 1
x,=8n(R)=x¢,— m RO (2.24)
where we have defined
h,ucl:n\r
a=—, (2.25)
2a 1
~ (2.26)

*on=n=2) RGO

Whereas the physical grid is extending from R, (chosen
at a distance shorter than the position of the repulsive wall of
the actual potential) to R, , the new grid is varying from 0
to a maximum value that is limited by the finite value x,,
depending both on the asymptotic behavior of the potential
(through a,, and n) and on Rg. There is therefore an accu-
mulation of points in the vicinity of xq,, which is never
explicitly reached. At small distances, due to the existence of
a repulsive wall in our potential, we do not encounter the
problem of the accumulation of points at the origin that had
to be considered in Ref. 11 for the Coulomb problem.

The relation between the constant step Ax on the work-
ing grid and the variable step s,(R) on the physical grid is
readily obtained as

ni2

s(Ry=—Anx. (2.27)

a’l

The role of the exponent n and of the mass factor in «,
appears clearly in Eq. (2.27) and has been illustrated in Fig.
2. We also display as an example in Fig. 3, in a case where
n=3, corresponding to the asymptotic behavior of the upper
attractive 1, curve of Cs,, the repartition of the grid points
for the working grid and for the physical grid: the adaptative
character of the mapping procedure is demonstrated by the
fewer number of points in the working grid when the inter-
nuclear distance is increasing. In the case of potential
—CS™/R?3, the change of variable should be

x3=xg3— 23R ™12, (2.28)
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where we have defined a;= 21 C$"/ 7 through Eq. (2.25).
The inverse transformation is then analytical:

R=fs(x3) (203)2
= X = —ﬁ.

s (x03—x3)
As the change of function described in Sec. II B differs
from what was proposed in the references quoted above, !4
our new Schrodinger equation differs from a Bessel equa-
tion. It is more convenient for numerical calculations, as it

leads to symmetrical matrices in the FGH representation:

1 (x0_3—x3)6 a? a? (x0'3—-x3)6 +7
27(‘—03)4 Eg ‘?3 27(a3)4 (13)

(2.29)

2
X (x3)=Ep(x3), (2.30)
with new potential V:
_ 1
V(x3)=V(x3)+ '2_#‘ W(%,a‘%)“- (2.31)

In the new coordinate x;, the asymptotic behavior of
V(x3) obtained by the transformation of —C5/R? is

472

Vas(x) =- ﬁ W(Xo'3_x:;)6, (232)

so that when C5"=C,, the effective potential, in the
asymptotic region, may be written:

_ il 472 s
Vas(x3)_ﬂ W(xo.a x3)

+ W(xo,a—xg)“) . (2.33)

The matrix elements for the kinetic energy operator are
now

T 1)i4 il !
=(=1) 2uL? sin®[ (i —j)@/N]
(Jfo.a_J'fa,i)6 ()50,3_3‘73J)6 (2.34)
2%(a3)* 2%(ay)® )’ '
if i+ j, while
'rr2 N2+2 (x03—x3,-)6
L S PR L (239

D. Comparison of the numerical and the analytical
mapping procedures

The analytic approach enables a simple assessment of
the procedure. However, the computing code has to be modi-
fied for potentials differing in their asymptotic expression,
which is not the case for the general numerical procedure.

Another disadvantage of the analytical approach lies in
the definition of an enveloping potential. In many cases, due
to the existence of higher-order attractive terms in the mul-
tipole expansion, the asymptotic curve —C;/R? crosses the
V(R) curve. Therefore the value of C5" should be chosen
much larger than the actual C; value. For example, as illus-
trated in Fig. 4, the asymptotic behavior of Na,>II, (3s
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FIG. 4. A comparison of the computed potential curve for Na,(°II,,3s
+3p) (Ref. 24) (full line) with the asymptotic curve V(R)=—C,/R>, C,
=6.48 a.u. (dashed line), and the enveloping curve V(R)=—C5™R3,
C™=18 a.u. (dash—dotted line).

+3p 2P) is —6.48/R?,% but only the enveloping curve with
C§"=18.0 lies under V(R) for all internuclear distances. In
the latter case, the use of an enveloping analytical potential
in Eq. (2.13) results in a number of grid points four times
larger than when the real potential is used in Eq. (2.11). This
drawback is particularly important for cases corresponding to
small values of R, the divergence of C4/R> near the origin
resulting in a significant increase of the number of grid
points N. Moreover, increasing the phase space of the prob-
lem when using small grid steps near the origin may lead to
spurious eigenvalues in the numerical diagonalization proce-
dure. It also increases significantly the spectral range of the
Hamiltonian operator. This will hinder the use of direct
propagation methods.

It seems therefore more convenient to use the real poten-
tial in Eq. (2.11). The mapping transformation is calculated
for any potential, irrespective of its asymptotic behavior. The
integral in Eq. (2.11) and all derivatives of g(R) are then
obtained through purely numerical procedures.

E. Occupation of the phase space domain after
coordinate transformation

As discussed by Fattal e al.'' and by Kosloff,'® map-
ping procedures are capable of optimizing the use of the
phase space volume of the representation. As a first approxi-
mation, the phase space domain necessary to describe the
system can be estimated by considering the classical trajec-
tory corresponding to the highest vibrational level that we
want to compute. This is illustrated in Fig. 5, where we have
drawn the phase domain in distance R and momentum p
spanned by a classical trajectory corresponding to a vibra-
tional motion with binding energy 1.3X1077, ie., E,=
—0.295cm™, in the potential Csy(1 ) displayed in Figs. 1
and 2. The shape differs markedly from rectangular, showing
that at large distances, due to the very small value of the
local momentum, only a very small part of the phase space
defined by a grid with a constant grid step is occupied.

The same domain in the new variables x and P, is pre-
sented also. In the working grid, the variable x is defined in
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FIG. 5. Solid lines: The classical energy shell in phase space with and
without the coordinate transformation, for the vibrational level with binding
energy E,=—0.295cm™" in the attractive potential Csy(1,,6s+6p2Py).
(a) The main figure shows the energy shell in phase space without any
mapping. (b) The upper inset displays the energy shell with the mapping
defined by the enveloping potential — C5™ R with C§V=24.42. (c) The
lower inset displays the energy shell in phase space with the mapping using
the real behavior of the potential. The area S= 1034 a.u. defined by the
contour is the same for all three cases. The number of phase cells N, is
connected with S through S=27#+N.. . Broken lines: The rectangles defining
the phase space used in the calculations. One can see that without the map-
ping a larger phase volume is used in the calculation, that requires propor-
tionally more grid points. The third case is most efficient in that sense.

(2.11) while the variable P, canonically conjugated to x in
the new phase space, can be found” from the Poisson
bracket:

P, ox dx 9P,

(2.36)

As from (2.16) dR=J(x)dx and as dx/dp=0 then
P.=pJ(x). (2.37)

In the lower inset of Fig. 5, we display the phase space
spanned by the classical trajectory in the new variables
x,P,. The area confined by the contour is the same as in
previous case, S=1034a.u., but the shape is now very close
to a rectangle.

In the upper inset of the figure we show also the same
trajectory in the x3,P, space—using Eq. (2.28) and gener-
alizing Eq. (2.37) for mapping with the analytical enveloping
potential —C §""/R3, where C®"Y=24.42, larger than the
value C3=16.2 associated with the Csy(1,) potential. The
contour now differs from a rectangular shape, especially at
short x5, where the extension of the momentum space is due
to the overestimation of local kinetic energy. The efficiency
of the occupation of the phase space can easily be discussed
by comparing the equivalent area S=1034a.u. spanned by
the three contours with the area of the rectangles associated
to the three grids. In the physical problem, treated with a
classical picture, the number of phase cells N.=165 is de-
duced from the area S through S=27XN_.. Without map-
ping, the rectangle associated with the physical grid has an
area, defined in Eq. (2.5), such that A<28730~2wX 4573,
The numerical treatment should therefore involve at least N
= 4573 grid points. After mapping with enveloping potential,
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the area spanned by the grid is defined as A7
<2x3maxPx, ,.» SO that in the chosen example we have
AT*P<1705~2mX 272, so that the minimum number of
grid points is reduced to 272. Finally, when the mapping
procedure based on the real potential, the area A™*P
<2XmaPy  noW is at least 1077, corresponding to a mini-
mum number of grid points of 172 only, very close to the
number N,.= 165 of cells estimated from the classical phase
space restricted to the same energy. The efficiency of the
numerical mapping method is therefore clearly demonstrated
by this figure.

One should note that this approach to the estimation of
phase space confined by the problem is completely classical.
It assumes that the quantum density in phase space decays
exponentially fast in the classical forbidden region. The defi-
nition of the phase space in quantum mechanics was done by
Hillery et al. in Ref. 28. Using the Wigner distribution func-
tion, the exponential decay of the quantum density outside
the classical allowed region is clearly evident.'® If tunneling
is important, the phase space region involved, both in coor-
dinate and momentum has to be included in the grid, so that
a larger number of grid points should be considered. The
introduction of a parameter B, as defined in Eq. (2.14), in
order to reduce the step in the working grid is then justified,
and this parameter needs to be optimized in the calculations.
We describe some examples below.

ill. APPLICATION TO THE CALCULATION OF BOUND
VIBRATIONAL LEVELS FOR A SINGLE LONG-
RANGE POTENTIAL: EXAMPLES FOR Na, AND Cs,

The efficiency and accuracy of the mapped FGH method
described above can be checked by comparison with a stan-
dard method, such as the well-known Numerov Cooley
algorithm,” as well as with the usual FGH method.

As discussed in the Introduction, we have chosen two
potentials relevant to implementation of spectroscopy experi-
ments, and corresponding to Hund’s case a representation for
Na, and Hund’s case ¢ for Cs,. We have performed accuracy
tests computing the energies of the first 80 vibrational levels
in the potential Na, 'TI(35+3p 2P)** already displayed in
Fig. 1 extended at long range by the asymptotic —6.48/R3
curve predicted in Ref. 26. We chose a grid extending from
5.0a, to 90a,, and we display in Fig. 6 the results of the
convergence tests. The precision of the Numerov method
itself is illustrated in the upper panel, where we show that the
computed vibrational energies E, vary by less than 4
X10"7cm™! when the step size is modified from AR
=0.00125a, (68000 points) to AR=0.0025a, (34000
points). The binding energies extend from 1103.78 to 2.44
cm™!. Taking as a reference the first calculations with the
Numerov algorithm, we show that a typical 107> cm™" accu-
racy can be obtained with the FGH method using a constant
step and a number of points of the order of 1000.

The convergence tests for the mapped FGH method
varying the (8 parameter are also given in the figure. The
same level of accuracy can be reached with 5=0.2 and N
=506 grid points, thus reducing N by a factor of 2. We
should note that the accuracy obtained with 8= 0.6 is already
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FIG. 6. Accuracy AE of the computed energies for the 80 lowest vibrational
levels in the lI'Ig(35+’3p) potential of Na, represented in Fig. 1. The vi-
brational number v is indicated on the horizontal axis. The uppermost level
considered has 2.44 cm™' binding energy. The physical grid is extending
from 5a, to 90ay. As reference values, we consider energies computed
through a Numerov integration on a grid with step AR=0.00125a, (68 000
points). The three figures represent (a) AE, from Numerov integration with
AR=0.0025a, (34 000 points); (b) AE, for energies computed by the FGH
method with a uniform grid. Solid line: N=950 points; dash-dotted line:
N=1140 points; (c) AE, for the FGH method with the mapping defined by
Eq. (2.11), considering different values of the parameter 8. Solid line: 8
=0.6, N=170 points; dash—dotted line: =04, N=254 points; dashed
line: B=0.2, N=>506 points.

better than 10™3cm™!, and corresponds only to 170 grid
points for the determination of 80 vibrational levels. In con-
trast, for =1, only the 20 lowest levels are obtained accu-
rately, the error on the energy of levels v =40 reaching 0.5

m~ . Finally, we have checked that for 8> 1, the method is
not even yielding all the eigenenergies.

The calculated error on the energy resulting from the
Numerov calculation (Fig. 6) is clearly nonuniform. Indeed,
changing the number of grid points modifies the local de-
scription of the potential curve, which will affect mainly en-
ergy levels with outer turning points located in the region
10ay<R<16a,, where the slope of the potential is large. In
contrast, the calculated error in the FGH method is uniformly
distributed on all levels, due to the global character of the
method.

The latter example is not intended to check the effi-
ciency of the mapping procedure, as the vibrational motion
extends only to 90a,. Considering now the example of the
1,(65+6p*Py;,) potential of Cs,, > we have computed the
vibrational levels up to v =337, with a grid extending from
4.5a4 to 500a,. The number of points can be reduced from
6500, without a coordinate change, to 658 with the simple
transformation defined in Eq. (2.11), using a value 8=0.6
reducing the memory necessary for computation by a factor
120. For the chosen example, the highest calculated vibra-
tional level has an energy as small as Ejpp=
—0.0317cm™, the v=0 level staying at E;=
—1359.6804cm™". The convergence tests show a stability
better than 10”4 cm™', when the parameter 3 is varied from
0.9 to 0.4. The diagonalization procedure yields N eigenval-
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FIG. 7. The v=332 vibrational wave function for the 13(6s+6p2P3,2)
potential of Cs, (see Fig. 1), computed at the grid points defined with the
mapping of Eq. (2.11). Here, R,,,,=500a,, N=564. (a) The wave function
at every grid point, with linear interpolation between two points; (b) the
wave function interpolated according to Eq. (4.1} choosing Nperp= 10 000
(see the text). (c) The Interpolated wave function in the x variable, showing
only the part corresponding to large R. Comparing (c) to (b), one can ap-
preciate the regularity of the oscillations in the mapped wave funclion.

ues, for which only the lower ones correspond to bound
states, the upper ones being continuum states up to a positive
energy Eg™ that depends upon . The efficiency of the map-
ping using the real potential is clearly manifested in this
example: for the grid considered above, choosing =0.6,
mapping using the real potential involve 658 grid points and
hence 658 eigenvalues, the upper one lying at an energy
Ep™=12729cm™. The same calculations with an envelop-
ing potential —C3/R® (where we have taken C5™=C5 so
that the enveloping curve differs from the real one only at
short and intermediate distances), would require N =878 grid
points. The increase in the number of points is not a substan-
tial one, but the maximum energy is now Ep™
=87790cm™!, so that the energy domain spanned by the
method is as high as 89 000 cm™'. Such a large energy range
can result into a severe inconvenience for the application to
time-dependent problems.

The repartition of grid points in the example has been
illustrated in Fig. 3. It is remarkable that vibrational energies
can be obtained with accuracy better than 10™4cm™! using
only N=564 grid points (with 8=0.9) for levels with a
wave function exhibiting up to 337 nodes. A possible draw-
back of this achievement could be that N becomes too small
for an accurate definition of the wave function: we show
below that this is not the case.

IV. THE WAVE FUNCTION IN THE FGH METHOD

In calculations employing a discrete grid, the wave func-
tion is represented on a finite set of grid points. Values of the
wave function at other distances have therefore to be deter-
mined by interpolation. Linear interpolation then yields low-
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quality results (see Fig. 7). Here we describe a better ap-
proach for the interpolation of the wave function in the FGH
method, using the intrinsic properties of the Fourier
representation. '°

The interpolated wave function in this case is'®

N o
W)= ¢<q,->sinc(A—(q—q,)), (@.1)
Jj=1 q

where g; is a working uniform grid (with or without map-
ping), g is any intermediate point, Ag is a grid step, and we
have defined the function sinc(z)=sin(z)/z. In Fig. 7, we
display the wave function, computed with sinc interpolation
at a large number (Ve = 10 000) of g values, for the 333rd
(v=332) vibrational level of Cs,(1,). A comparison with
linear interpolation clearly illustrates the good quality of the
second interpolation. Of course, we have checked the accu-
racy of the interpolated wave functions by comparing to
standard methods.

In the same figure, we show the influence of the map-
ping procedure on the shape of the wave function. One can
see that the two representations are quite different: the map-
ping has an effect of ‘‘stretching’’ the grid at smaller dis-
tances, where the density of points needs to be large. Indeed,
if the unmapped grid has sufficient point density in this re-
gion, it has too many points at large distances, where oscil-
lations of the wave function are not so frequent. The map-
ping procedure eliminates such superfluous points, yielding a
uniform distribution of the number of grid points per oscil-
lation. It is remarkable that with mapping, good quality wave
functions can be obtained with a reduced number of points at
each oscillation: indeed, the wave function drawn in Fig. 7
has 332 nodes and has been been obtained using only N
=564 grid points, which is less than two points per oscilla-
tion.

V. EXAMPLE OF TWO COUPLED STATES:
PERTURBATIONS IN Rb, SPECTRUM

The mapped Fourier Grid Hamiltonian method presented
in the previous section can easily be generalized to calculate
the energies of the rovibrational levels considering several
coupled molecular electronic states. We have shown
previously2 that the FGH approach is particularly well suited
for such a goal, compared to more traditional approaches like
Numerov integration methods. We describe here below cal-
culations considering two coupled states in a diabatic repre-
sentation. The implementation of the calculation from the
previous section is straightforward, provided the same map-
ping procedure is applied to both channels. For a grid of N
points, we now consider three operators T, V(R), and
W(R), each represented by a 2N X 2N square matrix as fol-
lows:

T, O vV, 0 W, Wp
T= ; V= ; W= §
0 T, 0 v, W, W,
5.1)
The kinetic energy matrix T is block diagonal, each

block deduced from Egs. (2.22) and (2.23). The potential
energy matrix V(R) is diagonal in the FGH representation:
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each diagonal block V| and V; should contain the mapping
of the corresponding potential energy curve. In contrast, in a
diabatic representation, the coupling matrix W(R) contains
both diagonal (W,,W,) and nondiagonal (W, and W;))
blocks terms. Obviously, this procedure may be generalized
to any number of coupled electronic states. The diagonaliza-
tion of the full matrix provides the energies of the levels of
the coupled system. The problem is to generalize the map-
ping procedure: this can be done by considering an envelop-
ing potential adapted to the two different potentials and
eventually to the coupling term.

As an example, we use this method for the calculation of
the bound vibrational levels of the A'S}(0}) and the
b*I1,(07) excited electronic states in Rb,, coupled by spin—
orbit interaction. Both states are behaving asymptotically as
R™3, and are correlated to the first excited dissociation limit
5s+5p. It is well known that, due to the spin—orbit coupling
between those two states, perturbationsm are observed in the
spectra of all alkali dimer molecules: many theoretical and
experimental studies have been performed for Lij,?'
Na,, 336 K,.% Cs,,%® while only a single low resolution ex-
periment has investigated this interaction in Rb,.%

In the present work, the Rb, potential curves are taken
from the accurate ab initio pseudopotential calculations of
Foucrault ef al.,*® matched to the asymptotic curves of Ref.
26. The spin—orbit effective operator is assumed to be R
independent and proportional to the atomic fine structure
splitting AEy. The coupling term is then W,
=AE(v2/3), while the energy of the b *II,, electronic state
is corrected by W,= — AE /3, shifting down its dissociation
limit. The mapping function is deduced from Eq. (2.13), us-
ing for the enveloping potential,

VE(R)=inf[V1(R),(Vy(R)], R>inf(R,,.R.,), 52)

R<inf(Rel 1R¢2)!
(5.3)

where R, and R,, are the positions of the minima of the
potential curves V (R) and V,(R), respectively, while
inf(a,b) means the lower of the two numbers. The potential
curves are drawn in Fig. 8 in Hund’s case a (A 'S and
b3I, states) and Hund’s case ¢ [0)(55+5p2P530)]
states representations. Two aspects need to be discussed in
the choice of the enveloping potential in this two-channel
problem: first the dissociation limit is now an important is-
sue, as it may introduce significant local kinetic energy. Tak-
ing the Hund’s case ¢ lower potential curve as an enveloping
potential would increase the local kinetic energy, all over the
grid, by 2AE/3=158.4.20cm™". The introduction of a 8
factor is increasing the momentum domain to address this
issue. Second, in contrast with the previous discussion, we
have taken the enveloping curve as constant from the posi-
tion of the first grid point to the distance of the potential
minimum: this introduces only a few (around 20) additional
grid points, but from numerical point of view it simplifies
markedly the situation in the region of small internuclear
distances R, where the real potential is rapidly varying as a
function of R.

Venv(R)=inﬂ:V](Rel)’V2(ReZ)]s
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FIG. 8. The Rb, potential curves without (a) and with (b) spin—orbit cou-
pling. (a) Hund’s case a A 'S} (5s+5p) (broken line) and b °I1,(5s
+5p) (dash—dotted line) curves from Ref. 40. (b) Hund's case ¢ 07 (D))
and 0} (D,) potential curves comelated, respectively, lo the dissociation
limits (5s+5p?P);,) and (55+ 5p2P5,). A vibrational level close to the D |
limit, and its turning point in the 0] (D,) potential, are displayed for illus-
tration.

Through use of the mapped FHG method, the eigenval-
ues of the Hamilltonian 5.1 are calculated up to the dissocia-
tion limit (5s+5p2P,;), hereafter referred to as D, limit
(indeed, our choice for an enveloping potential excludes an
accurate representation of continuum levels). We have con-
sidered a grid extending from 5 to 2004, and found conver-
gence for the value 8=0.5 of the mapping parameter. With
such values, 525 bound vibrational levels can be found, the
upper one having a binding energy E, (v=>524)=
—-0.015cm™".

We present in Fig. 9 the rotational constants B,
=1/(2u(R?)) for the vibrational levels (assuming J=0)
computed in three different cases: for Hund’s case a or
Hund’s case ¢ coupling schemes, considering two indepen-
dent vibrational channels and for the coupled channels. The
independent channel calculations yield two curves, rather
different in the case of A'%; and b°Il, channels, more
similar and even crossing in case of the 0: (55
+5p2P);53,) channels—hereafter referred to as 0 (D))
and 0} (D). Coupled-state calculations show that the spin-
orbit coupling has a strong effect and introduces important —

0.02 0..+(Dz)
b'TI,
L) S
E
3 001 .
m
0.00

i i i il
-6000 —4000 -2000 D,10 D:
level energy (em™)

FIG. 9. Rotational constants B, (in cm™') for vibrational levels in the Rb,
A 'S} and b M1, [or, equivalently, 0 (D) and 0] (D,)] potential curves
of Fig. 8 computed: neglecting fine structure coupling (Hund's case a:  full
lines); neglecting radial coupling (Hund's case ¢: dashed lines); and con-
sidering two coupled channels (circles). The energy of the levels is referred
to the (5s+ Sp) dissociation limit
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FIG. 10. The same as Fig. 9, close to the (Ss+5p?P,;,) dissociation limit
(labeled D, and located at energy E=—158.4cm™").

mixing between the two channels, as many B,, values are not
lying on any of the four preceding curves. Besides, strong
perturbations are found, manifested by oscillations in the
computed constants. In contrast with lighter alkali dimers
like Lip, > Na,, %% K,, ¥ we predict that the whole spectra
is concemed by these perturbations, and can be described
neither in the framework of the Hund’s case a nor Hund's
case ¢ independent channel representation. In a standard
spectroscopy experiment, one may expect strong irregulari-
ties in the observed spectra, making a full identification very
difficult.

An example of the irregularities predicted by the present
calculations is analyzed in more details in Fig. 10, where we
have represented the variation of the rotational constant in
the vicinity of the D, dissociation limit. Let us note that the
mapping represents a crucial improvement to obtain accurate
results in this energy range. The oscillatory behavior of B,
shows that the Hund’s case ¢ picture is adapted only to a few
levels that we may assign to the lower electronic state
0 (D), most of the others being perturbed. When the B,
value is minimum, the corresponding wave function is in-
deed very close to unperturbed vibrational motion in the
single channel 0] (D)), as is illustrated in Fig. 11. In con-
trast, the maxima of the oscillations correspond to an impor-
tant admixture of a 0: (D,) wave function, where the vibra-
tional motion is confined at shorter distances, with an outer
turning point that in the example chosen for the figure is
close to 22a, instead of 50a,. Preliminary experimental
results* seem to confirm this oscillatory behavior of the ro-
tational constant.

Above the D dissociation limit, the coupling between
the two channels is also responsible for the predissociation of
the OI(DZ) bound levels into a continuum of two ns?S,,
and np?P,,, free atoms. This process has been recently in-
vestigated as a detection tool of K, molecules in a photoas-
sociation experiment*? and could be extended to Rb,, since
the broadening of the 0, lines in Rb, photoassociation spec-
tra has already been reported.*

In the present calculations we find that a similar effect
still occurs in the continuation of the B, curve beyond the
D, dissociation limit, now due to the mixing between con-
tinuum wave functions describing the vibrational motion in
the 0. (D)) state, with bound vibrational wave functions in



163

9874 J. Chem. Phys., Vol. 110, No. 20, 22 May 1999

0.2 ¢ v T

01 -

E2:373

\

FIG. 11. Two vibrational wave functions for Rb,(07") close to the D, dis-
sociation limit. The upper panel shows the wave function with vibrational
number v =445 and energy —178.814 cm™'. The middle panel—the wave
function with y=451 and energy is —174.397 cm™". The rotational con-
stants for those levels are indicated by arrows in Fig. 10.

the 07 (D,) state. The present time-independent formalism is
not providing information on the predissociation lifetime of
such levels. But we can solve the time-dependent Schro-
dinger equation defined from the Hamiltonian in Eq. (5.1)
and from a given eigenfunction taken as an initial state com-
pute the autocomrelation function, as already performed in
our previous work.2? The limited energy range of the repre-
sentation then appears as an advantage for such calculations.
The lifetime is most easily extracted from the exponential
behavior of the autocorrelation function, and this example
shows clearly the advantage of the technique. Detailed cal-
culations of the lifetimes and analysis of the predissociation
process will be published in a forthcoming paper.

VI. CONCLUSION

(i) The theoretical treatment of cold atom collisions and
photoassociation processes leads us to treat the relative mo-
tion of two nuclei in regions of space where the kinetic en-
ergies differ by several orders of magnitude. Grid methods
have to be modified by compressing the number of points in
order to reduce the computational effort. In the present paper
we describe a mapping procedure in which the change of
variable closely follows the variation of the local de Broglie
wavelength as a function of the internuclear distance. We
have discussed the implementation of this procedure within a
Fourier Grid Hamiltonian method for determination of ener-
gies and wave functions of loosely bound vibrational states
in alkali dimer molecules. Reducing by n the number of
points in a numerical method relying upon diagonalization
procedure results into reducing by n* the computational ef-
fort.

(ii) In case of single channel calculations, we have dis-
cussed two possible choices for the definition of a new grid
and transformation of the Hamiltonian: one is using a nu-
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merical change of variable considering the real potential of
the problem; the other one is analytical and based upon the
asymptotic R™" behavior of the potential. The latter proce-
dure was recently used by Tiesinga et al.'® Due to the diver-
gence of R™" at short distances, the numerical mapping pro-
cedure has been demonstrated to be more efficient. It yields
better optimization of the phase space, and avoids an unnec-
essary increase of the spectral range of the Hamiltonian.

(iii) We have discussed the convergence tests and accu-
racy of the method, showing that very accurate results can
then be obtained for binding energies and wave functions of
vibrational levels, where the classical motion extends as far
as 500a,, with a minimal number of points, typically less
than twice the number of nodes of the wave function.

(iv) The numerical mapping procedure has next been
generalized to problems involving several channels, through
the use of an enveloping potential. An example of an appli-
cation to the perturbations in the Rb, spectrum has been
given. We have shown that the method can easily be ex-
tended to the computation of predissociation lifetimes.

(v) In contrast with recent work by Tiesinga et al.,'® the
accent in the present paper was put on the mapping proce-
dure rather than the method to extract eigenvalues. We have
shown the advantage of maintaining a Hermitian Hamil-
tonian operator, and discussed the efficiency of a numerical
mapping procedure in view of optimizing the representation.
The diagonalization procedure, having uniform convergence
with respect to eigenvalue extraction, could be used to check
the global performance of the mapping. The quality of the
wave functions obtained by interpolation using Fourier trans-
formation is also an original aspect of this work.

(vi) In the case of two coupled channels, the method is
presently formulated for diabatic calculations. Further devel-
opment should consider a formulation using the d/dR cou-
pling, where the advantage of the present mapping procedure
maintaining a symmetric Hamiltonian operator will clearly
be manifested.

(vii) In future work we will address the problem of
propagation either for filtering the eigenvalues in a given
energy range, in the spirit of Ref. 44, or for the treatment of
time-dependent problems related to cold collisions and pre-
dissociation. The numerical mapping procedure developed
here will help to maintain a small as possible the spectral
range of the Hamiltonian.
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APPENDIX: THE KINETIC OPERATOR IN THE FGH
REPRESENTATION

The Hamiltonian of Eq. (2.17), written in Fourier grid
representation, is real but nonsymmetric. In order to show it,
we write each term of the Hamiltonian this representation:
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Here elements T; ; are same as in Egs. (2.3) and (2.4).
Indexes i and j are introduced nonsymmetrically because of
1/7%(x;). The term

J. d I d | A2)
<‘Pi|m§ o= W(‘Pildx ®)) (
is also nonsymmetric. (Note that the first derivative in FGH
is antisymmetric'®). Being diagonal, the operator V(x) is
symmetric.

Consider now the Hamiltonian of Eq. (2.20). The new
potential V is diagonal. To evaluate the new kinetic operator,
note that for any function F(x) the second derivative in FGH
will be
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The kinetic operator in the equation is
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The sum here is'®
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From Egs. (A6)—(A8), we obtain the expressions (2.22)
and (2.23) for the kinetic energy operator (2.20). Expressions
(2.22) and (2.23) are symmetrical over i and j.
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Theoretical treatment of channel mixing in excited Rb, and Cs, ultra-cold molecules.
I Perturbations in (0}) photoassociation and fluorescence spectra
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! Laboratoire Aimé Cotton,
Bdt. 505, Campus d’Orsay, 91405 Orsay Cedez, France
2 The Institute of Physics, Saint-Petersburg State University,
Saint-Petersburg 198904, Russia.
(November 23, 1999)

The mapped Fourier grid method, using coordinate adapted to the local de Broglie wavelength
associated to the vibrational motion in a molecule, and recently developed by Kokoouline et al. [J.
Chem. Phys. 110, 9865(1999)] is used to compute the perturbed binding energies and rotational
constants of the Cs; 0% (6s+6p 2p, /2,3/2) Photoassociation spectrum below the lower dissociation
limit. The results are shown to be very sensitive to the molecular potential curves and spin-orbit
coupling. In the case of Rby 0} (5s+5p 2P, /2,3/2) @ strong isotopic effect is also predicted. The
results can be interpreted in the framework of generalized two-channel quantum defect theory, and
generalized Lu-Fano plots are presented. This work suggests that parameters could easily be fitted
to experimental spectra, eliminating the difficulties caused by limitations in the accuracy of the

short range molecular potentials.

I. INTRODUCTION

An important application of laser cooling techniques
for atomic samples is photoassociation spectroscopy [1,2],
where two colliding cold alkali atoms absorb a photon
red-detuned from the resonance line (or another atomic
transition) to create a long range cold molecule in an ex-
cited electronic state. The latter rapidly decays by spon-
taneous emission, yielding usually a pair of free atoms,
or in some cases a bound cold molecule in the singlet and
triplet ground electronic state {3-5]. The branching ratio
between the two kinds of final products is mainly deter-
mined by the behavior of the vibrational wave function
in the excited state at short and intermediate internu-
clear distances. As a consequence, in the rapidly growing
field of formation of ultra-cold molecules, spectroscopic
knowledge appears as a key factor for development of
efficient schemes using photoassociation [6-8]. Many ac-
curate experimental data are becoming available, and the
challenge for theoretical interpretation is the precise de-
scription of both large-amplitude vibrational motion, and
coupling between bound and continuum states (Feshbach
resonances) in the present situation where the potentials
are known accurately only in the asymptotic region of
internuclear distances.

In a recent paper [9], hereafter referred to as paper
I, we have developed a mapped Fourier grid method for
long range molecules and discussed its efficiency in com-
puting vibrational wave functions relevant to the inter-
pretation of photoassociation experiments or cold atomic
collisions. As an example of an application to the prob-
lem of two-coupled channel, the perturbations in the Rb,y
0} ( 5s + 5p2 P, /2.3/2) spectra were considered. Indeed,
the symmetry 0} of alkali dimers is a textbook example
of perturbations in molecular spectra (see, for instance,
the book of Lefebvre-Brion and Field [10]) due to spin-

orbit coupling between the two Hund’s case a potential
curves A'XF and b3T1,. In the past few years, various
experiments [11-14] have been studying photoassociation
of two cold alkali atoms, initially in the ground ns elec-
tronic state, into a long range dimer molecule of 0} sym-
metry. We choose the latter notation as, due to the large
value of the spin-orbit coupling for heavy alkali atoms
like Rb and Cs, Hund’s case ¢ is a better adapted rep-
resentation. Nevertheless, coupling cannot be neglected
between the two excited electronic states dissociating into
ns+np 2Py and ns+np 2Psy, with n=3,6 for Rb, and
Csy respectively. (The two asymptotes will be hereafter
referred to as Pyj2 and Ps/3). In the experimental data,
the importance of such coupling is manifested by strong
perturbations in the discrete spectrum recorded either
by photoassociation spectroscopy below the Pi;, limit
[12,15], or by Fourier transform spectroscopy [16]. An-
other signature is the predissociation broadening of the
lines observed in photoassociation spectroscopy [11,13]
between the two Py and P3;, dissociation limits.

The aim of the present paper is to report for theo-
retical calculations of the energies, wave functions and
rotational constants for vibrational levels in 07 Csy and
Rbgphotoassociation spectra, in order to interpret exper-
iments and to assess the influence of various physical data
(potential energy curves, spin-orbit coupling, mass of the
nuclei, detuning of the excitation laser) on the resulting
perturbations. We shall discuss the possibility of using an
asymptotic theory that eliminates the uncertainty in the
computed short-range potentials and couplings by defin-
ing a few parameters, valid on a broad energy range, that
can be fitted to experimental data. In this work, effects
linked to rotation or hyperfine structure splitting will be
neglected.

The paper is organized as follows : the choice for po-
tential curves and couplings as well as the computing
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method is described in Sec.IT . Next, Sec.III is devoted
to the presentation of results for perturbations in the 0}
spectra of Csy and Rby and their sensitivity to the phys-
ical data. Interpretation in terms of generalized two-
channel quantum defect theory is proposed in Sec.IV.
Atomic units will be used throughout the paper, the dis-
tances being in ag unit (lag = 5.29177 - x10~11m).

II. CALCULATION OF THE ENERGIES AND
WAVE FUNCTIONS FOR THE EXCITED
VIBRATIONAL LEVELS OF Cs; AND Rb>

0} (ns+np) POTENTIAL CURVES.

A. Potentials and coupling

The ro-vibrational structure in the 0F (ns +
np 2Piy33;2) spectra, as well as the perturbation and
predissociation effects, depend upon the shape of the
two electronic potential curves and upon the coupling be-
tween them. In the calculations we use potential curves
from accurate quantum chemistry calculations [17,18],
matched at large internuclear distances to asymptotic
calculations [19]. The atomic spin-orbit splitting between
excited states 2Py and 2Py is AEso = 237.6 cm™! for
Rb and AEso= 554.1 em™! for Cs.

In case of the Cs, dimer, we display in Fig. 1 the
two Hund’s case a potential curves for symmetries A1Z}
and b3I1,, hereafter referred to as diabatic curves and
labeled V4(R) and Vp(R) respectively. Also displayed
in the figure are the two Hund’s case ¢ 0F(Py/2) and
07 (P3y2) potential curves hereafter referred to as the adi-
abatic curves Vi(R) and V2(R). Such curves have been
determined by diagonalization of the 2 x 2 effective fine
structure Hamiltonian, using the R-dependent molecu-
lar spin-orbit coupling Wi»(R) computed in Ref. [18]
and displayed in Fig. 2. The curves Vi(R) and V,(R)
present an avoided crossing in the vicinity of R ~ 11 aq,
with a structure markedly depending upon the value of
the spin-orbit coupling in this range of distance: we
shall compare, as a demonstration of the importance
of molecular electronic structure data, results of calcu-
lations either using R—dependent coupling Wis(R) or
taking the constant value Wi2(R) = AEso(v/2/3) at
all internuclear distances. In the latter case, the split-
ting between the two Csy curves at the crossing point
is found AE50=554.1 cm~!, whereas in the former case
it is reduced to 335 cm~!. The present calculated po-
tentials should be considered as very accurate, compared
to state-of-the-art quantum chemistry calculations. The
accuracy was checked by comparison with recent pho-
toassociation experiments [20,8] and found to be a few
cm~ ! in the intermediate range of internuclear distances,
where the asymptotic calculations are not yet valid. This
accuracy however does not reach the &~ 0.01 cm™?! accu-
racy of the observed spectra : we shall therefore discuss
the sensitivity of the results to small variations in the

potential curves, shifting the position of short range re-
pulsive walls by a distance smaller than the estimated
accuracy of its position, or modifying the coupling. Cal-
culations have been performed using for the reduced mass
i = 121135.83 a.u. In the case of Rby, the potential
curves extracted from Ref. [17] and matched at large in-
ternuclear distances to the asymptotic curves of Ref. [19]
were given in paper I . Due to the lack of data for molec-
ular spin-orbit coupling, we shall use for the discussion a
model curve displaying an R-variation similar to the com-
puted cesium curve, where the fine-structure splitting de-
creases, from the atomic value at infinity to its minimum
at a distance R=11 agq, by a factor 0.61, then increases
again. The ratio between the molecular spin-orbit cou-
pling at given R and the atomic value is taken identical
for the two atoms, which is a somewhat arbitrary hy-
pothesis. In order to demonstrate the strong isotopic
effect, calculations will be performed for both 83Rb, and
87Rb, isotopes, choosing for the reduced mass the values
4 =77392.38 a.u. and g = 79212.88 a.u. respectively.

B. Calculations: The Mapped Fourier grid
representation.

For the calculation of bound levels we solve the time-
independent Schrédinger equation with the Fourier grid
representation (FGR) method [21-24,9], where the ener-
gies and wave functions are obtained by diagonalization
of a Hamiltonian operator written in grid representation,
either in position or in momentum space. The potential
operator is then a diagonal matrix in position space. The
kinetic energy operator is diagonal in momentum space
and its matrix elements in position space, obtained by
Fourier transform, are given in the quoted references. In
order to study loosely-bound vibrational levels relevant
to photoassociation experiments, with wave functions ex-
tending up to several hundreds ag, we make use of the
procedure developed in paper I to define a working grid
with a variable step seny (R) adjusted to the variations of
the local de Broglie wavelength and defined as :

- ﬁ\/2l‘(vmﬂr — Venv(R)) .

For our two-channel problem we choose the envelop-
ing potential V*Y(R) as the lowest of the two adiabatic
curves,

Senv(R) (1)

Ver(R) = Vi(R) — Vi(eo) 2

In Eq. (2), Vi(o0) is the energy of the Py;3 asymptote.
Therefore in Eq. 1, the maximum value of the potential
energy considered in the problem is :

Vimas = Vi(oo) + A (3)

where we have taken A = 0 for bound-state calcula-
tions. For predissociation calculations the quantity A
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should be positive and at least equal to the energy differ-
ence between the highest predissociated level considered
in the problem and the Py, asymptote. The local grid
step then follows the variation of the inverse of the max-
imum local classical momentum, while a scaling factor 8
enables to represent also correctly the non-classical part
of the wave function: the present calculations were con-
verged for g = 0.7.

The numerical method was described extensively in pa-
per I, where details on rubidium calculations were re-
ported. In the case of cesium, calculations were per-
formed for all bound levels up to 0.04 cm™! below the
Py /5 asymptote, for which the wave function may extend
up to 1000 @p. We were using a physical grid extending
from 5 to 1000 ag, the working grid consisting of N=853
points. The two-channe] potential matrix was written in
diabatic representation, including both potentials V4 (R)
and Vg(R) — Wia(R)/v/2 as diagonal elements, and con-
sidering either constant or R-dependent spin-orbit cou-
pling Wi2(R) non diagonal elements. The energy lev-
els were then determined through diagonalization of the
2N x 2N Hamiltonian matrix. From their values at the
N grid points R;, the wave functions could be interpo-
lated with sinc interpolation ( where sinc(z) = sin(z)/z)
as described in paper I.

N
¥(R) = ) ¥(R;)sinc(n(R — R;)/AR)
i=1

However, for the numerical quadrature to compute the
rotational constants B, = (1/(2pR?)), direct use of the
Fourier Grid representation was suflicient:

N

1
— )2

B, _J§:1j|W(R,)| AR (4)

II1. PREDICTION OF THE ENERGY LEVELS
AND ROTATIONAL CONSTANTS IN Cs; AND
Rb, 0f PHOTOASSOCIATION AND
FLUORESCENCE SPECTRA.

A. Perturbations effects in the Cesium spectrum
below the (6s +6p P, ,) dissociation limit

An example of the results for the positions and ro-
tational constants of the energy levels in the [—250,-
—1 cm™?] energy range below the Py limit is reported
in Fig. 3. When the coupling is neglected, the Py, se-
ries appears as a quasi continuum (spacing between 4
and 0.004 cm~! in the binding energy range considered)
with small rotational constants, while the vibrational lev-
els from v = 163 to v = 182 attributed to the Py, se-
ries are more widely (=~ 13 cm™!) spaced with larger
rotational constants. The effect of the coupling results

mainly in a shift of the Py, levels, with strong pertur-
bations in three regions of the considered energy range,
too distant to be interpreted as a beating phenomenon
between the two vibrational frequencies. We should note
that in contrast to the rubidium case discussed in pa-
per 1, the rotational constant is oscillating between the
two extreme values corresponding to single-channel cal-
culations, showing that nearly pure Pi/, and P35 wave
functions still exist when the coupling is turned on. Due
to the large value of the classical phase for such highly-
excited levels (slightly vibrational numbers v larger than
100), the results are extremely sensitive to the accuracy
of the potential: shifting the repulsive wall by only 0.01
ag is sufficient to modify the position of the levels and the
perturbation structure, as displayed in Fig. 4. There-
fore, in the present state of ab initio calculations, it is
not realistic to hope to find agreement between theory
and experiment as far as absolute values for the posi-
tions of the energy levels are concerned. We shall discuss
in Sec. IVB how to develop a procedure using knowl-
edge of the asymptotic part of the potentials only and
depending upon parameters fitted to experimental data.

Finally, the results appear to be very sensitive to the
choice of the spin-orbit coupling. This is illustrated in
Fig. 5 where we compare for the entire spectral range
the variation of rotational constants with variable spin-
orbit coupling as well as with a constant spin-orbit cou-
pling. In the latter case, except in the region close to
the dissociation limit, the perturbations are weak and
the rotational constants curves in Fig. 5(b) look qualita-
tively similar to two unperturbed Hund’s case c series, as
displayed in Fig. 5(a) . The validity of the latter inter-
pretation is not surprising because of the large value of
the spin-orbit splitting in the cesium atom. It is striking
that when a R-dependent spin-orbit coupling is intro-
duced, as the splitting between adiabatic curves (see the
inset of Fig. 1 (c)) in the region of the avoided crossing
is reduced by 40%, the behavior becomes qualitatively
different. The perturbation structure, now visible in the
totality of the spectral range in Fig. 5 c) is clearly man-
ifesting the breakdown of the picture of two uncoupled
Hund’s case ¢ adiabatic curves.

B. Isotopic effect in the perturbations of the
rubidium spectrum

A different qualitative behavior is found in the ru-
bidium case : the perturbations in the Rby 0F( 3s +
5p*P, /2,3/2) spectra computed in paper I with a constant
spin-orbit coupling are softened when one introduces a
model R-dependence for the spin-orbit coupling (see Fig.
2), in which for a given R the ratio to the atomic value
is arbitrarily the same as in the cesium ab initio calcula-
tions. Strong perturbations are visible (Fig. 6(b)) in the
energy positions and rotational constants for vibrational
levels computed with constant spin-orbit coupling. In
fact, due to the smaller value of the atomic fine-structure
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splitting in the rubidium case (237.6 cm™! instead of
554.1 cm™1!), the picture of two uncoupled Hund’s case ¢
adiabatic curves is even less valid than for cesium. As a
consequence, introduction of an R-dependent spin-orbit
coupling results into further reduction of the coupling
in the region where the two diabatic A 1=} and b 311,
curves are crossing, so that the computed energies and ro-
tational constants displayed in Fig. 6(c), although mani-
festing strong perturbations, do look qualitatively closer
to calculations for two Hund’s case a uncoupled channels.
As a relatively larger decrease of the spin-orbit coupling
would reduce the perturbations even further, it is clear
that accurate molecular calculations are needed, or, al-
ternatively fitting procedure to experimental data [16].

As an illustration of the importance of channel mix-
ing, we have analyzed the vibrational wave functions, in
a 6000 cm~" energy range below the Py, dissociation
limit, obtained in two-coupled-channel calculations with
constant spin-orbit coupling. In order to estimate the
proportion of population on the each channel, for a given
vibrational level, we write the two-channel wave function
as:

@y = U7 )5 (R)|1) + ¥5/5(R)|2) ()

In Eq. 5, |1) and |2) correspond to the two electronic
states 0} (Py/2) (potential Vi(R)) and 0F(Ps/z) (poten-
tial Vo(R)) respectively, readily obtained as R-dependent
linear combinations of the two diabatic states. Then the
relative population of the Py;; channel is simply com-
puted as :

alyg = / |935(R) AR (6)

The energy variation of af /2 represented in Fig. 7,
appears very irregular. Except at very large detunings
where the energy lies below the bottom of the V2(R) po-
tential curve, the relative population a} /2 Dever becomes
0 or 1. Therefore, the wave function can never be iden-
tified as belonging purely neither to the P35 nor to the
Pyj3 channel, showing that all vibrational levels are per-
turbed in the wide (5715 cm™!) energy range between
the bottom of the Psss well and the Pjj; dissociation
limit. Such behavior has indeed been recently observed
by Fourier transform spectroscopy [16] in the [-2500, -
1000 cm™1] energy range below the Py, limit.

Due to the large values of the phases involved for vi-
brational quantum numbers larger than 100, the sensitiv-
ity to potential data would be important for rubidium,
but was already discussed in cesium case. A further im-
portant result is obtained in the rubidium case where a
strong isotopic effect is present. We have displayed in Fig.
8 prediction of the variation of the rotational constants
for 8Rb, and 87Rb; in the energy range lying 40 cm™?
below the P/ dissociation limit. The energy behavior
looks like a series of resonances, the width being signifi-
cantly (= 50%) smaller for the heavier isotope. Indeed,

the curves could be interpreted as Feshbach resonances
due to the coupling between a quasi-continuum Pj ;5 se-
ries and a discrete P35 series. Such analysis can be done
by fitting the peaks in the energy variation of the relative
population aj} /2 defined in Eq.6 by a Lorentzian formula,

C

B R (Vo) i

We have displayed in Fig. 9 an example of such a fit.
For 85Rb,, we have considered a peak with a maximum
located at E,., = —3.87 cm™!: the fitted width is T =
2.4cm~!, and would correspond to a lifetime 7 & 2.2 ps.
For 8’Rb, the peak is located at E,.., = —6.38 cm™!,
and the width is reduced to 1.1 cm™?, corresponding to
a lifetime 7 ~ 4.83 ps. Such results and their possible
extrapolation to the situation of a real continuum above
the Pyjo dissociation limit will be discussed in further
work devoted to predissociation calculations [25]. The
analogy with Feshbach resonances will be continued in
the following section where we analyze our results in the
framework of a generalization of the theoretical tools for-
merly developed for Rydberg series.

IV. LONG-RANGE ANALYSIS AND
GENERALIZED TWO-CHANNEL QUANTUM
DEFECTS

Due to the long-range extension of the vibrational mo-
tion for the levels considered in the present work, inter-
pretation of the progression of the energy values as a
function of vibrational numbering in terms of an asymp-
totic law such as the well known Le Roy-Bernstein for-
mula [27] provides a powerful tool to analyze computed
results. Besides giving greater insight into the physics of
the problem, it should provide a way to bypass the diffi-
culty linked to the inaccuracy of short range potentials at
the scale of present experimental precision by suggesting
parameters which could be fitted to experiment in the
spirit of quantum defect theory [26].

A. Interpretation of the single-channel results from
the Le Roy-Bernstein model : generalized quantum
defect

We first have checked the behavior of the two computed
unperturbed vibrational series 0} (Py/2) and 0F(Ps/2).
corresponding to motion in the single-channel potentials
Vi(R) and Va(R) respectively. Indeed, for a potential
with asymptotic —Ca/R3 behavior, the energy of an ex-
cited vibrational level is simply linked to the vibrational
number v by the analytical formula proposed by Le Roy
and Bernstein {27]:

E(v) = D — (Hs(vp ~v))° (8)
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In Eq. 8, D is the dissociation energy, Hj is a constant
and vp is an usually non-integer number such that:

E(vp) =D (9)

In contrast with the Rydberg law for a 1/R potential,
the energy is related to a positive power of v, so that
the series is finite. We shall call v,,,4; the number of the
last vibrational level for a potential containing ez + 1
vibrational levels. It is then straightforward to define a
generalized quantum defect u’P through:

ILLB =YD — Vmaz (10)

If we modify the short range potential, for instance by
changing the depth of the well, this number changes but
the law in Eq. 8 only depends upon the difference in
number between the last levels. Following recent work by
Crubellier et al. [28] on scattering length, we can change
the numbering of the levels by comparing the number of
nodes of a given vibrational wave function to the number
of nodes of the last vibrational level, numbered n = 0.
The next to last level will be numbered n = 1, and so on,
so that the new numbering is related to the previous one
by:

n+v = Unaz (11)

The advantage of such numbering is that the theory
presented below is still valid when only a limited num-
ber of levels below the dissociation limit are computed
or determined experimentally, or when the potential is
modified in the short-range region.

The Le Roy-Bernstein law for the energies EL? (v) of
the excited vibrational levels v is then simply written:

. (D _ ELE(,U))I/6

T (12)

nip=n+p"P =vp—
implying that the quantity on the right hand side of Eq.12
is a linear function of v crossing the horizontal axis at
v = vp. We have checked over which energy range below
the dissociation limit our computed vibrational energies
E(v), obtained from single-channel calculations for the
potential V;(R) in the Rby case, verify this law. For that
purpose, we may extract a computed quantum defect
nLB(E) for the level with quantum number n = v5,4; — v
from the relation:

(Va(oo) = E(v))'/°

n*(E) = n+ -8 (E) = 7

(13)
Choosing the value C3 = 12.268 a.u [19] for the asymp-
totic coefficient in the potential Vi(R) yields Hy =
0.0015453a.u. (or Hz = 0.012002(cm=1)!/®) for the
85Rb, isotope. We have represented in Fig. 10 the vari-
ation of the quantity n* = n+ p*P(E) = vp — v as
a function of the vibrational number v, demonstrating a
quasi-linear variation for v > 180 up to our last computed

level v = 376, strictly linear for v > 250. The extrapo-
lated curve cuts the horizontal axis at vp = 412.94 0.1,
yielding vpma-=412, and the relation n = 412 — ». The
quantum defect %Z (E) is then computed from Egs. 11,
10, 13 and is found slowly varying as a function of F
(or n) from its limit pX? = 0.9 at E = Vj(c0). From
the energy variation of #“P(E), Fig. 11, it is clear
that except at energies close to the dissociation limit
[(Vi(00)—E(v) < 1cm™!], the computed quantum defect
is not a constant, showing that the Le Roy Bernstein law
is not verified. This result is not surprising as:

o The adiabatic curve V4 (R) is obtained through di-
agonalization of the effective fine structure Hamil-
tonian between the two diabatic electronic states
with potential curves V4 (R) and Vg(R). The lat-
ter have very different asymptotic behaviors, the
C3 coefficients determined in Ref. [19] being 18.404
and 9.202 respectively. Due to the R-dependence
of the mixture between the two states, the C3 co-
efficient for 0} states departs from its asymptotic
value 12.268 at distances smaller than 150ag.

o Furthermore, for binding energies larger than 1
cm™!, corresponding to an outer classical turning
point for the vibrational motion located at internu-
clear distances smaller than 150 ag, the Cg terms

can no longer be neglected in the expansion.

We therefore have considered another possibility for in-
terpretation in terms of generalized quantum defects
through a numerical law , obtained from our computed
values E(v). As previously, we first determine the vibra-
tional numbers vp and vp,4, from the linear variation of
the quantity (V;(co0) — E(v))1/6/Hj close to the dissoci-
ation limit. This defines a quantum defect:

1) = Vp — VYmaz (14)

7 is equal to the asymptotic value 7B (E = (Vi(o0)) of
the quantum defect relative to the Le Roy-Bernstein law
defined in Eq. 13. The numerical law for the energy vari-
ation of the effective quantum numbers n* = vp — v is
then simply:

n+n=n"= f((Vi(eo) - E(v)) (15)

In Eq. 15 7 is now constant on the whole energy range.
In such an interpretation, the isotopic dependence for the
rubidium dimer can be understood easily. Indeed, an in-
crease of 2.4 % in the mass results into a modification
of 1.2 % in the phase which is proportional to Vi for
vibrational levels v = 400, where the semi-classical phase
is of the order of 400, this results into a change of 4.8 7
in the phase, which means a strong modification (0.8) in
the single channel quantum defect. We shall see below
how the coupling is also modifying the quantum defect.
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B. Generalized Lu-Fano plots for two-coupled
channel calculations

These results suggest another way of visualizing and
possibly determining the coupling between two channels,
in the spirit of early work on quantum defect theory
[29-31]. We first determine the energies E,, and E,, for
the vibrational levels of the two unperturbed series v; and
vy corresponding to single channel vibrational motion in
the adiabatic potentials V;(R) and Va(R) respectively,
with different dissociation limits V3 (o0) and Va2(00). Us-
ing the different asymptotic coefficients C3 = 12.268
and C2 = 15.334, we may analyze the results as pre-
viously to determine the quantum defects 7; and 75 from
Eq. 14 and the effective (non-integer) quantum numbers
n} = vp, — v1 and nj = vp, — va. It is then straight-
forward, from the variation of the binding energies of
the vibrational levels in the two series, to define the two
numerical laws for the two effective quantum numbers
n% = f1(Vi(o0) — Ey1) and n% = fo(Va(o0) — Ey2) of Eq.
15.

Considering now the results of the coupled equations,
we obtain a series of levels v, with computed energies
E, that we analyze with respect to both P/ and Py
unperturbed series. Rather than the numbering v, it is
more convenient to use the two previous numerical laws
to define, for each level, two effective quantum numbers

vi(Ey) = fi(Vi(oo) — Ev) (16)

and
va(Ev) = fa(Va(oo) — Ey) 17

By comparing the energy E, to the energies of the non-
perturbed series, we find the two closest larger ener-
gies E,1 and E,». From the effective quantum numbers
n}(Ey1) and n3(Ey2), we define two additional quantum
defects fi1(Ey,) and fia(Ey).

B1(Ey) = vy —ni(En) (18)
and
fa(Ey) = v3 —ny(Ey2) (19)

These quantum defects are simply interpreted as level
shifts due to the coupling between the two channels.
Each level is now analyzed with two references, and when
comparing for instance to the Pj;y series, we find sev-
eral levels with the same principal quantum number and
different quantum defects. In order to visualize pertur-
bations in a more intuitive way, we can represent them
on a Lu-Fano plot, where the horizontal axis displays the
vibrational number v» = vps —nj, to make the link with
the unperturbed Py series, while the vertical axis cor-
responds to the additional quantum defect i1 on channel
1. When the quantum defect reaches the value 1, a new

level is introduced in the series, and this is visualized by
a jump in the curve back to the value 0.

Such a plot for Cs; is reproduced in Fig. 12. For cal-
culations using constant spin-orbit coupling, most levels
can be identified as belonging to a Py series, with a con-
stant quantum defect 0.03 corresponding to a shift of the
levels, while a few P55 levels have energies differing very
little from the unperturbed ones. A positive quantum
defect results into an increase of the binding energies of
the levels. When the variable spin-orbit coupling is in-
troduced, the perturbations are stronger, and it is more
difficult to identify two series. This picture is presently
being used to analyze photoassociation spectra observed
in a cold cesium sample [32].

The Lu-Fano plots for the two isotopes of the rubid-
1um dimer are displayed in Fig. 13. In the spirit of two-
channel quantum defect theory [26], it should be possible,
for any set of coupled potentials with asymptotic behav-
ior similar to V4 (R), and Va(R) to fit the curves in order
to extract from such graphs an estimation of the coupling
from the equation :

R
tanln(ny T2 20

tanfn(—n} + )] =
In the present work, we have simply looked whether an
empirical fit of our two channel results E(v), computed
with one particular set of potentials V;{(R) and Va2(R),
could yield a set of effective parameters. Such a fit can
indeed be found in a wide energy range (down to 1000
cm~! below the P, /2 dissociation limit), spanning ~ 70
vibrational levels of the P35 unperturbed series (for sin-
gle channel motion in the V2(R) potential). The curves
were fitted within 1% accuracy with the following param-
eters:

e For %Rb,

H1 = 0.82, H2 = 0.185, R]lg =0.74 (21)

e For 8"Rb,

p1=0.37, pg = 0.64, Ry 5= 0.47 (22)

This result shows again the very strong isotopic effect
in rubidium. It demonstrates that the computed results
can be fitted in terms of a few parameters, which could
possibly be applied to analysis of experiments. Further
work will show how accurate experimental results ob-
tained in a limited spectral range can be extrapolated
outside this spectral range. Furthermore, close to the
dissociation limit, analysis of the pseudo-resonances ob-
served in experiment will yield parameters that can be ex-
trapolated above the dissociation limit to determine the
predissociation lifetimes. This aspect will be discussed in
a forthcoming paper [25).
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V. CONCLUSION AND PERSPECTIVES

As an application of the mapped Fourier grid method,
developed in paper I, we have presented and analyzed
results of two-coupled-channel calculations for the bind-
ing energies, wave functions, and rotational constants
of the vibrational levels in the 0} spectra, below the
(ns + nszllz) dissociation limit of Cs; (n = 6) and
Rby (n = 5) diatomic molecules. For heavy dimers, al-
though there exists a strong spin-orbit coupling between
two Hund’s case a potential curves, yet the picture of
two Hund’s casec uncoupled adiabatic chanrels is never
valid and perturbations are present extending over all
the spectral range (i.e. 5200 cm™! in the case of Cs,
and 5700 cm™?! in the case of Rby). This channel mix-
ing is manifested through the irregularities of the rota-
tional constants which keep oscillating between a small
value corresponding to 0F (2 Py/») unperturbed series and
a larger one corresponding to 0F (2Py/o) series. These
oscillations have already been observed by Fourier trans-
form spectroscopy [16]. The effect of the coupling can
also be estimated by analyzing the energy variation of
the proportion of the P3;5 component in the two-channel
wave function, which oscillates between 0 and 1. In the
Csy case most values stay close either to 0 or to 1, while
for Rb, intermediate values are obtained for all levels,
the amplitude of the oscillations being smaller so that
the maxima and minima still correspond to strong chan-
nel mixing. The results are very sensitive to the shape
of the potential energy curves and to the R-dependence
of the spin-orbit coupling. An important result is the
strong isotopic effect found in Rb,, which allows to pre-
dict a marked difference in the predissociation lifetimes.

Indeed, close to the P;;9 dissociation limit, the split-
ting between vibrational levels decreases below 0.1 cm™!
and the perturbations can be analyzed as a P35 vibra-
tional series perturbed by a quasi-continuum P; /2 seTies.
The pseudo-resonances give indications about the order
of magnitude of the predissociation lifetime and its strong
dependence on potential parameters or isotopic mass.

All the results can be interpreted in the framework of
a two-channel generalized quantum defect theory, where
due to the large value of the phase the quantum defect is
shown to be very sensitive to the short range part of the
potential. As a simple analytical Le Roy-Bernstein law
cannot be used to fit the single-channel results, we have
proposed a numerical law to define a generalized quantum
defect. The advantage of our derivation is that it can be
applied to any combination of long range potentials and
that it is no longer necessary to know all the vibrational
levels from v = 0, a numbering from the dissociation limit
being sufficient. We presented an adaptation of Lu Fano
plots to show the perturbations in a graph that can be
related to quantum defect theory. An important result is
that the curves on such graphs can indeed be fitted, on a
wide (1000 cm™!) energy range, by 3 parameters equiva-
lent to two generalized quantum defects and one coupling

parameter. This method could be used to bypass the dif-
ficulties arising from the present limitations in accuracy
of short range potentials by defining parameters that can
be directly fitted to experiments. Use of such parameters
to predict predissociation lifetimes above the P; /2 disso-
ciation limit and possibly fine structure transition cross
sections above the Py, dissociation limit will be the sub-
Ject of forthcoming papers. The explanation of the strong
isotopic effect in the measured trap loss [33] in a rubid-
ium magneto-optical trap could be linked to the isotopic
effect predicted in the present paper for the perturbations
in the photoassociation spectra. Indeed, dynamical cou-
pling between the two 0F (ns + np?Py/y32) adiabatic
curves has been predicted as the main mechanism for fine
structure transitions in collisions between ground state
ns and excited np®Py/s 3 /2 heavy alkali atoms [34,35] .

VI. ACKNOWLEDGMENTS

Stimulating discussions with our colleagues Claude
Amiot, Claude Dion, Ronnie Kosloff, Eliane Luc and Carl
Williams are gratefully acknowledged. V. Kokoouline
thanks the French Embassy in Russia, Laboratoire Aimé
Cotton and the ” Societé de Secours des Amis des Sci-
ences” for financial support.

[1] H. R. Thorsheim, J. Weiner, and P. S. Julienne, Phys.
Rev. Lett. 58, 2420 (1987).

[2] P. D. Lett, K. Helmerson, W. D. Philips, L. P. Ratliff,
S. L. Rolston, and M. E. Wagshul, Phys. Rev. Lett. 71,
2200 (1993).

[3] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu,
F. Masnou-Seeuws, and P. Pillet, Phys. Rev. Lett. 80,
44202 (1998).

[4] T. Takekoshi, B. M. Patterson, and R. J. Knize, Phys.
Rev. A 59, R5 (1999).

[5] N. Nikolov, E. E. Eyler, X. Wang, H. Wang, W. C. Stwal-
ley, and P. L. Gould, Phys. Rev. Lett. 82, 703 (1999).

[6] Y. B. Band and P. S. Julienne, Phys. Rev. A 51, R4317
(1995).

[7] J. T. Bahns, W. C. Stwalley, and P. L. Gould, to appear
in Adv. At. Mol. Opt. Phys. (1999).

[8] M. Vatasescu, O. Dulieu, C. Amiot, D. Comparat,
C.Drag, V. Kokoouline, F. Masnou-Seeuws, and P. Pillet,
Phys. Rev. A | submitted.

[9] V. Kokoouline, O. Dulieu, R. Kosloff, and F. Masnou-
Seeuws, J. Chem. Phys. 110, 9865 (1999).

[10] H. Lefebvre-Brion and R.W. Field ,Perturbations in the
Spectra of Diatomic Molecules (Academic Press, New
York, 1986).

[11] R.A. Cline, J. D. Miller, and D. J. Heinzen, Phys. Rev.
Lett. 73, 632 (1994).



175

[12] J.G.C. Tempelaars, R.S. Freeland, R.A. Cline, D.J.
Heinzen, E. Tiesinga, C.J. Williams, and P. S. Julienne,
(to be published) , private communication.

[13] H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev.
Lett.80, 476 (1998).

[14] D. Comparat, C.Drag, A. Fioretti, O. Dulieu, and P. Pil-
let, J. Molec. Spect. 195, 229 (1999).

[15] P. Pillet (1999), private communication.

[16] C. Amiot, O.Dulieu, and J.Verges, Phys. Rev. Lett. 83,
2316 (1999).

[17] M. Foucrault, Ph. Milli¢, and J. P. Daudey, J. Chem.
Phys. 96, 1257 (1992).

[18] N. Spies, Ph.D. thesis, Fachbereich Chemie, Universitat
Kaiserslautern, 1989 and W. Meyer, private communica-
tion.

[19] M. Marinescu and A. Dalgarno, Phys. Rev. A 52, 311
(1993).

[20] A. Fioretti, D. Comparat, C.Drag, C. Amiot, O. Dulieu,
F. Masnou-Seeuws, and P. Pillet, Eur. Phys. J. D 5, 389
(1999).

[21] R. Kosloff, J. Phys. Chem. 92, 2087 (1988).

[22] C. C. Marston and G.G. Balint-Kurti, J. Chem. Phys.
91, 3571 (1989) .

[23] M. Monnerville and J. M. Robbe, J. Chem. Phys. 101,

7580 (1994).

[24] O. Dulieu and P. S. Julienne, J. Chem. Phys. 103, 60
(1995).

[25]) V. Kokoouline, O. Dulieu, R. Kosloff and F. Masnou-
Seeuws, in preparation .

[26] H. Friedrich, “Theoretical atomic physics”, Springer,
New York, (1998).

[27] R.J. Le Roy and R.B. Bernstein, J. Chem. Phys. 52, 3869
(1970).

[28] A. Crubellier, O. Dulieu, F. Masnou-Seeuws, M. Elbs,
H. Knéckel, and E. Tiemann, Eur. Phys. J. D 6 211,
(1999).

[29] K. T. Lu and U. Fano, Phys. Rev. A 2, 81 (1994).

[30] M. J. Seaton, Rep. Prog. Phys. 46, 167 (1994).

[31] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod.
Phys. 68, 1015 (1996).

[32] P. Pillet, to be published.

[33] C.D. Wallace, T.P. Dinneen, K.Y.N. Tan, T.T. Grove,
and P.L. Gould, Phys. Rev. Lett. 69, 897 (1992).

[34] E.I. Dashevskaya, A.l. Voronin, and E. E. Nikitin, Can.
Journ. Phys., 47, 1237.

[35] P. S. Julienne, and J. Vigué, Phys. Rev. A 44, 4464
(1991).



Article: “Theoretical treatment of channel mizing in excited Rb, and Csy ultra-cold
molecules. I Perturbations in (0F ) photoassociation and fluorescence spectra”,
176 Submitted to Phys Rev. A

2000

—-2000

—4000

V(R) (cm )

—-6000

R (a,) R (a,)

FIG. 1. Cs> potential curves from Ref. [18] computed without (a) and with (b) spin-orbit coupling. (a) - Hund’s case a
A'T} (65 + 6p) (dash-dotted line) and b*IT, (6s + 6p) (solid line) curves from Ref. [18]. (b) - Hund’s case ¢ 0% (Py/2) and
03 (P /2) potential curves (solid lines) correlated respectively to the dissociation limits (6s+6p 2P, s2) and (6s+6p2P; /2)- The
two curves, referred to as Vi(R) and V2(R) in the text, display an avoided crossing which is represented in the inset: there, the
solid curves have been computed with a molecular R-dependent spin-orbit coupling (see Fig. 2 below), while the broken curves
correspond to calculations assuming a constant spin-orbit coupling.
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FIG. 2. Variation of the spin-orbit coupling Wi 2(R) used in the calculations as a function of internuclear distance R. The
quantity represented is Vso(R) = (3/v/2)W1,2(R) which is asymptotically equal to the atomic spin-orbit splitting AEsc. Full
line - calculations of Ref. [18] for Csz . Dashed line - for Rbz, model curve scaled from the Csz curve and fitted at infinity to
the rubidium atom spin-orbit splitting.
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FIG. 4. Sensitivity of the perturbation effects upon the potential curves. Black circles : rotational constants and energy
levels computed by two-coupled-channel calculations and already displayed in Fig. 3. White squares: same calculations with
slightly modified potential curves, the repulsive wall being shifted by 0.01 ao.
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FIG. 5. Influence of channel coupling on the perturbations in the Cs» (0F) spectrum.
(2) Rotational constants calculated for two uncoupled channels; solid curves, Hund’s case ¢ o} (p /2) and 0 (P, /2) channels;
dashed curve, b°I1, and, dot-dashed curve, A'S} Hund’s case a channels. (b) Calculations using atomic (R-independent)
spin-orbit coupling. The results look qualitatively similar to two Hund’s case ¢ unperturbed vibrational series. (c) Calculations
considering R-dependent spin-orbit coupling (see Fig. 2). The perturbations are more visible, as is manifest in the inset.
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FIG. 6. Influence of channel coupling on the perturbations in the **Rb, (0}) spectrum.
(2) Rotational constants calculated for two uncoupled channels; solid curves, Hund’s case ¢ ot (p /2) and 0} (Ps /2) channels;
dashed curve, b°II, and, dot-dashed curve, A'S} Hund’s case a channels. (b) Calculations using atomic (R-independent)
spin-orbit coupling. Strong perturbations are manifested in the results. (c) Calculations considering a model R-dependent
spin-orbit coupling (see Fig. 2). The perturbations are reduced, the variation of the rotational constants looking qualitatively
closer to the Hund’s case a behavior represented in (b).
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FIG. 7. Variation of the relative population aj /2 of the Py, component in the two-channel o} P /2) and o} (P, 2)
vibrational function of 8 Rb,, as a function of the binding energy E, relative to the P,, dissociation limit . The inset shows
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Abstract.

The main goal of the Thesis is the development of theoretical and numerical approaches to
the problem of vibrational levels of a diatomic molecule near the dissociation limit and to
the problem of collisions between two cold atoms. This work was motivated by numerous
recent experimental results on the formation of cold molecules.

In the considered problem, the relative motion of two atoms reaches very large internuclear
distances, where the potential is very weak and where the wave function oscillates very slowly.
On the other hand, in the internal zone, the wave function oscillates fast. For a solution of
this problem, a new method of the Fourier grid representation is proposed. The grid step of
the new representation is adapted to the local de Broglie wave length. It is demonstrated
that the wave function can be accurately represented using less than two grid points per
one oscillation. The method allows to determine positions of all bound levels, positions and
widths of pre-dissociated levels, long-range wave functions (> 1000 ag) for the one- or multi-
channel potential. The method is applied to the prediction of photoassociation spectra of
(s, and Rb,; and to the interpretation of the experiment of the symmetry breaking in Li,.
The perturbations in the spectra of Rby and Cs; are discussed in a frame of the Generalized

Quantum Defect Theory.

Keywords

Collisions of cold atoms Fourier Grid Representation
Photoassociation of cold atoms Mapped grids

Lon-range vibrational motion Generalized Quantum Defect Theory
Long-range potential Lu-Fano plot

Cold molecules
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Résumé.

L’objectif principal de la These est le développement des méthodes théoriques et numériques
pour étudier soit Jes niveaux de vibration d’une molécule diatomique proche de la limite dis-
sociation, soit les collisions entre atomes froids. Ce travail est motivé par de nombreux
résultats expérimentaux récents sur la formation de molécules froides.

Dans les problémes considérés, le mouvement relatif des deux atomes s’étend a de grandes
distances internucléaires, oti le potentiel est trés faible et ou la fonction d’onde oscille tres
lentement, alors que dans la zone interne elle oscille rapidement. Pour résoudre cette dif-
ficulté, on a proposé une nouvelle méthode de représentation de grille de Fourier ou le
pas d’intégration est ajusté sur la longueur d’onde de Broglie locale. On a montré qu’une
fonction d’onde peut é&tre représentée avec précision en utilisant moins de deux points par
oscillation. La méthode permet de calculer la position de tous les niveaux liés, la position
et la largeur des niveaux pré-dissociés, des fonctions d’onde tres étendues (plus de 1000 ao)
pour un systéme 3 une ou plusiers voies. La méthode a été appliquée a la prédiction des
spectres de photoassociation de Cs; et Rb; et a 'interprétation d’une expérience de violation
de symétrie dans Li;. Les perturbations dans les spectres de Cs; et Rb; sont modélisées

dans le cadre de la Théorie de Défaut Quantique généralisé.

Mots-clés
Collisions entre atomes froids Représentation de grille de Fourier
Photoassociation d.atomes froids Grilles transformées

Mouvements vibrationnels de grande élongation Théorie de Défaut Quantique généralisé
Potentiels & long - portée Graphiques de Lu-Fano

Molécules froides






