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Chapter 1

Introduction

The electronic spectra of free radicals are often severely complicated by strong interactions
between the electronic and nuclear degrees of freedom. These effects are of considerable interest,
and have been the subject of a number of theoretical studies, but unfortunately the complexity
frequently leads to ambiguities of analysis. The use of lasers to excite single vibronic levels
fluorescence has recently provided a means of circumventing many of the problems of assignment
of such spectra, particularly when the laser frequency can be tuned over a number of excited
levels.

The excited states of neutral and free radicals of triatomic molecules are of great interest in
astrophysics, in the study of the interstellar gas, dust clouds, nebulae and even in the chromo-
spheres of cold stars. Because of the high vacuum existing usually in the interstellar medium,
such excited states and free radicals can can have a long life time, and the spectral analysis can
give informations about the environment and dynamics of the molecules. At the same time,
some species and excited states can be observed only in interstellar medium, due to the particu-
lar conditions existing there. Moreover, in the dynamics of the Earth atmosphere, as well as in
the interaction with ionizing radiation and cosmic rays, the triatomic molecules play a key role.

Triatomic molecules are widely used in the laser industry. From the standpoint of potential
applications, the carbon dioxide laser unquestionably ranks first. It is capable of continously
generating as high power as 10 kW at a relatively high efficiency (up to 40 carbon dioxide,
molecular nitrogen, and diverse additives, such as water molecules. The active transitions occur
between vibrational states of the molecule, and a good knowledge of the interactions involving
these states is required.

Taking into account all degrees of freedom on the molecule in the adiabatic approximation,
the energy of the molecule is the sum of three independent terms.

The first term E. = U, (7), gives the value of the effective potential energy, corresponding
to the energy of the electron subsystem of the molecule in the mth quantum state, the electronic
energy.

The second term, E,, is the energy of vibrations in the molecule, the vibrational energy. The
vibrational energy w,, depends on the electron configuration of the molecule, and it is important
to note that the potential energy for the vibrational mouvement is in fact the electronic energy.

Finally, the third term, F, is due to the rotation of the molecule, the rotational energy.

The order of magnitude of the three energy terms can be compared by using Heisenberg’s
uncertainty relations [1]. Assuming typical values, the electronic energy, is of order of magnitude
L. ~ 2eV. The vibrational energy for weakly excited vibrations (v~1)is B, ~ E, F o
10~2eV, where m, is the electronic mass, and M is the molecular mass. The rotational energy
of the molecule for weakly excited states (J ~ 1) is E, ~ E.2¢ ~ 107%V. The estimates
obtained by taking into account all the degrees of freedom indicate that AE. > AE, > AFE,.

The ab initio techniques are able to determine the shape of the electronic energy as func-
tion of the internal coordinates, necessary for the study of molecular problems of structure,
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stability, calculation of harmonic vibrational frequencies [2]. However, widespread quantitative
applications have only become practically possible in recent times, primarily because of explo-
sive developments in computer hardware and associated achievements in the design of efficient
mathematical algorithms. A complete specification of the molecular geometry requires not only
a description of internal bond lengths and angles, but also of conformation. The computation
required to map a conformational profile completely, may be significant for large molecules.
There is ample incentive to use a simpler approach. Errors in calculated vibrational frequencies
arise both from inherent inaccuracies of differentiation techniques required in the evaluation of
the matrix of force constants, and from uncertainties in the selection of the equilibrum geometry.

For a triatomic molecule, the three different vibrational oscillations are called vibrational
modes. In the symmetric stretch mode, the external atoms oscillate along the axis of the molecule,
by simultaneously departing and approaching the central atom in between. In the asymmetrical
stretching mode, the external atoms also move along the axis of the molecule, but both in one
direction relative to the central atom itself moving to the other side (the projection on the linear
axis of the molecule). In the bending mode, all three atoms of the molecule undergo vibrational
oscillations by moving perpendicularly to the molecular axis. The frequencies of the symmetric
stretching, bending and asymmetric stretching are denoted by vy, v, and v, respectively.

The form of the vibration Hamiltonian is a direct consequence of the coordinates and coor-
dinate axis of the system chosen to describe the configuration of the molecule at any instant.
Three parameters are necessary to describe the shape of a triatomic molecule, i.e. the instanta-
neous values of the two bond lengths r12 and ro3,and the instantaneous value of the angle between
the two bonds, a.

From the point of view of the intramolecular force field, a particularly appropriate set of
three parameters consists of the deviations Arj,, Args and A« of these quantities from the same
reference values. These parameters are called the generalised (true valence) coordinates [3, 4].
The coordinates are very useful for the potential energy force constants, but the corresponding
kinetic energy has a more complex expression and can not be solved analytically.

However it is customary to use as coordinates three rectilinear displacements of the molecule
from the equilibrium, called the linearised valence coordinates [3, 4]. In the limit of small
amplitudes, these coordinates become the true valence coordinates. For the molecules that can
be treated in the standard approach, the equilibrium configuration corresponds to a well defined
minimum of the nuclear potential energy function (i.e. all vibrations have small amplitude).
The nuclear potential energy function is harmonic in the Cartesian displacement coordinates
near the vicinity of the minimum. This allows the standard perturbation treatment to proceed.

When the amplitude of the bending vibration become large, but the stretches of the bond
lengths are small, the curvilinear coordinates can be used. This treatment leads to a Hamiltonian
which can be applied equally well to both linear and bent triatomic molecules [5, 6, 7], as
opposite of the two separate formalisms used in the standard approach for the linear or non-
linear molecules [3, 4, 8, 9].

The normal coordinates are defined as a linear combination of the mass weighted Cartesian
displacements and are similar to the linearized valence coordinates. The kinetic energy is di-
agonal with a unit metric tensor and the potential energy is harmonic in the vicinity of the
minimum.

The historical development of the ro-vibronic Hamiltonian of triatomic molecules can be
considered to have occured in three main stages. Initially, the nuclear motion of the molecules
was described using the rotor-harmonic oscillator approximation, making extensive use of the
perturbation theory. This approach is described in detail by Wilson, Decius and Cross [10], and
by Nielsen [11]. It is an essential part of this "standard” treatment that all of the vibrational
motions are assumed to be of small amplitude. Two separate vibration formalisms are commonly
used for the triatomic molecules, depending on whether the molecule under consideration is linear
or nonlinear [3, 4, 8, 9]. The main difference arise when treating the bending vibrations of small
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amplitude for the triatomic molecules.

Following the observation and analysis of the electronic spectrum of the N H; free radical
by Dressler and Ramsay [12], it was realised, particularly by Dixon [13], that the bending
vibrational motion was of large amplitude. Subsequently Hougen, Bunker and Johns [5] realised
that it was also necessary to consider the variation with the bending angle of the associated
reduced mass, the bending ” g - value”. This greatly improved the description of the vibration -
rotation motion which could be described using a single large amplitude vibrational coordinate.
The rigid bender model of HBJ contains a key idea, which is the definition of a large amplitude
reference configuration. In the rigid bender model the coupling between large amplitude bending
and small amplitude stretching is completely neglected. An improved description is obtained
with the semirigid bender Hamiltonian, proposed by Bunker and Landsberg [14]. In this method
the bond lengths are allowed to stretch as the molecule bends, mimicking the motion along the
minimum of the potential energy surface for symmetric stretching and bending. This approach
has been widely used in vibronic calculations by Jungen and Merer [15] and their collaborators,
and by Duxbury and Dixon [16]. The effective rotation-bending Hamiltonian for the nonrigid
bender approach is obtained by using the rigid bender Hamiltonian as the zeroth order solution
and by treating the effects of the neglected terms in the HBJ Hamiltonian by perturbation
theory using a contact transformation, [17, 6] . Because the perturbation theory is used to treat
the effects of the small amplitude vibrations, the effects of resonances between states involving
different amounts of excitation of these vibrations are not allowed for (18].

A major new line of approach was begun by Carter and Handy (19], and by Tennyson and
Sutcliffe [20], who developed general methods of solving the full three dimensional vibration-
rotation problem using an instantaneous axis system. To some extent these developments have
become possible because of the increases power of the supercomputers necessary to solve these
equations.

The small amplitude stretching vibrations are treated in the normal coordinate formalism
as separate harmonic oscillators, with eventually anharmonic terms considered [5, 6, 18]. In
some variational methods, the matrix of the stretching Hamiltonian is set up in a basis of Morse
oscillator product functions (symmetrized for an AB, molecule, and unsymmetrical for a ABC
molecule), and is diagonalized using Householder’s method (7, 21].

In considering the ro-vibronic structure of open shell molecules, the primary effects of the
bending of the nuclear framework are to lift the degeneracy of the electronic states with non-zero
values of the electronic angular momentum, for example II states with A = 1 and A states with
A = 2. This is ussualy referred to as Renner-Teller effect (RT), and describes the coupling
of the electronic orbital motion with the nuclear motion round the axis of a linear molecule,
with the definition of the linear, extended to include molecules that become linear as a result
of vibration. The effect is not just a spectroscopic curiosity because, included within this wider
definition, are familiar molecules such as NOj and SO, where some of the complexity of their
spectra is a direct result of the Renner-Teller coupling. The development of the theory of this
type of system parallels that of the vibration-rotation problem described previously. Renner’s
classic paper [22] based on an idea of E. Teller’s appears in 1934, with a detailed analysis of the
coupling in a degenerate I electronic state, was made within the framework of the harmonic
oscillator rigid-rotor expansion. Almost 25 years passed before the first example was reported,
in the spectrum of N H, molecule [12, 23]. This was a type that Renner has not considered:
N H, is a nonlinear molecule and the interpretation of the spectrum required an extension of his
concepts. This was done by Pople and Longuet Higgins (24, 25]. This model has been extended
to include the spin-coupling and the vibrational anharmonicity and to take into account the
rotation and the spin uncoupling [26, 27, 28, 29]. An example following Renner’s ideas more
closely, was latter found during the study of the ground state of the linear molecule NC'O (30].

An Electron Spin Resonance (ESR) study on Renner effect in the 2I] ground state of NCO
by Carrington et all [31] attributed the observed anomaly in the orbital g-factor of some ro-spin-
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vibronic levels partly to the presence of the vibronic interaction in the 2II electronic ground state
with the excited electronic states, i.e., Herzberg-Teller (HT) interaction. The Herzberg-Teller
interaction is due to a nontotally symmetric vibration which gives rise to forbidden components
in an electronic transition [32]. A suitable vibration mixes a vibronic state of the II ground state
with vibronic states of excited ¥ 1, 3~ and A electronic states, if the former and latter vibronic
states have the same symmetry and differ only one quantum in the bending vibration. The HT
interaction is introduced by means of a parameter gx, [33, 34, 35, 15], which is related to other
observable quantities.

The Fermi resonance arises when two energy levels lie close together and the symmetry
requirements are met. The Fermi resonance is due to a mutual interaction between energy
levels attributable to anharmonic terms in the potential energy expression. Fermi originally
proposed such an interaction to explain certain anomalies in the spectrum of C'O; involving
(100) and (020) vibrational energy levels [36]. The treatment of Fermi is valid in detail for
linear triatomic molecules in nondegenerate electronic states (L states), between states in the
form (vy + 1 vy v3) and (vq v2 +2v3). Hougen [37] generalized the treatment for linear triatomic
molecules in degenerate electronic states (II, A, ® states). In general, the Fermi resonances
cause severe complications in electronically degenerate states subject of Renner-Teller effect - a
good example is the A%Il, — X211, system of BO, [38].

As was mentioned above, in many triatomic molecules only the bending motion is of large
amplitude, but the coupling between the bending and stretching motion, whilst weak, can often
lead to complicated vibrational resonances. The aim of this thesis is to develop an approach
which, while accounting in detail for the large amplitude bending motion, and the anharmonic
resonances, preserves the relative simplicity of the semirigid bender method. -

The reduction in computer time associated with this analytical development of the new
Hamiltonian would allow the resultant Hamiltonian to be used as core part of another more
extensive calculations, such the motion of a Rydberg electron coupled to a polyatomic frame.

The method which has been developed for this purpose, the ”Stretch-Bender” (SB), relies
on modelling the stretching displacements relative to the semirigid bender framework. The
nuclear displacements from the reference frame to the instantaneous axis frame should be of
small amplitude, and hence the size of the basis of stretching functions should be minimised.
The implementation has so far been restricted to symmetric AB; molecules, even if the model
have been developed at the level of the rigid bender formalism for unsymmetric ABC' molecules.

The development of the stretch-bender method follow the usual route, firstly considering the
treatment of a non-degenerate electronic state and then considering the extension to include
the electronic angular momentum coupling (RT effect) which occurs in a degenerate electronic
state, along with the interaction between stretching and bending vibrations (FR).
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Chapter 2

Theoretical Overview on the
Bending and Stretching Models and
their Interactions

2.1 Coordinates and Axis

The geometry of a triatomic molecule in the molecule fixed coordinate system and the Cartesian
coordinates corresponding to it, is given in (Fig.2.1).

2.1.1 Generalized (Free Valence) Coordinates

We define the generalized valence-force displacements coordinates (see Fig.2.1), following [3, 4,
5, 6, 39]:

e
+

Bt Sy

z + d

3 3z

e
)§+d2y
e
z+d
2

2z

Figure 2.1: The definitions of the angles p, p, and ¢ used for the triatomic molecule and the molecule
-fixed coordinate system, which is chosen so that the z, y, and z axes form a right-handed axis system.
The open circles are the positions of the nuclei in the reference configuration ; the shaded circles are the

actual positions of the nuclei
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e The bond-stretching coordinates R and R® represent the instantaneous changes in the
internuclear distances:

Rl = 712 — T'T2
R3 = T93— 7‘53 (2'1)

The instantaneous changes in the bond lengths may be expressed in terms of the Cartesian
coordinates of the displaced nuclei for a bent molecule as:

1
RY = {[=rfycos(p— ) + (dis — doo)* + [rfasin(p =€) + (A, — d2) }* — 1
1

R® = {[—r§3 cose + (ds, — dzZ)]2 + [regsine + (dsy — dgy)]2}5 — 153 (2.2)

For a linear molecule the generalized coordinates and the Cartesian coordinates are related
by the eq. (2.2), with the condition p =¢ = 0.

e The angle-deformation coordinate R? is defined as the actual change in the valence angle
of the triatomic molecule:

R:l=a—a,=p.—p (2.3)
The instantaneous angle may be expressed in terms of the Cartesian coordinates for a bent
molecule:
A
2 — —
tan (a +R ) =5 (2.4)
where:

A = [rfysin(p —€) 4 (diy — day)] [r33 cose + (d3z — da;)]
+ [rf2cos(p — €) + (d2. — diz)][r3asine + (day — day)]
B = [riysin(p —e) + (diy — day)] [r3zsine + (dsy — day)]
— [r§ycos(p — €) + (d2, — dy,)][r33cos€ + (ds; — daz)]

In the case of the linear molecule, the orientation in space of the R? coordinate is defined by
the projections R2 ,Rz of the R? in the zz and yz planes of the Cartesian coordinate system.

The Rf/ is defined by the eq. (2.4) with the condition p =¢ = 0 and RZ by an equation similar
with (2.4), in which we replace diy by diz (i = 1,3).

Obs. 1 The equations (2.2) and (2.4) are more general than the equations |3, eq.(3a)-(3c)].
Obs. 2 The relations (2.2) and (2.4) are quite general and involve no approximations.
Obs. 3 In Pliva’s treatment [3], the angle € is chosen as € = £, for the bent molecule.

In equations (2.1) and (2.3) the quantities ry2 ,r23 and & are the instantaneous values of the
two bond lengths and the bond angle, respectively. At the minimum of the potential energy
function, the molecular geometry corresponds to the values 710 = 7§, ,ro3 = r3 and @ = ..
The angle p is defined by the relation: p =7 —a. By definition, 0 < & < w. Consequently, the
bounds of p are 0 < p < 7 and R? must be in the interval p. — 7 < R? < p,.
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2.1.2 Linearized Valence-Force Coordinates

The linearized coordinates can be defined for small displacements from equilibrium. Following
(3, 4], for small displacements it is possible to expand eq. (2.2) and (2.4) in power series
in the displacement coordinates. If only linear terms are retained, the relations between the
instantaneous bond lengths and instantaneous angle, and the Cartesian displacement coordinates
follows:

Qé = (dly — day)sin(p — €) = (dy; — da.) cos(p — €)
g% = (dsy —dyy)sine + (ds, — dy;) cose (2.5)
1 1
7' = == (day — dgy) cose + =~ (dyy, — dy,) cos(p — ¢)
T3 T12
1 1
— —(d2: — dy;)sin(p~¢€) — — (dy, — d3;)sine
T12 T3

For a linear molecule the eq. (2.5) can be applied by taking into account the condition p = ¢ = 0.
The angular coordinate v° is defined by the projections 2 and 73 of the ¥%in the zz and yz planes
of the Cartesian coordinate system in the case of a linear molecule. The 78 is defined by the last
equation of (2.5) and 72 by an similar equation with (2.5) in which dy, is replaced by d;, and
i=1,3. ¢} and gs represent projections of the true general valence-force coordinates, R! and R3,
in the directions of the undisplaced bonds. From the relations (2.5) and the Eckart conditions
[40, 5], the relations between the Cartesian displacement coordinates and the linearized valence-
force coordinates are found for the linear molecules in [4, eq.(5)-(6)], and for the bent molecules
in [3, eq.(5)]. On substituting these relations in (2.2) and (2.5) and by expanding in series,
the relations between the general and linearized valence-force coordinates are obtained in 3,
eq.(6)-(9)] for the bent molecules, and in [4, eq.(8a)-(9b)] for the linear ones.

2.1.3 Curvilinear Coordinates

The curvilinear coordinates [5, 6, 7] are able to describe triatomic molecules for which only the
bond stretches are small amplitude vibrations and the bending motion can be a large amplitude
vibration.

For a triatomic molecule with a large amplitude bend we cannot choose the vibrational
coordinates as in the standard approach (i.e. as displacements from a rigid structure as in
(§2.1.2)) since then all three vibrational coordinates would describe large amplitude motions
and the diagonalization of the Hamiltonian would become unmanageable.

The curvilinear coordinates minimize the coupling between the large amplitude and small
amplitude vibration. The stretching coordinates measure the instantaneous displacement from a
variable reference configuration with fixed bond lengths i and r5; and bond angle a. They are
defined in the eq. (2.1) and (2.2) accordingly with the Fig.2.1. The third vibrational coordinate
is chosen as: p =7 — a.

It is almost, but not quite, equal to the instantaneous value p of the bond angle supplement.
The p coordinate defines the reference configuration that ”follows” the large amplitude motion
and is not an internal coordinate in that it has no simple definition in terms of the bond lengths
and bond angle.

The reference configuration is chosen so that in the molecule fixed axis system:

e the nuclear center of mass is at the origin
e all nuclei are in the yz plane

e the bond lengths are fixed at the values r¢, and r5s (taken to be the values corresponding
to the potential energy minimum in all three coordinates)

17



e the z-axis makes an angle € with r§; (Fig.2.1).

The ¢ value is chosen by requiring that the angular momentum of the reference configuration
vanish in the molecule-fixed axis system, i.e.,

Smiie) X (%) =0 (2.6)

where @;(p) represent the reference configuration from which the small-amplitude displacement

-

vectors d; are measured. The equations for @;(p) are done in [5, eq.(2)] or [6, eq.(2.3)]. From
the eq.(2.6) we find that:

@ _ Uy + u13€0Sp (2.7)
dp w4 us—+ 2ujzcosp
with
w = my(mg+msg) (rfy)”
ug = mg(my+my)(rss)’ (2.8)
wa = mams(riz) (rss)

which represent the terms introduced by [5]. The displacements d; are subject to the following
constraint equations:

e the center of mass condition
e the Eckart conditions [40]

e the Sayvetz condition [41] which defines the p angle and the relation between p and p
(instantaneous coordinate), [6, eq.(3.13)]

Because the potential energy is expressed in terms of the R, generalized coordinate, which is
function of p , from (2.3), we have to express g in terms of p in order to obtain V as a function
of Ry ,Rqy,p. The equation between p and p, expanded as a power series in R; and Ry is:

ﬁ:P—ZAiRi+--- (2.9)
i

with the summation over 1 = 1,3

Ai (uituis cosp)sinp

= T e (vturs sin? p) (2.10)
v = U3 (%f_t& - 1) =mmaorior§s  and m =mq + mg + ma
Two symmetrized linearized internal stretching coordinates are defined by:
5:(2;):UB3 (2.11)

where:
e d is a nine element vector containing d;

e B matrix is given by :

B 0 sin(p—¢) —cos(p—¢) 0 —sin(p—¢€) cos(p—e) 0 O 0 (2.12)
V0 0 0 0 —sine —cose 0 sine cose ’
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e the U matrix is depending on the molecule:

— for a symmetrical AB; molecule:

U:\/i(i 1 > (2.13)

-1
— for a unsymmetrical ABC molecule U is a unit matrix.

We can write:
d=AUS (2.14)

where the A matrix (whose elements are functions of p) for a general triatomic molecule
is given in [7, Tablel] :

/ : : \
ma(ma + mg)sin(p — €)D"' mymgcos psin(p — €)D"
—mg(m2 + m3) cos(p —e) D' —mymgcos pcos(p — )DL

0 0

—my(mg + m3)sin(p —e)D™'  —mymgcos psin(p — e) D!
A= —mymgcos psine D! —msa(my + mg) cose D™} (2.15)

my(mz + m3) cos(p —e)D~!  mymgcos pcos(p — ) D!

—myms3cos pcose D! —m3(my + mgy) cose D!
0 0
mymo cos psineD ™! mao(my + my)sine D!
mymg cos pcose D! ma(my + mg) cose D! )

with D = my (my + ma + m3) + mq m3 sin? p.

2.1.4 Normal Coordinates

The normal coordinates are defined as linear combination of the mass-weighted Cartesian dis-
placement coordinates:

_1
diq = m,; 2 Zlia ,s(p) QS (216)
S
where: the summation is over s = 1,3
:1=1,2,3
a=1zr,y,z

The potential energy can be expressed in normal coordinates and becomes a sum of terms,
each involving only one coordinate. The kinetic energy expressed in normal coordinates is also
a similar sum of terms. Hence, the Hamiltonian is separable in normal coordinates.

The properties for the [ = (l;, ;) matrix are discussed in 8, eq.(11)-(14)] and [6, eq.(4.21)
and Table IV,V]. Tt is possible to use the equations from (§2.1.2) in order to construct the
kinetic energy in the traditional GF matrix formalism [10], if we write them in the form:

1
m1_2 dioz = Zlia ,8 Qs (217)
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where (), = @,6,7° ; a==z 1Y,2. The [ matrix from (2116) can be chosen as orthogonal
ti= { where 1l+ is the transpose of [ and [ is the unit matrix. [ is the matrix of the eigenvectors
of M2V M™2.

it MEV N

I=A (2.18)

W=

where:

o V= (Uia kg) = (%)e is the potential energy matrix

~ 1 -1
[ ] M_f = <m 2

i 2 0ia Mg) is the diagonal matrix of the square root of the masses

e Ais the diagonal eigenvalue matrix.

As pointed out by Hougen et al [5], the traditional GF matrix formalism (WDC) with the
bending coordinate removed can be applied for the curvilinear coordinate case, by using the
coordinates 57 and S3 to perform a GF calculus.

The normal coordinate-ordinates are defined by [6] as:

a=(g)-is 219

where the 2x2 L matrix is obtained from the eigenvalue equation:
L'GFL=A (2.20)

L is normalized so that:
Lit=G (2.21)
The G and F matrix in the § coordinate-ordinates are [42)

e for a symmetrical ABy molecule:

mg+4my sin? £ 0 Fy + F 0
3 — myma r — 11 13
¢ ( 0 matm cos? £ ) ¥ ( 0 Fiu-Fas ) (2.22)
mima
e for a nonsymmetrical ABC molecule:
Go | it o fo | fie (2.23)
—mLz cos p mLQ-{— m%, o\ Pz I3 .
The | matrix can be computed from [43]:
[=M2BTUH @t (2.24)

2.2 Perturbational Approach for the Vibration Energies of the
Molecules

Of most interest are the vibration levels where the vibration energies are small. Nielsen [11]
has derived the relationships correct through second-order of approximation, relating the vibra-
tional energies and rotational constants to the cubic and quartic terms in the potential energy,
expressed in normal coordinate space.

The coordinates used for this approach have been defined in eq. (2.16) , (2.17) . In order
to deal only with the vibrational coordinate-ordinates, the following constraints are used:
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1. the nuclear center of mass remains at the origin (it was neglected the difference between
the center of mass of the molecule and that of the nuclei).

2. the z,y,z axes of the reference system coincide with the principal axes of inertia when the
nuclei are in their equilibrium positions.

3. the Eckart conditions (in the zeroth order of approximation the internal angular momentum
of the molecule shall be zero).

With these constraints we will minimize the expression:
/.../@(T+V—E)@dVldVQ...dv,. (2.25)

where
e ¢ is the total wavefunction
e T is the kinetic energy
e V is the potential energy

The eq.(2.25) is subject to the normalization condition:
[ [wwaoaxap ] dQ. ] doy =1 (2.26)
s aj

where
o U= ,u-‘4l sinz § @ is due to a change of the volume element
e 0, X, are the Euler angles
® (), are the normal coordinates
e «; are the Cartesian coordinates of the electrons
® 4 is the inverse of the determinant of the 3x3 inertia momentum tensor

The minimization process does not lead finally to an exact solution: but if we consider as
small certain terms in it, and neglect them at the present, we may effect a partial separation of
variables by adopting for U(0) the following function:

VO = ®(aj,0;;rmn) R(6,,0,x, ) (2.27)
where

® ®(a;,0;;rmy,) is the electronic wavefunction depending on the a; Cartesian coordinates
and o; spin of the electrons.

® 1, is the distance between two atomic nuclei and enter as parameter in the electronic
wavefunction.

e R(Q,,0,x,) is the vibrational wavefunction which depends on the normal coordinates
and the Euler angles.
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After averaging the cross terms over the electronic coordinates, the vibrational Schrodinger
equation is:

112 _a 1l
FH [E (Jo = Pa) Hap ™2 (Jp — pp) p*

af
_1 1
+ Zps,u* 2 Ps 4 +Ue(rmn)'—E R(QsaH’X7(to):0 (228)
8
where
e J, is the total angular momentum, expressed classically as J, = (%)
- a=x,Y,z
— wq is the & component of the angular velocity vector of the molecule fixed axes system
in the laboratory fixed axes system.
—B=a,y,zand a Ap
® p, is the component of the internal angular momentum of the nuclei directed along « axis:
Pa = Z Z Cg,o;) Qs ps (229)
s g
° (3(03 is the Coriolis coupling factor:
nga — Z (liﬁ,s' l,',y 5 liﬁ ,8 li'y,s’) (230)
@
- 61’:33,117275:53791277:37,%2
—a FB
o p; = —iha%gs

Kap are the inverse elements of the 3x3 inertial tensor,

pap = (Iap) ™! (2.31)

U.(rmyn) are the electronic energies which depend upon the internuclear distances as pa-
rameters.

The electronic energies define the potential energy function which determines the manner in
which the atomic nuclei may vibrate when they are free to move. Since the energy values
Ue(rmn) cannot readily be determined, they are replaced by another function U.(Q), which
approximates the actual function very closely, particularly in the region where, in a classical
sense, the atoms spend most of their time.

Of most interest are the vibration levels where the vibration energies are small. Since in
such instances the amplitudes are small, we can replace the actual potential energy surface by a
power series expansion about the equilibrium values. Such a function has the disadvantage that
it contains more independent constants than can be determined from the experimental data. In
such cases simplifying assumptions must be made which will supply additional relations between
these constants:

e The assumption of the valence forces supposes the forces between the atomic nuclei to be
directed along the valence bonds and between the valence arms.
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e The assumption of the central forces, but less successful.

These assumptions may be introduced at the end, since they simply impose definite relationships
between the generalized force constants k;;.

In order to express Ue(7,5,) in terms of the Q, coordinates, i.e. U.(Q;), the displacement co-
ordinates Ar,,, are expressed in terms of the coordinates d;io- The d;o coordinates are expressed
as function of the normal coordinates using eq. (2.16).

For the quadratic portion of the potential energy we have:

Up = % > Q2 (2.32)

where A; = (2mcw,)?. In eq. (2.32), w, is expressed in em=1.
The cubic and quartic terms in the potential energy expansion, when expressed in the coor-
dinates @, will be:

U] = hc Z ks,s’,s” QSQSIQSU

Iyl
$,8',s

U2 et hc Z k‘sysl,sll Qs Qs/ Qs” Qs’” (233)

S,S’,S“,S’”

where s < &' < 5" < . The potential energy constants kesrsn and kggongm are expressed in
em™'. The equation (2.28) does not adapt itself to an exact solution. It becomes necessary
to replace it by its expansion in order of magnitude and obtain an approximate solution by
using the methods of the perturbation theory. The expansion is made on the basis that the
displacement coordinates d;, and therefore the normal coordinates Qs are small when compared
with the equilibrium values of the nuclear coordinates.

The Hamiltonian will be:
H=HO4 g + H®@ (2.34)
where:
1
HO) = 53 [r2+2Q%+

H(1) = TW 4y,
H(?2) = T®4y, (2.35)

N =

I
2.

with @ = 2,y,2. T() and T? are the terms from the kinetic energy arising when p, p,p are
expanded in @), basis [11]. '
The solution of the zeroth order problem:

(H(O) _ E(O)) v — (2.36)

is separable into the vibrational coordinates (), and the rotational coordinates , X, if one
adopts for ¥(® a function: ‘

lII(O)(Qs 3 o y Xy (P) = HXS (Qs) R(o) X) eiMap (237)

The separation of the variables leads to a set of differential equations of the following kind for
the vibrational problem, one for each vibration frequency w;:

7+ 2@ - B (@) =0 (2:39)

If the frequency ws is nondegenerate, the eq.(2.38) is the equation for the lnear harmonic
oscillator, if w; has two vibrational coordinates associated with it, eq. (2.38) becomes the
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equation for the two - dimensionally isotropic oscillator. When there are three coordinates
required to describe a vibration frequency wg, eq. (2.38) becomes the equation for the three
dimensional oscillator [44].

The contributions to the energy due to H(1) and H(®) may be evaluated by the usual methods
of the perturbation theory but, because of the large number of terms in H® and H®), this is
a formidable undertaking, especially since the zero order energies may be degenerate. This
suggests the effectiveness of transforming H by a contact transformation THT! into (H(O))' +
AHOY 4 X2(H@) 4 ... so that to the second order of approximation (H)’ will contain only
the degenerate Coriolis terms. The evaluation of the second-order energies is thus, in principle,
reduced to a first order perturbation calculation.

The transformation function is T(A) = €9
equal to [45]:

, which, to second order of approximation is

A2 A3
T=1+4+:A5- (7> 5% - ("?) S+ (2.39)
To second order of approximation the transformed Hamiltonian will become:
H = (HOY £ X\(HOY £ X2HO) 4 .. (2.40)
where:

@ (H(O))' — g
o (HWY =HO _; [H(O) S _ SH(O)]
o (H®Y =H® + 1[5 (HO+ HOY) - (HW 4+ (HWY) 8]

The portion of H(1), that we wish to remove, consists of terms each of which is a function of the
normal coordinates (s (or the conjugate momenta ps) multiplied by a coeflicient which either
is a constant or a function of the angular momentum operator J,. The basis transformation
functions S which remove from the first-order transformed Hamiltonian the type of the terms
occurring in H®) are given in [44, Table.Il). In the case of resonance between frequencies (i.e.
2w, ~ wyr, the term hekszer Q% Q4r) the usual methods of the perturbation theory fail and such
terms in the first order Hamiltonian which are instrumental in setting up resonance must also be
retained as part of (H(")". When the zero, first and second order contributions to the vibration
energy are combined, one obtain for the vibration energy [11, eq.(IV.19)], in the absence of the
resonance:

Evib _ EO ( gs)
he hc+zs:wS Vs+2
+ T (Vor 2) (ver L) 4 5 v bl (2.41)
SS’ tt’
where

e g, is a weight factor equal to 1, 2 or 3, respectively as w, is one, two or threefold degenerate
® X\, and Xy,1,, are the anharmonic constants (corresponding to we x. in diatomic molecules)

e V, and [; are the quantum numbers associated with the two or three dimensional harmonic
oscillator:

1

H:/mrm Xsd = (‘fs + &> W Xs,l (242)
hc 2
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The relations between the anharmonic constants of (2.41) and the force field constants given by
the potential

V, = %Z ki QF + % > ki Qi Q; Qr + % Z kiji Qi Q; Qr Qi (2.43)

i,k 1,7,k

are [46, eq.(17)-(20)]:

1 k? &= o 8w? — 3w?
2 = . 6k73 g 15 _S88 - 558 i 8 S
gtes 4[ # (ws> Z(wsa) dw? — w?

&' 5!

1 kssskss's’ 2 We ksss”ks”s’s’
S 5 {ksss's’ e <__(JJS_) a 4kSSSI 4&»‘? = wf; ; %,: ( Wgtt )
k'2 o1t
= s58's Wt
; (Q(gs +gs’ - 2)') y

wfn - wsl . wf,
(ws + wy + ws”)(ws + wyr — ws”)(ws —ws + ws”) (ws — W — ws”)

b () pe ()]

9s9st o
1 2 Wt
Xltlt = — Z [2ktttt + %: ktts’m} (2.44)

o - )| |
e 2 il (Wt + wy + wyn ) (we + wyr — wer J(wy — wyr + wen ) (wy — wyr — wen)

1 ao (o) (o) (a (o)
+ 205 B (¢feh ¢, - ¢k, )

where o = @, y, z. The sum over ¢ indicates a sum over the components of a degenerate vibration

and the index t takes on those values of s corresponding to doubly degenerate vibrations. B{*®

is the rotational constant for equilibrium. The relations between the cubic and quartic force
constants in (2.43) and (2.44) are given by [46, eq.(3)].

2.3 Bending Vibrations

2.3.1 Harmonic Oscillator

For the small amplitude bending vibrations we have two different treatment, depending if the
molecule is bent or linear.

Bent Molecules

For a bent molecule the Hamiltonian corresponding to the bending motion is the harmonic
oscillator:

1 1
HO — P2 ~k 2 2.45
2EYE + Sk Q3 (2.45)
where 45 is the ”bending” mass, P, = —iha% and kg is the force harmonic constant for the

bending vibration. The eigenvalue for the eq. (2.45) is:

E, = huw (n + %) (2.46)
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In this case the eigenfunction is:

xn(&2) = — H,(&2) 5 (2.47)
/2"l /T

with H,(£€) - Hermite polynomials and &; connected with the coordinate @2 through:

£ = @y with o= ,/552 (2.48)

The volume element for x,(§) is: dV = dQ, and the parity is (—=1)".

Linear Molecules

In the case of a linear molecule the bending vibration has an elliptical motion. In a Cartesian
coordinate system there are two bending coordinates, ¢, and ¢,, which correspond to two or-
thogonal vibrational motions at right angles. The elliptical motion of the respective atoms result
in vibrational angular momenta directed along the z axis (the axis of the linear molecule). It is
advantageous to convert to the cylindrical polar coordinates system [44], by taking into account
the combinations, because of the symmetry of the molecule:

I+ = o + iqy = qe*'¥ (2.49)

where ¢ is the linear displacement from the equilibrium (which correspond to the general dis-
placement coordinate p) and ¢ to the vibrational angular coordinate (the third Euler angle).

The Hamiltonian for the twofold isotopic oscillator in polar coordinates can be written in
the form,

, h* [ 9? 1 [l L |
ffhm m = - (j + ~% | T 5.295.2 -]- —quz (250)
. 2u\0¢®  4q 2uqt Op* 2
where
e P = —iha% is the kinetic momentum corresponding to the linear displacement coordinate
e P, = —-:Th% is the vibrational angular momentum

= Tmam)
¢ H= 3lmpr2my)

The wavefunction for the eq.(2.50) is then [47, 33]:

for a symmetrical molecule.

Xt (4, 0) = (2.51)

In the eq.(2.51) the vibrational quantum numbers are v (for the energy) and ! (for the angular
momentum). The variable z is related to the coordinate ¢ by:

r= £ ¢ (2.52)
and L) _ (z) is an associate Laguerre polynomial, defined as in [49, 50, 51].
=

Obs. In the literature there are sometimes other definitions for the associate Laguerre poly-
nomials, as in [47] or in [33, 44, 52].

The matrix elements between the harmonic oscillator vibrational functions (2.51) are [33, 53, 54]:

(01,14 Law Iol) =[50+ £ (41)
(v:tl,l—1|q_|vl):1(%\/(04—1):{:(1—1) (2.53)
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2.3.2 Large Amplitude Bending Models

In many triatomic molecules only the bending vibration is of large amplitude, and the rectilin-
ear displacement coordinates are inappropriate for large amplitude of the bending vibrations,
because no single rectilinear coordinate can describe large changes in the bending angle without
simultaneously introducing large change in one or both bond distances.

To derive the vibration Hamiltonian for a triatomic molecule, the curvilinear coordinates
described in (§2.1.3) are used.

Rigid Bender Model

In the rigid bender model, the two bond length of the reference configuration do not vary with

p [5].
The kinetic rotation-bending energy can be derived as in [10, 5):
11 _n 1
Ty = 515 3 (Jo = Pa) ptap p” % (Jg = pp) pi (2.54)

a,B

where Jy , po , pla,s are defined below in the eq.(2.28), and « = z,y,2. The moment of inertia
matrix have been enlarged as a 4x4 matrix, including the bending coordinate too. The volume
element corresponding to the form of T given in eq. (2.54) is:

dV = sin 0dédxdpdp (2.55)

where 6, x, ¢ are the Euler angles and p is the bending angle.

The zeroth- order kinetic energy is obtained by setting Q; = Q3 = 0 in the # matrix (which
then becomes the p° matrix) and by ignoring the vibrational angular momenta p,. The replace-
ment of 4 by u is analogous to the similar approximation made in the normal treatment. This
can be done because @1 and Q3 are always of small amplitude. This result is obtained when
remove the p from the vibrational problem. In the normal formalism 21 and Q3 are not of small
amplitude when the displacement of the bending angle from equilibrium is large.

The zeroth-order rotation-bending Hamiltonian is :

Hp == ZJa Pop (1 47 Jp (u ) + Vo(p) (2.56)

Since the elements of the u® matrix depend on p, they do not commute with J,. The matrix
elements of uJ 5 are analytic functions of p and are described in [5, €q.(37)]. The eq.(2.56) can
be simplified and will be [5, eq.(35)]:

HY, = HY(p) + H + HEY (2.57)
where the terms are:

o H)(p) is the bending Hamiltonian, obtained by [5] with the form:
1 1 _f L
H(p) = 50y Tt 5 1501 Tot 500 [0, (00) [, (03] ]+ Va(p) (2.58)
o H? represents the rotation around the z axis (the axis of the linear molecule):

O = Lo p (2.59)

2“22 z
° H,Sz'y) represents the rotation around the z,y axis:

HEW = 20, 724 140, 92+ 148, 10,0, + 0., (2:60)
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The HY, section corresponding to the degenerate angular momentum of the linear molecule is,
from (2.57, 2.59,2.60):

ng.ampl. — H(?(P) + H(Z) (261)

rot

If we make a change of the wavefunction from the old one, 9,(p ¢) to a new one, ®;(py):

=

e(p ) = (15,) " Bulpw) (2.62)

-1
there is a change of the volume element from dpdep to (/Lgp> dpdp and the linear derivative
from (2.58) is removed. The bending Hamiltonian becomes [5]:

[N

HY = 2368, 2 = 0% ()7 [0 [0, 607 (1,)] ]+ ol0) (2.63)

L. /
-

f1(0)

The numerical integration is performed using the Numerov-Cooley technique of integration in
two directions (in and out) with a matching procedure. [55, 5, 57, 14].

Obs. For high quantum numbers, the integration of Milne's equation instead of the Schrédinger
equation may be a better method [56].

For small angles fi(p) has the behavior:

1

e (2.64)

lim [A%45, fi(p)] =
Taking into account the eq.(2.64) together with the condition that Vo(p) = $kop?, in the linear
limit, the eq.(2.61) reduces to the equation of the two-dimensional isotopic harmonic oscillator
bending vibration in a linear triatomic molecule (eq. (2.50)).

The rigid bender Hamiltonian was used by Hougen et all. [5] in studies of vibrational levels
(i.e. J = 0) of HCN and DCN and by Bunker and Stone [57] in studies of rotation-vibration
levels for HCN, DCN, H,O, D,0, and HDO. The rigid bender model is easily generalized to
molecules with more that three nuclei and such generalized models have been used by Stone
[58] to describe the bending motion of fulminic acid HCNO and isocyanate HNCO, by Houle
and Rao [59] and Kreglewski [60] to describe the inversion motion in excited electronic states
of formaldehyde H,CO. In the initial stages of the work on N Hjs by Papousek [61, 62] a rigid
bender model was used too.

Semirigid Bender Model

The semirigid bender Hamiltonian is written in the same form as the rigid bender model one,
eq.(2.61). The p tensor elements are obtained essentially as for the rigid bender model, but
the bond length are allowed to depend on p in such a way that the molecule follows the valley
in the potential function along the coordinate p. For a triatomic molecule this means that the
quantities u1, uz and u;3 (eq. 2.8) are functions of p (since the bond lengths r{, and r3; now are
varying with p). £(p) from @;(p) is computed so that the eq. (2.6) is fulfilled and the eq.(2.7) is
replaced by:

ﬁ _ U1+ uj3cosp + myma(reariy — r12rh3) Sin p (2.65)
dp u + uz + 2uyzcos p ’
where r;; is a p dependent bond length and rj; = %‘f—. The eq.(2.65) can be numerically

integrated to yield ¢ as a function of p. For symmetrical molecules € = £. In the semirigid
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bender the equations for 12,3 (a,p =z,y,2) from [5, eq.(37)] are still valid (when wuy, us and
u13 are allowed to vary with p)., but Igp is replaced by:

- |5 (5 (5] 200

where aiq are given in [5, eq.(2)] and rf; are allowed to vary with p.

The variation of the bond lengths is 1ntroduced to model the difference (,uaﬁ ,uaﬁ) Usually,
the bond lengths are expanded as power series in p with coefficients that are determined by fitting
to experiment.

The semirigid bender model for triatomic molecules has been used for H,O by Bunker and
Landsberg [14] and the generalized versions of it have been used for HCNO in [63], for C50,
by Bunker [64], for HC'N — HNC isomerization by Ross and Bunker [65], for H,CO by Jensen
and Bunker [66, 67] and for H,NNC by Jensen [6].

Nonrigid Bender Model

In the nonrigid bender model the Hamiltonian is derived correct to order of magnitude k27,

where k is the Born-Oppenheimer expansion coefficient k = (ﬂm“);—, m. and m being the elec-
tronic and nuclear masses respectively, and 7T}, is a typical small amplitude vibrational energy
(68, 6]. In the model a perturbation calculation is used to reduce the complete Hamiltonian to
an effective rotation-bending Hamiltonian within each small amplitude stretching state. This
procedure used by [6] closely follows the method used in the standard treatment [68], where an
effective rotational Hamiltonian is obtained for each vibrational state.

The quantum mechanical kinetic energy operator, similar with eq. (2.54), but containing a,
stretching part too [6, eq.(4.1)], is expanded to order of magnitude k27, and can be rearranged
into [6, eq.(4.42),(4.49)]:

1 1
T = §ZﬂgﬁJaJﬁ+§ZP Zﬂaﬁpajﬁ——zz:#aaa tieg @r Jo Jg

afiée T

1
5 50 8%,] Jp + 5 Zuagpapﬁ+— Yo Do Has el al 1s Qr Qs Ja J5 (2.67)
aﬁ&:n@ rs

1

+ Uo(p) + %(NO)Z [Jp ’/‘gp(/‘o)_% [‘]"’(NO)%”

1 &
- {5 Z “2;) ag”? 'upp - Z Z Fpp @ ,“65 as’ .ugp Qr Qs}

be s
1 _a 1
X (W03 [T, ()73 [Jp (1]
(summation over afdenf = Tz, p and rs = 1, 3). Here Uy(p) consist of the part of the

stretching kinetic energy 2,u4 p [ s b -3 [Pr ,,u%” having the order of magnitude k2T, [17,
eq.(5)-(6)], [6, eq.(4.44)]. The expansion of u.g in power series as function of Q, is [6, 8]:

Haf = Mag= D D Hosal 1 Qs

Se=zyzp s=1,3
3
72 X masal ugal’ s Qe Qe (2.68)
Senb=zyzp ss'=1,3

The potential energy, expanded to order of magnitude k2T, is [6]:

V = +Zq) Qr + Z(I)rs Qr Qs‘l’ Z(I)’r'st QI‘Q Qt (269)
rst
24 ,;l (I)rstu Qr Qs Qt Qu
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where the @ tensor elements are given by [6, eq.(3.37)-(3.40)].

In order to obtain the effective rotation-bending Hamiltonian for each stretching state, a Van
Vleck transformation [69, 70, 71] of the Hamiltonian given by the eq.(2.67) and (2.69) is done.
This procedure can be viewed as an averaging of H over small amplitude coordinates ()1 and
Qs in a particular (vy, v3) state. The resulting Hamiltonian, which still contains all p-dependent
functions and J, operators explicitly, describes only the rotation-bending states superimposed
on the (vy, v3) state.

By using the perturbational theory with zeroth order stretching wavefunctions for the terms
such as: [(vq,v3|H (v}, v3)]" , with n > 1 and by discarding terms of order of magnitude k3T, or
smaller, the effective Hamiltonian has the form:

Y = %Eﬁ:uifgf JaJp + %uzﬁf Q4+ %u;‘; J2 + i% ;raﬁas 5 ARl (2.70)
1< i » 1 0
o 1 gﬁ:ﬁxﬁpp (Jo JpQ2+ QI Jp) + ZTpppr + 3 [Jp,upp] =,
£ 00 [70,10,] [Jor 6OF] + Vags ()
where
Q = J2+h%g(p)
9lp) = %(uo)%[%,(uo)‘% 75, (10)7]] (2.71)

and the summation is over affe = z,y, z, p. A prime (Z’ indicates that the term with o = 3 =p
(or § =€ = p) is excluded from the sum.
The p°// tensor elements are given by [6, eq.(5.25)-(5.27)]. The puco", given by [6, eq.(5.28)],

appears only for the unsymmetrical ABC molecule, for which Cfg) is nonvanishing. The 7,g5.
functions are given by [6, eq.(5.16)].

Since ugﬁ, a2® and dg) are functions of p, they do not commute with J,. However, the extra
terms arising from this noncommutation are found to be of order of magnitude k3T, or smaller
and they are consequently neglected. As a result of this, the Hamiltonian is not Hermitian.

An improvement of the NRB1 Hamiltonian described previously, in that allowance for the
dependence of the energy denominators on ve and K, (rotational number) is done in the NRB2
Hamiltonian [72, 73, 74].

The nonrigid bender model has been used in studies of H,O [17, 75], CH; [76, 77,.78, 79],
CNC and C5 [80]. For H,O and C H; least squares fits to experimental data for the ground
electronic states have been performed, yielding the equilibrium bond length together with a
number of force constants (for CH,, which has a ® B electronic ground state, the fine and
hyperfine splitting have to be suppressed before the fit could carried out).

Other Types of Bending Models

e The large amplitude Hamiltonian of Freed and Lombardi [81] is given directly in terms of
the true instantaneous internal valence coordinates r1, 7, p, whereas that of HBJ [5] uses
as a reference coordinate system in which the Eckart conditions are applied in a different
way. Consequently there is not a direct equivalence between the Hamiltonian of FL and
HBJ.

Barrow, Dixon and Duxbury [82] derived a new Hamiltonian for a symmetrical molecule,
by starting from FL Hamiltonian and by assuming that the frequency of the stretching
vibrations are high compared to the bending vibration. In that case the leading term in
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FL’s stretch-bending interaction #3 may be taken to second order, giving a contribution
to the zeroth order bending Hamiltonian Hggid, with a kinetic operator which is almost
p (1)

identical to H,,, ;.

The kinetic operator in this Hamiltonian can be simplified by a change of variable ¥ (p) =
sin~z px(p), or sin? p’}{,()izld sin~2 p. The volume element becomes after this transforma-

tion: dV = dpdp and ”Hl(yizld appropriate to the wavefunction x(p) will be:

(2) 2 2 2
Hyeng @9 _ 9 (2) cos” p
_bena _  __ . _ 1
e 9" (p) 57 " 957 (p) = 9% (p) +28in2p
2
—A(P)a_Lpg + Vess (v, vs, p) (2.72)
where
2
2

d@ () = I« (m1 + 2m;) (2.73)

~ 2her2 T my [my + my (1 — cos p)]

This Hamiltonian commutes with the operator for the z-axis angular momentum, and

—A(,o)a—ézj—2 can be replaced by A(p)K? in eq. (2.72). The ¢(3)(p) expression is equivalent

with (Igp) - from [5, ec.(37)] and (§2.3.2). The second-order Hamiltonian of (2.72)
is essentially equivalent to the zeroth-order bending z-axis rotation Hamiltonian of HBJ
(eq. (2.58) and (2.61)). The difference arise from the omission of negligible higher-order
terms in both cases. It should be noted that Fred and Lombadri [81] carried out the
second-order transformation to the z-axis rotation which is equivalent to the change from
the instantaneous coordinates to HBJ’s particular choice, but neglected to do so for the
bending vibration.

'I:his quel has been used to analyze the vibronic and spin-orbit coupling between the
A3A;, X ?B states of PHj, and in studies of C'S; molecule [82].

As it was pointed out in [74], the results obtained with the nonrigid bender Hamiltonian
for the comparatively rigid H2O molecule imply that the perturbed harmonic oscilla-
tor approach used to describe the vibrations is very often not satisfactory. This is why
are developed variational approaches, in which the matrix representation of the rotation-
vibration Hamiltonian is diagonalized in a truncated set of basis functions without the use
of the perturbation theory. Such approach are reviewed in the paper by Carter and Handy
[83]. The variational methods have been developed mainly in two different forms:

— Whitehead and Handy [84] use the "standard” untransformed Watson-type Hamilto-
nian [68] and diagonalize it using harmonic oscillator basis functions. A disadvantage
is that in the standard approach, linear and nonlinear molecules have different Hamil-
tonians. Both of these Hamiltonians have convergence problems when they are used
to calculate the energy levels of a quasilinear molecule [85], i.e., a molecule that has
a relatively low barrier to linearity, so that it is neither truly linear nor truly bent.

— Sutcliffe and co-workers [86] construct a Hamiltonian expressed in terms of geomet-
rically defined coordinate.

On the basis of Sutcliffe’s ideas two methods have been developed:

— Tennyson and Sutcliffe construct a Hamiltonian expressed in terms of geometrically
defined coordinates most appropriate for describing the interaction between a di-
atomic molecule and a third particle, e.g., a Van der Waals complex [86]. A very
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large number of basis functions are generally necessary in order to obtain converged
energies for usual triatomic molecules with atom-atom bonds, because the coordinates
used are those of an atom-diatom system.

— Carter and Handy [83] express the Hamiltonian in terms of two bond lengths and a
bond angle. The method uses coordinates that reflect better the physical behavior of
ABC molecules that can be viewed as performing stretching of the A— B and B-C
bonds and angle bending.

e A variational method for calculating the rotation-vibration energies of a triatomic molecule
directly from the nuclear potential energy function (MORBID) was developed by Jensen
[7, 87, 88]. The bending Hamiltonian is the non-rigid bender model Hamiltonian (§2.3.2)
, and for the stretching functions a Morse oscillator is used. The eigenvalues of this
Hamiltonian are obtained variationally, i.e. through direct matrix diagonalization without
the use of the perturbation theory asin (§2.3.2). As vibrational basis functions, numerically
integrated bending functions obtained as in [6], combined with Morse oscillator stretching
functions are used. Converged energies can be obtained with a relatively small basis set.

The lowest X3Bj vibrational energy for the methylene radical C' H, have been calculated
with the MORBID program, and compared with the variational, Carter and Handy JGEOS
program [83] and NRB2 [72, 73, 74] results.

2.4 Renner-Teller Effect

If the nuclei are strictly in a linear configuration their charges do not perturb the motion of the
electrons round the linear axis in any way, but as soon as they assume a nonlinear configuration,
their charges set up an electrostatic dipole field which disturbs the circular motion of the elec-
trons and tends to couple it to the instantaneous configuration of the nuclei. For a degenerate
electronic state, the two states now cannot be at the same energy for a given nonlinear nuclear
configuration, and the degeneracy is lifted. This implies that there are strictly two electronic
potential functions, which are in contact at the linear configuration and which start to diverge
as the molecule bends.

2.4.1 Small Amplitude treatment of Renner-Teller Effect

The electronic energies of the two states (evaluated in fixed nuclear configuration) may behave
in one of the three ways from (Fig.2.2).

The coordinate system used is illustrated in (Fig.2.3).

If the size of the dipole produced by the nuclei is y, an electron, whose distance from is r,
experiences a potential:

Viir,v—9)= 'uif) cos(v — ) + higher terms in cos(v — ¢) (2.74)

p is the amplitude of the bending motion displacement from the linear configuration.

The interaction between the nuclear and the electronic motions must involve all the electrons:
the Hamiltonian for the interaction is therefore derived by averaging the energy of each electron
over the range of all its coordinates, except (v — ), and summing over the various electrons.

In setting up the Schrédinger equation for the vibronic energy levels of the components of
a degenerate electronic state, it is convenient to define the Hamiltonian as a sum of the four
terms:
©) + H, (2.75)

rot

Hel(p:0)+Hb+H

where:
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Figure 2.2: The electronic energies of the two states diverge from one another as the angle of bending
increases. The abcissa denotes the extent of the deformation. Cases: a) both states are linear at
equilibrum; b) upper state linear and lower bent at equilibrum; c) both states bent at equilibrum

e H.(p = 0) is the fixed-nuclei Hamiltonian for the linear molecule, those eigenvalue F.;(p =
0) is the energy at the linear configuration.

® H, is the radial part of the Hamiltonian for the kinetic energy corresponding to the bending
motion (defined is section §2.3).

o H'%) is the angular part of the Hamiltonian, defined in eq. (2.59). with J? replaced by

rot
(J: — L)? to give the vibrational angular momentum (89, 90].

e The operator H], = H/,(p) — He(p = 0) represent the additional interaction between
nuclei and electrons that arise when the nuclei move into a nonlinear configuration. It
depends on all the electronic and nuclear coordinates, but only the electronic coordinate
(v — ) and the bending amplitude p need appear explicitly, since the Born-Oppenheimer
approximation allows one to average over the other electronic coordinates.

From (2.74), it can be simplified to:
e = Vo(p) + jipcos(v — @) + jap® cos2(v — @) + . .. (2.76)

In the previous equation V(p) is the potential function for the bending motion and the other
terms are coupling terms. The parameter j,, with n > 1 arise from the averaging over the radial
wavefunctions of the various electrons.

The potential function and the coupling terms occur together in (2.76) and can be separated
into potential and coupling terms in two different ways, corresponding to the linear and the bent
molecule limits. The Schrodinger equation may be written as:

[Hy+ H ) 4+ Volp) + V(v = ¢, 9) — E] (v, 0,p) = 0 (2.77)

where V(v — ¢, p) consists of those terms in cosn(v —¢) , n > 1 from the eq.(2.76) which have
matrix elements within the particular degenerate electronic state (Eg(p = 0) has been included
in Vo(p)).

The eigenvalue of L, in (2.77) does not vanish in a degenerate electronic state, but take the
two values A (in units of &); therefore in zeroth order, the eq.(2.77) represent two different
differential equations and they are coupled by the Renner-Teller perturbation Vv — ¢,p).
Y(v,@,p) is considered as a superposition of two functions, one of each component of the
electronic state:

_ [ twv.e,p)
Y(v,p,p)= ( 60 p) ) (2.78)
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¢ z (linear axis)
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Molecular plane.

Figure 2.3: Coordinate system used to describe the Renner-Teller effect. The angle ¢ is the angle of
the molecular plane to a reference plane, v is is the azimuth angle between an electron and the reference

plane.

where the two functions %% (v, ¢, p) are each products of an electronic and a vibrational part,

ei]\"ap

pE(,0,p0) = P51V — @) o o7 1 (p) (2.79)

In eq.(2.79), K is the quantum number for the vibronic angular momentum, i.e., the eigenvalue of
J,. The eq.(2.77) is multiplied by \/% e~ iRy (¢;)*, and integrated over v and . The result is a
differential equation in the single variable p, which involves the two vibrational functions @IK(p)
and @;R—(p). A similar differential equation is obtained by premultiplying by \/% e~ iKe (¢$)*,
and integrating. The eq.(2.77) becomes a system of two coupled differential equations,

Hy+Ug(p) - E Hg (p) @, x(p)

=0 (2.80)
Hr(p) Hy+ Uit (p)—E ) \ @7 x(p)

The form of the coupling function Hg (p) and the effective potential functions Uf»(p) depend
on the choice of the functions in the eq.(2.79). The two logical choices for the eq. (2.79) are
the limits of the strictly linear or the strongly bent molecule, where the forms of the vibrational
wavefunctions are well known [47, 91]. There is, however, one big advantage to the linear
molecule formalism, which is that the vibrational angular quantum number [ (i.e. the eigenvalue
of (J, — L;) in units of &) is contained as an additional "good” quantum number in the basis

functions.

Linear Molecules in Electronic Il States

The ”linear molecule” choice of the basis functions for the eq.(2.79) is:

1 . .
IA,v,l) = ge”\" e @, (p) (2.81)
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where the first two terms are the angular factors equivalent to treating the electron and the
nuclear motions as independent circular motions round the axis, and the third term is a radial
vibrational factor. The quantum number [ is connected with K and A by the relation:

I=K-A (2.82)
With this choice, the potential and coupling functions of the eq.(2.80) are:

Uic(p) = Volp)+pd, (K £ A)?
1

HK(p) = 5 'ZAp2A + ... (283)

where :
e Vo(p) is the mean of the two purely electronic potential functions

e Hg(p) is half their splitting, which is entirely an electronic effect.

The significance of the two functions U (p) is that the Hamiltonians [Hb + Uf(p)] are those
which are needs to calculate the vibrational basis functions for a particular value of the ”good”
quantum number K.

The potential energy V;(p) is taken as a simple quadratic, so the Hamiltonian [HO + Uff(p)]
becomes that of the two-dimensional harmonic oscillator, with the radial functions of (2.51) and
(2.52). Since L. has two eigenvalues #A in a degenerate electronic state, the values of [ required
for the basis functions must be [ = K £ A, from (2.82). The matrix elements of the cylindrical
polar coordinates ¢+ defined in (2.49), are given in eq.(2.53). The matrix elements of g3 are
obtained by matrix multiplication from eq.(2.53):

(w+2,1+ 2 [v,l) = <i> JoEi+2)(vtita)

2 pw
(v,1£2|¢2 v, 1) = (%) Vo F)wEl+2) (2.84)
(= 2,142 |v, 1) = (%) JoFheFi+2)

The electrostatic splitting Hg (p) is truncated after the first term which is equivalent to picking
out from the eq.(2.83) only the term jyp p* cos2A(v — ), which gives matrix elements within
a state of given |A| value.

In a calculation of the vibronic energies, a separate matrix must be set up for each value of
|K| 1.

The first step is to add the matrix of the perturbation %jg p? (for a1l state) to the diagonal
matrix of the harmonic oscillator basis energies.

In harmonic approximation the result is an infinite tridiagonal matrix, infinite because the
value of v is unlimited, and tridiagonal because from the eq.(2.84), the perturbation has matrix
elements Av = 0,42 only. Each element of the matrix is actually a 2x2 block since the electronic
quantum numbers +A must be taken with each value of v.

The sums and differences of the basis functions are considered. In the simplest case, where
K =0, this has the effect of factorizing the matrix into two submatrices, since each 2x2 block
is symmetric about both diagonals; the Renner-Teller perturbation no longer couples the sum
and the difference functions together. The nonvanishing elements are [33]:

%[(1,1},1: “1) % (=1, 0,0 =1V[1,0,l= 1) £ |- 1,00 = 1)]

'K, A and [ are signed quantities. However states with the same value of || have the same energy, so that the
sign of K’ can usually be ignored: the signs of A and ! must still be kept in the calculation of the matrix elements.
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1
(2.85)
1
5[(1,1}-}—2,1:—1I:|:(—1,v+2,l:1|]V[\1,v,l:—1>:t|——l,v,l:1)]

= 27e0/(v+ V(v +3)

In eq.(2.85), € is Renner’s parameter (¢ = %, with k the harmonic force constant k = uw?), and
& is the harmonic frequency in em ™.

The elements in eq.(2.85) are exactly the same as those of different perturbation:

1. 1,
Vig) = i§J2 ¢ = izh (g+ - +9-q4) (2.86)

acting on the bending vibration of a molecule with A = 0 those potential energy function is
Vo(p), as in eq.(2.83). The energy levels expression then follow the harmonic oscillator formulas,
for the purely electronic potential,

VE(p) = 5 (k£ ) (2.87)

and are given exactly by:

EU,K=0:w“.|'1:i:%(v+l):w(v—l—l)\/lie (2.88)

For K = 0, therefore, the vibronic coupling between the component electronic states vanishes,
and the energy levels correspond to the purely electronic potentials. This is true whatever the
shape of the electronic potential is; the reason is that the Renner-Teller interaction for K = 0
couples basis functions differing only in the sign of I ( corresponding to the degenerate basis
levels), so that it can always be made electronically diagonal by taking sums and differences
of the basis functions. In experimental determinations of the Born-Oppenheimer (i.e. purely
electronic) potential functions from the observed spectra it is usual to use data from I = 0
levels, since these contain no vibronic coupling effects.

For K /=0, the vibronic coupling between the component electronic states does not vanish
when sums and differences of the basis functions are taken, because the 2x2 block is not always
symmetric. Small vibronic coupling elements remain in the off-diagonal positions of the outer
2x2 blocks, which act between the component electronic states. Renner ignored these, since they
are off-diagonal in v.

The diagonal elements of the transformed 2x2 blocks for K /0 are not quite the same as
those of the perturbation from the eq.(2.86) so that the eq.(2.88) does not quite hold, through it
becomes a good approximation when v is large. Renner used second order perturbation theory
to treat the diagonal elements of the outer 2x2 blocks, which are of the type Av = £2; the
energy level expression are [33]:

E i =w(v+1) (1 - %62) + —;—sw (v+1)2 - K? (2.89)
v, A <v+1
The difference between the matrix elements of V! = +j; ¢ and those of V = 1j; (¢ +¢2),
(which cause eq.(2.88) and (2.89) not to be the same) are named "reordering” elements, since
they represent vibronic coupling within a Renner-Teller component state. The elements acting
between the components can be considered ”coupling” elements. The reordering elements are
[33]:

SW

H;F]:}F (reord.) _ =

% — [(v+1) - (v+1)2-1<2]
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1 esw
81
T \/(v—K-}—l)(v—K-l-S)—(1;2)\/(1)—K+1)(U+K+3)] (2.90)

FF (reord.) _
v,u+2 = £

[\/(U+Ii'+1)(v—K—3):F\/(v—i—K+1)(v+K+3)

i

where F refers to the lower/upper Renner-Teller component. Similarly, the coupling elements,
which Renner ignored, become [33]:

cou 1 - - =y -
H1T1T+(2 pl) gsw[\/(v+1(+1)(v—](+3):|:\/(v+1(+1)(U+I(_|_3)

T Jo-K+)w-K+3)-/o- K+ )0+ K+ 3] (2.91)

In the limit where v > K, the reordering elements vanish, and the coupling elements become
(33]:

ou, 1 -
Aot = + ewkK (2.92)

The eq.(2.92) is a special case of a rule that holds for any shape of the Born-Oppenheimer (i.c.
purely electronic) potential functions: the interactions between the Renner-Teller components
are always approximately proportional to K. This means essentially that the Renner-Teller
coupling can always be considered as a Coriolis effect, or, in other words, an angular momentum
coupling of A with the rotation of the nuclei round the axis of the linear molecule.

An unexpected difficulty for K /=0 occurs in the lowest level of each K value. It can
understood with reference to the left hand of the Fig.2.4, as follows 2. :

In a 'II electronic state, the first [ = 0 basis level must go with the electronic function
|A = +1) (the eq.(2.82)) to form a vibronic level with K = +1, but it cannot be coupled by the
Renner-Teller perturbation to a level at the same energy with A = —1 and [ = 2, because no
such level exists. The energy of the resulting vibronic "unique” level, which is the lowest with
K =1, is unchanged from that of its basis level in the first order; to second order, for any K
value,

: 1
B =wv+1)— ngwK(K +1) (2.93)

The wavefunction for a "unique” level is not a linear combination of | + A) and | — A) factors,
so that a "unique” level is the only level of each K value where the orbital angular momentum
(L:) is not ”quenched” and the spin-orbit coupling and the orbital magnetic moment attain their
maximum values; only ”unique” levels will have a first order orbital Zeeman effect, for the other
levels of each K, the Renner-Teller effect lifts the orbital degeneracy. The energy of a "unique”
level, to first order, is the same as that of the basis level v = K — A given by the Hamiltonian
Hy+Vy(p), corresponding to the mean of the two Born-Oppenheimer potential curves; it strictly
does not "belong” to either of the Born-Oppenheimer potential curves, and represent the largest
breakdown of the Born-Oppenheimer approximation produced by the Renner-Teller effect in a
linear molecule.

21t is the customary to label the vibronic states according to the angular momentum representations for the
point groups Ceo v or Doon, le., 8, II, A, ..., for K =0,1,2, ... , since K, the eigenvalue of J,, is the only ”good”
projection quantum number [92]. Note how both £t and &~ vibronic levels occur for K = 0; this is because the
sum and difference vibronic functions

%(M,U,l =—-A)x|—Av,l=+A))

have definite transformation properties under the symmetry operation o, for the reflection in any plane con-
taining the linear molecule [93]. The representations ©* and £~ correlate directly with the representations for
the Born-Oppenheimer component states classified according to C, or Ca, symmetry for the non-linear molecule
[92, 94]. For the ?II states, bracketed letters show the type of spin coupling, clasified according to the Hund’s
coupling cases [48, 93], and subscript fractions give the value of the projection quantum number P = K + & (cf.
§? i diatomic molecules [93)); subscripts r and i indicate regular and inverted spin multiplet states.
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Figure 2.4: Vibronic energy levels of linear molecules in !X, 'TI and ?II electronic states for vin <3
[33]. Left side of the figure shows the levels in a linear molecule, in absence of Renner-Teller effect. The
levels are labeled as |Avl) [24]

Most of the known examples of the Renner-Teller effect occur in molecules with unpaired
electron spins, where the energy level patterns are considerably modified by the spin-orbit cou-
pling (see Fig.2.4).

Vibronic energy level expression for %Il states were derived by Pople [26]. Pople’s treatment
was extended to the 2A states by Merer and Travis [95].

Pople’s results for the Il states are easily derived by including the spin orbit operator:

Hs.o =A Lz Sz (294)

as a second perturbation in addition to Hg (p) from the eq.(2.83).

The right hand side of the Fig.(2.4) show the levels of a %I state, for the cases where the
spin-orbit coupling constant A is smaller or larger than the vibronic energy ew. The diagrams
correspond approximately to the X2 I states of NCO [96] and NCS [97] respectively [33].
Good examples occur in the spectra of N3 [98] and NCO or CCN [95] and in CNC' [99)].

The theory of the rotational fine structure in 2IT and ®II states and of the spin-uncoupling
effect when the spin-orbit coupling is large compared to ew has been given by Hougen [28, 100,
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101). Good examples occur in BO, [38] and NCO [33]. Example of the 311 states are found in
NCN and CCO [102].

The Herzberg-Teller interaction give rise to forbidden components in an electronic transition
[32], due to a nontotally symmetric vibration which couple states forbidden by the Franck-
Condon principle [48, 103]. A special case of the Herzberg-Teller interaction occur in linear
molecules where the "active” nontotally symmetric vibration is the bending vibration, and the
mechanism of the interaction is the Renner-Teller coupling.

The principal term causing this effect is 71 p cos(v—¢) in eq. (2.76), which has matrix elements
of the type AA = £1,Al = £1,and Av = +1 that follow directly from the eq. (2.53). When
two interacting states are close in energy, and are observed in transitions from a third state, the
interaction is forced to induce vibrationally forbidden Av = 41 bands in the bending vibration
in each of the two transitions, and small perturbations occur. A satisfying simple model has been
given by Bolman and Brown [104], and a new term gg|K|, due to the Herzberg-Teller interaction
has been introduced by Bolman et al. [96]. This new term has been derived by Brown [34] in
a second order perturbation treatment by means of the projection operator technique. Aarts
[35] extended the theory by taking into account simultaneously Renner-Teller, Herzberg-Teller
and spin-orbit interactions by means of a Van Vleck transformation of the Hamiltonian. Good
results occur in NCS (excited electronic states A?II* and B2+ ) [105], HNC*+ (X 21 and
AZEY states) [106], NCO (A25+ and X 2II states) [96] , NoOF [107, 108], NCN ( A%I1 state)
(102, 109], and COJ [110].

Most recently, Brown and Jorgensen [111] have returned to Renner’s original formulation
of the problem and showed how the Renner Hamiltonian can be developed in a rigorous and
natural way, that is particularly useful for fitting to experimental data.

In this formalism, the Renner operator can be written [111, 112):

- /_ 1 2 0 1
H = H0+H_Ha+25wq 10

= H,+ %6 Aplo, (2.95)

where

e H, is the harmonic oscillator term (H, = T, + %qu in the usual notation with ¢ a
dimensionless coordinate)

e £ = f\;%f‘\: is the Renner parameter

e Ay are the quadratic force constants

The force constant, A is chosen to make the second terms as small as possible (2A = AL + )
and the matrix (0,) implies that the matrix elements of H’ are between the vibronic functions
belonging to different electronic states. In this formalism a harmonic basis set is used.

Several groups [113, 111, 112] have considered the effects of purely bending anharmonicities,
which can be written as,

Hanh =44 q4+g4 (14 0.+ 9K Jz gy (296)
Frye and Sears [112] are used this formalism to fit the experimental data of the 2IT electronic
state in COJ.

Bent and Quasi-linear Molecules

The electronic states of these molecules are nondegenerate since the bent molecule does not
possess cylindrical symmetry. However, it is always possible for a bent molecule to become
linear by vibration (or ”quasi-linear”) if its bending vibration energy is high enough. If two
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electronic states of the bent molecule correlate with a single degenerate electronic state of the
linear molecule, they form a Renner-Teller pair. The effects of it in the spectrum appear mainly
in the form of strong vibronic interactions in levels near the energy at which the molecule become
linear.

The two purely electronic potential curves are assumed initially to be coincident, and char-
acterized by an equilibrium angle p,,, and a bending frequency w; the electrostatic splitting,
Vaa(p) is introduced.

At energies far below the barrier to linearity, the linear molecule bending vibration corre-
sponds to the nondegenerate bending vibration of the bent molecule plus the rotation around
the a inertial axis (corresponding to Oz in the linear molecule).

In the Schrodinger equation (2.77), the electrostatic term dominates, and H?,, acts as a
perturbation rather than the other way round. It is possible, as Dixon [33, 97, 114] to derive
directly the coupled equations, by starting from the Born-Oppenheimer approximation and
introducing a rotational-electronic Coriolis interaction. This illustrates another way of thinking
of the Renner-Teller effect, in which an angular motion of the electrons in a bent molecule
becomes progressively uncoupled from the nuclear frame as the molecule rotates faster around
the a axis.

In general the Renner-Teller effect implies any degree of coupling between the electrons and
the nuclear frame that falls ”"between” the limiting cases of zero coupling (in the strictly linear
molecule) and rigid coupling (in the strongly bent molecule).

Instead of use the "linear molecule” choice of basis functions (2.81) in the eq.(2.79), the
"bent molecule” factors, the angular part of which are defined in the eq.(2.97) are used:

ot g 1 AT GG 4 - =iy =il
el(’/_(wp)\/2—7r = ﬁ[e e te e ]

- il iKe 1 [eiA(u—w)ie—iA(V~¢)] (2.97)

Vor & Var

The factors for the eq.(2.97) describe the electronic angular motion as coupled rigidly to the
instantaneous plane of the bent molecule. The electronic factors in the previous equations have
definite transformation properties under the operation of the reflection in the molecular plane
(which reverses the sense of the angle v — ), so that they can be classified according to the
representations of the point groups C or Cy,,.

When the functions from the eq.(2.97) are used, the potential and coupling functions of the
eq.(2.80) are,

Uit(p) = V*(p)+p2,(K” + A?) _
Hi(p) = -2A(p) KA (2.98)

where the Born-Oppenheimer potentials are still given by:
1,
VE(p) = Vo(p) £ Ji2alp) £ ... (2.99)

In eq.(2.98), A(p) = u2, is the rotational constant corresponding to the a inertial axis.
With (2.98) and (2.99), the equation (2.80) becomes,

wH(vT+ )80 + (vF) | A(p) [vh) (K+A)? —2(v )| A(p) | YK A

AV ADWIRA = Body T EOEE
20~ [A(p) ) KA e Y

(2.100)

where, as before,

e + refers to the upper or lower Renner-Teller component, respectively
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e the vibrational functions |v) are those for the one-dimensional harmonic oscillator
¢ K remains the vibronic angular momentum, corresponding to J,.

The vibrational functions are labeled by the quantum number v%"? for the bent molecule. The
functions |v) do not depend on the ! or K, as in the case of the bidimensional oscillator. The
symbol [ is used as an eigenvalue of (J, — L,), which in a bent molecule represent the nuclear
rotation around the Oz axis.

In eq.(2.100) the terms in KA are the exact analogs of the reordering and coupling elements-
defined in the eq.(2.90-2.91). The reordering elements are diagonal in the new basis (2.97),
while the coupling elements connect levels in the two electronic components. Neglecting lo-
cal interactions, second order perturbation theory gives the vibronic energy level expressions
[97, 33],

Eyx =VE(pp) + ATA? 40T (v+ 1)+Ai 1+ ol K? (2.101)
’ 2 V¥em) = V= (pm)
The corresponding expression for A = 0 is the familiar:
1
Evk =V(pm) +w(v+ 5) +AK? (2.102)

From the eq.(2.101) it can be seen that the Renner-Teller coupling affects the bent molecule
levels in two ways:

e First a term AA? is added to the energy of each component

e Second, the effective rotational constant A is modified. The second effect should be taken
into account when A rotational constant is used to calculate the molecular structure;
since the K? dependence of the rotational energy is unaffected, it is essentially a large
contribution to the inertial defect resulting from the electronic motion [115]

A more striking consequence of the second order Renner-Teller coupling is the appearance of
transitions forbidden by the electric dipole selection rules. These will occur if the optical tran-
sitions from a third electronic state is allowed to one of the Renner-Teller components, but is
forbidden to the other.

The mixing of the electronic wavefunctions is, to first order, proportional to K; the induced
intensity in the forbidden transition should increase as K2.

An example of these has been found by Jungen,Malm and Merer [116, 117, 118], who observed
the electronically forbidden ! A, — X1 X7 transition of C'Sy, near 3400 A.

The same results must be obtained for the vibronic energy levels whether one integrate the
coupled equations (2.80) in the form of the eq.(2.83) or in the form of the eq.(2.98), sinces
the choice of the basis set in immaterial. The two forms serve to illustrate the two aspects of
the Renner-Teller effect, which may be considered as an electrostatic perturbation on the linear
molecule or a Coriolis perturbation on the bent molecule. [33, 15).

In the matrix (2.100), the interacting basis levels always occur in pairs (since each vibrational
level contain all the values of the rotational quantum number 1), so that there are no "unique”
levels in the bent molecule. ”Unique” levels still exist, but their character is diluted over several
levels near the barrier to linearity.

The vibronic pattern alters as the vibrational energy becomes greater than the potential
barrier to linearity. The energy level pattern for a quasi-linear molecule with A = 0 were first
described by Dixon [119]. An interesting point which Dixon discovered is that the successive
vibrational intervals in a bending progression pass through a minimum at the potential barrier
as in Fig.(2.5). Bellow the barrier, the energy roughly follow the bent molecule formula from
eq.(2.102) with I substituted for K; above the barrier the levels form alternating groups with
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Figure 2.5: a) Schematic bending vibrational levels of linear and bent molecules in ¥ electronic states,
drawn such that the potential minimum for the linear molecule lies at the same energy as the barier
to linearity of the bent molecule [15]; b) Vibronic energy levels of quasi-linear molecules in ¥ and I
electronic states. The barrier to linearity is assumed to lie near the level v®e"t = 2 [33] .

either even or odd values of [, as in a linear molecule. The changeover reflects the different ways
in which the quantum numbers v and [ are related in the two limits: for any value of /, bent
molecule levels occur for all values of v*™, but the linear molecule levels only occur for every
second value of v"*", where v"*" > |I|. This leads to the equation:

vl = 20bemt || (2.103)

Consider now two vibrational progressions whose [ values differ by two. Following the same
argument as was used before eq.(2.93) it is found that there is always one more level with the
lower of the two [ values, up to any given energy above the barrier. This extra level is the analog
of a "unique” level, and its accommodation in the level structure of the quasi-linear molecule
requires that the levels be crowded more closely at the barrier, producing the observed minimum
in a graph of the vibrational spacing against energy. The depth of this "dip” depends on [/, and
it is largest for [ = 0. It disappears altogether in the limit of very large momentum, because the
nuclei are then effectively held away from the linear configuration by centrifugal forces, and the
presence or absence of a potential barrier is irrelevant for their motion.

The situation becomes much more complicated for A ~0. The coupling term Hp (p) from
(2.80) always has the effect of pushing the levels of a given K value to the approximate positions
that the levels with [ = K £ A would occupy in a molecule with A = 0 vibrating in the Born-
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Oppenheimer potentials V*(p) = Vo(p) £ joap®® .. .. Essentially, to obtain the K = 0,1,2...
levels of the upper or lower 11 electronic state Renner-Teller component, on transfers the [ =
1,2,3...0orl=-1,0,1,... levels, respectively.

For K = 0, this procedure is exactly correct, because the vibronic coupling vanish. Since
the U}\,t-(p) functions become the same as those of levels in ¥ electronic states with [ = A, it is
possible to determine A in a quasi-linear molecule provided the K = 0 levels can be observed
beyond the barrier.

Dixon [119] used this method to show that the A2A, state of PH, [120] correlates with a II
electronic state of a linear molecule, and it has since been applied to the isoelectronic H2St ion
[121], and to the A'A” state of HCCI [122] where A = 2.

The recipe for constructing A = 1 levels from A = 0 levels leads to an unexpected rear-
rangement of the K /=0 levels near the barrier to linearity. This is apparent in the pattern of
K =1 levels belonging to the lower Renner-Teller component in Fig.2.5. These fall behind the
K = 0 levels with the same value of v%¢"™ as the barrier is approached, and in terms of the bent

molecule on would say that the apparent rotational constant A = wik=1— £, g—o becomes
negative. This is not so surprising in terms of the linear molecule, because the lowest vibronic
level has K = 1in a II electronic state. The effect provides probably the strongest experimental
evidence for the presence of the Renner-Teller coupling in a non-linear molecule, because it can
be seen directly in the spectrum as a reordering of the asymmetric top K-structure near the
barrier to linearity.

It can happen that the potential minimum in the lower Renner-Teller component corresponds
to a non-linear configuration while the molecule is linear (or very nearby so) in the upper
component (see 2.2). The molecules NH, [12, 23], H,Ot [123], HCO (124], BH; [100], and
NO; [125, 126] fall in this class. In all cases the lower state is the ground state and an optical
transition to the upper component is observed in the visible region.

The vibronic levels of the upper component correspond to the upper halves of the patterns
for each value of v"" in Fig.(2.4) (the remainder, including the ”unique” levels, becoming the
ground state), and it can be seen from this figure that they are almost indistinguishable from
those of a X electronic state.

Pople and Longuet-Higgins [24] proposed another way of establishing the presence of the
Renner-Teller interaction, based on the effect of the reordering matrix elements for K /=0.
The reordering elements describe the vibronic interaction within a Renner-Teller component
and depend, not on the shape of the other component, but only on the splitting parameter jy,.
Ignoring the fact that the lower component has a very different potential function, and including
a quartic term in the potential function for the upper component, the energy levels are [24, 33],

. 1 . z
o _ + /. lin +, .+ lin n ¢
Eu”n,K = wT(wm™4+1) - 56 w [(U +1) - \/(vl +1)2-K 2}

+ 3g92 (WM 4 1)2 — go2(K?* 4+ 1) (2.104)

In eq.(2.104) , et is defined as 79% (where k7t is the force constant for the upper component) so

that e+ = {%-. Defining wy/T+ € in eq.(2.88), as w*, it follows that etw* = Fe

If the molecule is linear in the upper component, eq.(2.104) predicts that the reordering term
should decrease with increasing v"". The predicted decrease of the vibronic reordering with v!™"

is verified in HCO.

2.4.2 Large Amplitude treatment of the Renner-Teller Effect

Even in a nondegenerate electronic state, the region near the top of the barrier presents diffi-
culties, because the vibrational potential function is highly anharmonic and the reduced mass
changes during the vibration: any realistic treatment of the levels must be carried out nu-
merically. Barrow, Dixon and Duxbury [82], Jungen and Merer [15] and Peric, Buenker and
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Peyerimhof [127] extended the picture to include the effects of large amplitude bending mo-
tion and the complications associated with this. Finally, Carter and Handy [128] and their
collaborators, principally Rosmus and Chambaud [129], extended their full three dimensional
vibration-rotation Hamiltonian to include the interactions which occur in electronic states which
are degenerate at linearity.

Three rather different approaches have been proposed, which use the variational calcula-
tions involving the diagonalization of the Hamiltonian matrix for the rotation and bending of a
triatomic molecule in a given bending potential.

K-Basis Formalism

Dixon and Duxbury (82, 121, 130, 131] do not attempt to integrate the coupled equations (2.80)
directly, but instead they use two ”effective” potentials ij(p) for the calculation of the large
amplitude motion in the two components. These are obtained by diagonalizing at each p value
the 2x2 matrix formed by the quantities U and H(p) from the eq.(2.98). This procedure
amounts to taking for the wavefunctions the linear combinations from (2.97) for each value of p.

The resulting "effective” potentials are the same no matter whether the definitions shown in
the eq.(2.83) or (2.98) are used for U (p) and Hg (p), so that they combine the characteristics
of the Renner-Teller effect in both linear and bent molecules, and therefore accounts, in some
average way, for the vibronic interaction in a quasi-linear molecule.

The potentials Vej; #(p), serve for the numerical evaluation of bending levels and wavefunctions
in the two "effective” electronic components separately :

Vi) = 3 VE(R) V(o)) 4+ Alp) (K74 42)

£ \[2VH0) ~ V(o) + RAGIKT (2.105)

The transformation giving ij (p), [82, eq.(16)],is a contact transformation [82, 131]:
cosy(p)  siny(p) cosy(p) —siny(p)
. Hy+ He, . 2.106
( —siny(p) cosy(p) (Hy I\ sin v(p)  cosy(p) ( )

equivalent to the use of rotationally adiabatic potential curves at each value of p. In the previous
equation, the vibronic perturbation operator is [82]:

Hey = [VF(p) = V™ (p)] cos2Ap (2.107)

e H,; is the large amplitude Hamiltonian defined in (2.72-2.73)

e v(p) is a function of p, chosen to diagonalise all of H, except the nuclear kinetic operator
T(p). The functional dependence of A(p) and [Vt (p) — V~(p)] with p then leads to y — 0,
when p is large, and v — 5 as p — 0.

Additional vibronic interaction occurs for K /A0 because the transformation giving Vedf:f(p) is a
function of p and does not commute with the bending Hamiltonian Hj. This is then accounted
for in a final step by setting up a perturbation energy matrix, with the elements :

Hi; = (®FIT(p)y — 1T (p)|®7) (2.108)
= (B - B7)"” @hin1e5,) - @0y (VF(0) - V7 (0) 197,)

It should be noted that the choice of 4 leads to a boundary condition for the upper state vibronic
wavefunctions corresponding to | = |K + A| as p — 0, and [ = | K — A| for the lower state. This
choice builds into the zero order problem the inversion of the part from the K structure of the
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upper levels corresponding to the lower state, the presence of which may be interred from a
correlation diagram between the levels of a linear and a bent state.

The method has been successfully applied to several molecules in instances where the bending
levels are known up to the potential barrier: PH, (82, 119, 130, 132, 133, 134, 135, 136], C'S,
[82, 137, 138]. The authors point out, however, that their approach may describe levels above
the barrier less successfully. The reason is a less flexible choice of the wavefunctions, due to only
one transformation applied to the Hamiltonian, compared with two transformations, in the case
of [ - basis formalism described below. Extension of this model have been made by Duxbury
and Dixon [16] and by Alijah and Duxbury [139] .

K-Basis Formalism Using Three-dimensional Bending and Stretching Potential Sur-
face

The bent molecule ” K basis” has recently been adopted by Jensen et al. [141]. The work is based
on the MORBID Hamiltonian and computer program [7, 87, 88] for the variational calculation of
the rotation-vibration energy levels of a triatomic molecule from the potential energy function.

The resulting 2x2 interaction matrix has the same form as in the previous section, with the
kinetic energy operator from MORBID, and a ‘/e§f (p) similar with (2.105) is obtained. The
ro-vibronic wavefunctions are linear combinations of the basis functions describing the bending
and stretching motion. The symmetry of the rotation- spin basis functions are labeled as the
irreductible representations of C, and C,,from [92], and the rotational basis functions have
relative phases differing from those chosen by Hallin and Merer [140]. The a'A; and b'B
electronic states of C'H, are analyzed in [141] compared with [142, 143, 144], and a range of
hybrids in [145].

Other variational calculus using the full three-dimensional bending and stretching potential
surface have been carried out by Carter, Handy and co-workers [19, 128, 129, 142] and by
Tennyson and Sutcliffe [20] who developed general methods using an instantaneous axes system.
More recently, Alijah, Hinze and Wolniewicz [146] developed an alternate method based on
a hyperspherical harmonic expansion of the total wavefunction. This approach is completely
general and allow all the nuclear displacements to be of large amplitude, but requires a rather
complete knowledge of the entire potential energy surface of the electronic state being studied.

[-Basis Formalism

An attempt to overcome the difficulty from the K-basis (the effective potentials do not contain
I'as quantum number) have been made by Jungen and Merer [15, 147], who, following Renner,
use a matrix approach and start out from the coupled equations shown in €q.(2.80) in their
linear molecule form, with eq.(2.83). The approach differs from that of the Barrow, Dixon and
Duxbury [82] in that, here the vibronic energy matrix is transformed rather than the Hamiltonian
in order to minimize the coupling elements. Briefly, the method is the following. The coupled
differential equations (2.80) can be set up as a matrix, whose eigenvalues are the required energy
levels. The large amplitude radial functions ®,,/(p), corresponding to the Born-Oppenheimer
potentials, can be obtained by treating them as belonging to a T electronic state; for particular
K the values of [ are chosen according to (2.82). For any chosen value of K, the vibrational
basis functions are obtained by integrating the differential equations:

1
[+ 512002 = V=)~ ) @50) = 0 (2.109)

The form of the basis functions near the linear configuration is obtained from an exact series
solution of the wave equation (2.109). The differential equation to be solved can be expressed
in the form [147, 5, 57):

82 12_ i 2 4
(3_,02 . ,0_24+p+qp +rp ) (I)v,l(p) =0 (2'110)
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where p,¢q,r are the coefficients representing the potential function and the large amplitude mass
correction. The r(p) dependence of the bond length with the bending angle in the semirigid
bender model have been taken as, [147]:

rip)=r ¥+ dy tan? <1 )—}-dgp (2.111)

The potential function in (2.109) is chosen either in a linear molecule harmonic oscillator function
plus a Lorentzian perturbation,

1
Vip) = Qkp +

b+ 5 + correction terms (2.112)

where the correction terms may be needed to polish the shape of the potential [147], or the
alternative form of Dixon et. all [121, 147],

__ hf(pP =l
I 7P o T (241
In eq.(2.113) h is the barrier to linearity for the Born-Oppenheimer component and f is the
harmonic oscillator force constant for bending near the equilibrium angle p,,;,. The relationship
between the sets of parameters in (2.112) and (2.113) is done in [147, eq.(3),(4)].
The integration of (2.109) must be performed twice, with [ taking the values K — A and
K + A, respectively, according to (2.82). From (2.83), the elements of H matrix are those of the
coupling function Hg (p) between the vibrational basis functions, with the energies of the basis
levels added to the diagonal:

Huif' = E i _gan Ovo (P kaa (P HE(P)|®, ksa(P))
Hy% = HS =(2, x_a(P)HE(0)|25 gia(p)) (2.114)

v,v’

The block structure of the H matrix is already apparent: there are two diagonal blocks, H** and
H~—, which contain integrals over basis functions with the same [ value, and two off-diagonal
blocks H*~ = (H=t)" which contain only coupling elements.

For large amplitude vibrational motion the off-diagonal elements become very large and a
direct diagonalization loses track of what the levels are. It is necessary to perform a matrix
transformation of H which minimizes the coupling elements and at the same time allows each
level to be given a set of definite labels.

The transformation performed in H is an orthogonal transformation [15]:

H' =S*tHS (2.115)

S has the same block structure as H and is a generalization of Renner’s original S transformation
[15]. The S matrix transformation is analogous to the contact transformation used by Dixon
and Duxbury [82]. The procedure for constructing the S matrix follows the method used by
Lewis and Hougen [15, 148] to eliminate coordinate dependent coupling terms from a matrix
formulation of a pair of coupled differential equations.

A phase angle «(p) is introduced such that an orthogonal transformation of the coupled
equations, corresponding to a rotation through the angle a(p) , removes the coupling for each
value of p. To eliminate the coupling term from (2.83), the functions are defined:

COs & = HI{( )
(p) Jo) + Hi ()
sina(p) = () 2.116)
v V02 (p) + HE () (
where:
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o 0= [ A+ HR () - K0 () K (2.117)

¢ S matrix is constructed by integrating over the vibrational basis functions:

STy = (@, waa(p) cosa(p)|y, sy (p))
_S;,j' = Sj'_u = (‘I)J,K_A(P)ISina(P)"I’;,A'+A(P)> (2.118)

The orthogonality of the basis functions is preserved in the construction of S, so that its rows
are orthogonal, except for effects resulting from the incompleteness of the basis set. To allow
from these S is subject to a symmetric orthogonalization [149],

st = B+d-7 BS (2.119)

where B is the matrix of eigenvectors (SS*) and d is the diagonal matrix of the eigenvalues of
(SS*). More comments about the S matrix can be found in [15]. The generalized transformation
(2.115), changes over smoothly from one limiting case to the other; in this way the elements of
the vibronic energy matrix are minimized both above and below the barrier to linearity [33].

The largest breakdown of the Born-Oppenheimer approximation occurs, in this approach,
near the barrier to linearity, because this is where the "unique” level lies, and the ”unique”
level is essentially the one responsible for the mismatch of the two limiting transformations; the
generalized transformation dilute the character of the ”unique” level over several vibrational
levels in this region.

After the transformation (2.115), the diagonal blocks (H')*+ and (H')~~ have off-diagonal
elements which represent vibronic coupling within each component state, corresponding to the
process of turning an electronic ¥ state into half a IT state for A = 1. The elements of the
off-diagonal blocks represent vibronic coupling between the components, corresponding to the
interactions between the halves of a II state. From the comments after eq. (2.89) and (2.90 -
2.92), these elements are ”reordering” and "coupling”, respectively.

At this point the elements of (H’)== (H')*~ and (H’)~* have been minimized, but those of
(H')*™* still contain the large terms required to construct the upper state potential by adding
the perturbation Hp (p) to the lower state potential. If these terms are removed, the coupling
can be formulated more explicitly in terms of the two potentials.

Accordingly, the upper component basis function for { = K 4+ A are computed by integrating
the equation :

[Hb + %ui’z(p) (K + A2+ VT(p) - E:KJFA} O pealp) =0 (2.120)
and set up the overlap matrix T, defined as:
T,y =6y 5 Ti,=T;%=0

T = (@ 1—kia ()19 g a(P)) (2.121)

T is in block form, like H and S, and it is a unit matrix except for T++ block, which contains
the overlap integrals required to transform H’, where necessary, to the upper component basis.

The next step is to subtract from (H')** those terms that build the upper component as a
perturbation in the lower; only the (much smaller) reordering elements remain:

[ :‘eord]::_' = (H)) ) = By s Sow — (@ 1=k +a (P 2HK (P)1®5 1 _ ey a () (2.122)
Then H’ in its modified form is transformed:

H'=TTH'T (2.123)
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Finally, the ezact upper component energies, EIZ:K-}-A? from (2.120), are added to (H")*+
and H” is diagonalized to give the vibronic energies.

A key quantity in Renner-Teller effect is the expectation value (L.) in a vibronic level.
Its magnitude may be inferred directly from the extent to which the mixture of | + A) and
| — A) functions is unbalanced. The quantity (L.) tells up how freely in space the electronic
orbital motion occurs, and is therefore a measure of the breakdown of the Born-Oppenheimer
approximation.

In a bent molecule, the L, operator has the expression [15]:

°A1|L,|°By) = ()R = hA IK ] 2.124
(“ALIB) = -5 (2124)
with gx introduced by Brown [34] to explain the effects of the admixture of ¥ and A state
character into the electronic II state. The gx element has the formula:

|2

) p Z —”Ull’;z (2.125)

where p = 0 for (A — 1) states and 1, for (A + 1) states.

In levels above and below the barrier L, is "quenched”, and a small amount of orbital angular
momentum, proportional to K, is build up only by the effect of the vibronic coupling elements.
The orbital angular momentum reaches a maximum in the levels near the barrier, where for
K /=0 the ”unique” level lies, and the vibronic interaction is largest; its dependence with K
will be small at this energy.

The quantity (L.) is easy to calculate. L is transformed according to the expression:

L"=(STU)' LSTU (2.126)

where the matrix U contains the eigenvectors of H”, and the required quantities (L,) are the
diagonal elements of L',

Gauyacq and Jungen [113] introduced two dimensionless parameters €; and €3, related to
the dipolar (Hertzberg-Teller) and quadrupolar (Renner-Teller) terms:

: N2
ke, = —%Z,)—' keo = (n|j2|n) (2.127)
with
o b= FH)

2(1+{:‘1)
e AE = FE(Z%) — E (II) states.

The Renner parameter € and gx are expressed as functions of £; and &3 as, [113]:

_ kt—kT _ eitep e e1w?
€= e = Ther 20 UK = —oapitey (2.128)

with w,, = ; and according to the eq.(2.127), &1 has a sign opposite to that of the AE so
that gx is posmve

The method described in this section has been applied to the vibrational and K-type rota-
tional structure in A2A4; — X 2B, transitions of NH, and HoO% [147], as well as for spin and
rotational fine structure effects in the same molecules [150]. The electronic orbital momentum
effects in the ATl, state of C'5 have been considered [151], and the anharmonic effects in the
COJ molecule [113]. A quantitative description of @'A; and b'B; states of the CHj [152], as
well as the bending potential energy curves for N2OT and C’O+ molecules have been discussed
[153], based on this approach.
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2.5 Stretching Vibrations

The small amplitude stretching vibrations are treated in the normal coordinate formalism (see
§2.1.4) as separate harmonic oscillators, described by (2.38). This is the case of the rigid bender
approach (see §2.3.2) and the perturbational approach for the vibration energies of the molecules
(see §2.2). The eigenvalues of the stretching Hamiltonian are [5, 6, 18]

Eyw, =he > we(pe) (w + 1) (2.129)

r=1,3 2

and are added to the bending potential, because of p dependence of wy(pe). In the rigid ben-
der model, the coupling between large amplitude bending and small amplitude stretching is
completely neglected; this is an unsatisfactory approximation.

An improved description is obtained in the semi-rigid bender Hamiltonian, where anharmonic
terms are considered [6, 18]

By = G Z wr(p) (vr + %) + ther(p) (vr + 92_r) <vr + ‘(]2—s> (2.130)

r=1,3 r>s

and the g; is the degeneracy of the vibration v;. The functions w, (p) , Xrs(p) are usually modelled
as power series in p; the coeflicients in these series are determined by fitting to experiment. In
the semirigid bender model one must be careful in interpreting the bond length and bond angles
variations that come out of a semirigid bender fit [18]. From the eq. (2.130) , each (vq, v3) state
will have slightly different effective bending potential functions within which the (slow) bending
motion take place. This is a result of the stretch-bender anharmonicity interaction terms in the
full potential energy expression. Probably the most interesting result of the semirigid bender fit
is the variation of Vezs(p) with the small amplitude quantum numbers v, .

In the case of MORBID or RENNER Hamiltonians, where an interaction matrix is set-up,
the basis stretching functions are eigenfunctions of the stretching Hamiltonian [6, 141],

171 17 4, 11 17 4
Mo = 2 [ml i mJ B 2 [ms * mJ B
1 A
- m— COS,O((;F) P1 P3 + V(Arlg, AT‘23) (2131)
2

when the molecule stretch with the bond angles fixed at the value (7 — p,).

The matrix of Hy, is set up in a basis of Morse oscillator product functions (symmetrized
for an AB; molecule, and unsymmetrical for a ABC molecule), and is diagonalized using House-
holder’s method [7, 21].

In the case of the non-rigid bender Hamiltonian, in order to perform the perturbation cal-
culation, the zeroth order stretching Hamiltonian is defined as the harmonic oscillator (6, 17],
by eq.(2.38), using the normal coordinates. Because the perturbation theory is used to treat
the effects of the small amplitude vibrations, the effects of resonances between states involv-
ing different amounts of excitation of these vibrations are not allowed for. These effects have
to be treated by performing a matrix diagonalization of the Hamiltonian between the states in
resonance [18].

2.6 Fermi Interaction

If in eq.(2.44) the zeroth order frequency wgr lies close to w, and wy, the coefficient of the cubic
term kg ov blows up and the phenomenon is described as Fermi resonance, when kssrsn 0.

The Fermi resonance operator is diagonal in £ and A, but, as the Fig.2.4 suggests, the levels
forming a Fermi polyad will have different spin-orbit splittings and different contributions to the
energy from vibronic coupling of the Renner-Teller effect [33].
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2.6.1 Fermi Resonance in Linear Triatomic Molecules in II Electronic States

The treatment of Fermi (valid for the 3 states), was extended for linear molecules in degenerate
electronic states by Hougen [37], providing that the spin-orbit interaction and the Renner-Teller
interaction are both small compared to the frequency of the bending vibration.

The potential energy function V, giving the total energy, can be expressed in the usual
fashion:

1 1 1
Vi(Q?anaQS) = 5 Z kerZ+§kg:2 qg+§fli22 (J%Q1+ (2132)
r=1,3

Only the anharmonic term fi22¢3 Q1 has been included in eq.(2.132), that one which leads to
Fermi resonance between states of the type (v; + 1,v2,v3) and (vy,v2 4+ 2,v3). The quantity
fi22Q1 can be thought of as the second term in a power series development in the variable @,
of the force constant for the bending vibration,

_ ok 1 [ Ok* 2
k(Q1) = kg,=o+ (6—QI>Q1=O Q1+ 2 ((?_Q%) o Q7+
= koo + f100Q1+ ... (2133)

In general k;’z /=k3, and fféz /=fi22- The inequality between the quantities k2i2 leads to the
Renner-Teller effect described in (§2.4), and characterized by the parameter ¢ from (2.128).
The basis set of wavefunctions |vq, v2,v3;A,lX) are characterized by the vibrational quan-
tum numbers v, vz, v3 and also by the quantum numbers A, [, ¥, which describe, respectively,
the projection along the linear axis of the electronic orbital angular momentum, the vibrational
angular momentum, and the electronic spin angular momentum.
The term of interest can be taken to be:

Ve= 2 (41 @5 (= 1) Qi -2cos2(v - o) (2.134)

with the definition of the angles from the Fig.(2.3). The electronic part of wavefunctions are
those defined in eq.(2.81). If we use instead the symmetry functions of eq.(2.97), the expectation
value of (2.134) is f* @y ¢ for any symmetric state and is f~ @} ¢? for any antisymmetric state.

The quantity %(f‘F + f7) can be considered to represent the second term in power series
expansion in the variable (), of the average force constant of the bending vibration. The quantity
%(f‘F —~ f7) can be considered to represent the second term in a power series expansion in the

variable (Q; of a quantity proportional to the Renner-Teller parameter €.

The phases of the bidimensional oscillator used in the calculus are those of the eq.(2.51),
and the matrix elements of V, arising from the harmonic oscillator (@) matrix elements and
the eq.(2.53) are

I

(v1 + 1, va,v3; A, 1, B|Vp|v1, va + 2,v3; A, 1, X) Wiv/(v1 4+ 1)(va +2 =) (v2 + 2 +1)
(v1 +1,v2,v3; A, 1, S| Vrlv1,vs + 2, v3; A F 2,1 £ 2, %) War/(v1 + 1)(ve + 2+ D) (ve + 4 +1)
(v1 + 1,v2,v3; A, [, S| Vp|vy, vz, v3; A, 1L, E) = 2Wivuy + 1 (v + 1) (2.135)
(v1 4+ 1,v2,v3; A, [, S|Vp|v1,va,v3; AF 2,1 £2,5) = 2Wo/(v1 + 1) (va F)(v2 +2£1)

I

where the Fermi parameters defined by Hougen [37] are,

1 _ I I
Wy = §(f++f) %(@)
1 N h h
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Obs. If the force constant and the vibration frequency are in em™!, the multiplication constant
will be: | /28 (62
In the case of a ' state, for the (100) and (020) states, the energy matrix of interacting states
is,

A (V2Wy +2W,) (1—%) (=VZ W1 +2W,) (1+\/L§)
(VEW: +2W2) (1~ %) +s—C 0 (2.137)
(VI Wy +2Wa) (1.+ 72.) 0 Cs—C

The matrix elements in (2.137) were computed using the vibronic wavefunctions obtained
from a first order perturbation treatment of the Renner-Teller effect

|100; 10)(V)
75 (1020; 10)(®) + |020; ~12)(V) (2.138)

75 (10205 10)®) + J020; ~12)(1)

and hence are correct only through terms linear in & (and the results are valid when the parameter
€ is small compared to unity).

The off-diagonal elements represent the Fermi interaction, and the diagonal elements repre-
sent the energy of the three states in the absence of the Fermi resonance. The zero of energy has
been arbitrary chosen as the energy of the components of the unperturbed (020) vibrational state
in the absence of any Renner-Teller interaction and of any anharmonic perturbation involving
the bending vibration Fig.(2.6).

The relative position of the unperturbed (100) vibrational state is specified by the single
parameter A. When the Renner-Teller effect is taken into account, from the eq.(2.89), the shift
is:

1 1
+s—-C= :l:§5w2 \/(v2 +1)2- K2 — §62 wy (v + 1) (2.139)

In the case of a %11 electronic state, the spin-orbit interaction is added to the previous discussion.
The Fermi diad (100)-(020) of a 2I1 molecule breaks up into two groups of three states each,
which can be considered separately; the states with |Pl=|A+1+%| = 1, and the states with
|P| = % Such a factorization of the energy matrix is possible since P is a good quantum number
for the molecule in the absence of the rotation.

The wavefunctions for |P| = %, expressed by first-order wavefunctions | ---)() are:

|100; 1,0, —1)(1)
sin $]020; 1, 0, —%)(1) + cos 5]020; -1, 2, —%)(1) (2.140)
—c0s 3]020; 1,0, - 5)() + sin 8]020; —1, 2, - 1y(1)

and for |P| = 2,

|100; 1,0, 1)
cos 3]020; 1, 0,3)™) + sin ]020; 1,2, 1)) (2.141)
—sin 3]020; 1,0, $)™) + cos 8]020; 1,2, 1))

The elements of the interaction matrix for [P| = 3 are,

H11 =A - %A ) ng = Hgl = 2(Wl — €W2) sinﬁ-i— \/5(2W2 . {:‘WI)COSﬁ
Hy =+r+4LE —C Hiz= Hy = —2(W; — eW,) cos B + v/2(2W, — sWi)sin g (2.142)
Hyy=-r-42C _C Hy3=Hsy =0
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Figure 2.6: Energy level diagram of the 100 and 020 levels in the case of a) 'II and b) 211, [154]
symmetry for a triatomic molecule. The levels are shown without Renner-Teller effect, with Renner-
Teller effect and with Fermi interactions. The interactions matrix elements between states, as defined in

(2.137) are equally shown.

and for |P| = 2 the matrix elements are,

H11 =A + %A ) H12 = H21 = 2(W1 - EWQ) COSﬂ + ’\/5(2W2 — €W1) sin ,6
H22 =4r — ARG C H13 = H31 = —2(W1 - €W2) sinﬂ + ’\/E(QWQ . EWI) COSﬂ (2143)

Hay = —r +4KC ¢ Iy = Hyy = 0

The zeroth energy, and parameters A, Wi, W, are defined as above (see 2.6). A is the spin-orbit
coupling constant of the electronic %Il state. The other quantities occuring in (2.142) and (2.143)
are defined by [37],

1
rcos2f = 5/1
1
rsin2f = € w2 (vg +1)% — K2
1
C = gezwg(vg—l—l) (2.144)

The quantity r is takent to be positive, and 0 < 3 < 7.
Dixon, Field and Noble [154], introduce two new parameters, each associated purely with
only one of the potentials V1 or V7

[ R h
wt = f 2.
fi22 . (mwg ’—_1:&5) (2.145)
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Then Hougen’s parameters are given by:
1
Wi = Z[VI+ewt+VI—ew |
1
W = 3 [VI+ew® —vT—ew] (2.146)

The analysis done by [154] on (100) and (020) levels of the 2I1, ground state of BO,, with results
found by [46] for CO,, suggest that the observed Fermi resonance parameters can be understood
in terms of the transformation into rectilinear normal coordinates of a near harmonic bending
contribution to the potential function expressed in curvilinear valence coordinates.

Duxbury and Jungen [152] in the case of @' A; and b' B states of C Hy, and Larzilliere and
Jungen [153] in the case of the X 2II, state of CO3 show that the semi-rigid bender model with
a bond length dependence with angle like in the eq.(2.111) implies Fermi interaction constants
of the correct order of magnitude despite the fact that it does not explicitly allow for stretching
motion.

2.6.2 Standard Treatment for the Interaction Between Bending and Stretch-
ing Vibrations

The eq.(2.41) - (2.44) from the perturbational approach (section §2.2) can not be applied directly
in the case when 6 = wyr — (ws + wy) — 0, and the anharmonic corrections Xss can no longer
be obtained by simple first-order treatment of a transformed Hamiltonian. The term in Xss
containing &, . no longer appears. It is replaced by [11], [46, it is a sign error at eq.(27)]:

k2 T oalt 1 1
B [ 1 : _ J (2.147)

8 Wy + Wy +wsn Wy — Wy FWer Wy — Wy — Wen

The case where § = wy — 2w; — 0 is treated similarly. The term involving k?,s’,s” in x,, is
replaced by [46]:

| |
_k"g,s’,s” [(5‘*}5”) sk —8‘ (2&)3 aE ws”)} (2148)
, the term in y,s, by:
k2, i
S 2.149
2 2w+ wen ( )
and the term in y;,;, by:
1 1
kL, — 2.150
4 588 20.)3 + Wen ( )

The perturbed levels (through first order) are given by the solutions of a secular determinant,
involving only the interacting levels [11, 46, 155],

(E°-E) H, 0 0 ...
det| H|, (E9-E) 0 0 ...[=0 (2.151)
0 Hy;  (E3-E) Hj

where the off-diagonal terms are given by (state; |[H(M|state,) , with H(O) from [37, eq.(4)], and
are functions only of ksy v and the vibrational quantum numbers.
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2.7  Mbolecular Orbital Theory

The molecular orbital theory can predict the equilibrium values of a molecular geometry, as well
as the electronic states involved in the electronic transitions [156, 157]. The theoretical calculus
of the equilibrium geometry for a molecule involves systematically minimizing the total energy
of the system with respect to all independent internal displacement of the molecule [158]. While
the position of the absolute minimum for the total energy of the system is specified by the
equilibrium geometry, the shape of the potential curve in this region is reflected in the various
force constants characteristic of each of the normal modes of vibration of the system.

Force constants may be calculated by evaluating the total energy of the system at several
points along a normal coordinate and fitting the values to a polynomial. A rigorous treatment
of this type for polyatomic molecules was done in [158]. It is rather disturbing that the calculate
force constants may be strongly dependent on the number and locations of the energy values
employed in the curve fitting procedure [159, 160, 161]. The source of numerical inaccuracy
is largely eliminated if the force method [162, 163] is used. This model involves only a single
numerical differentiation of the energy because the force constants are evaluated from the force
of the nuclei, i.e., from the first derivatives calculated analytically.

Another problem encountered with the SCF calculations is the choice of the geometry for
which the energy derivatives should be calculated. It is preferable to use experimental geometries
instead of calculated geometries [164], because the basis set dependence of the calculated force
constants is much smaller [165] and better agreement with the experiment is achieved than with
the force constants calculated from the optimum geometry. Experimentally, force constants are
deduced from the vibrational frequency of the characteristic normal mode, as obtained form an
analysis of the infrared or Raman absorption spectra of the molecule [11, 46].

In the case of the potential curves calculations, the Hartree-Fock approximation is especially
poor on more remote regions of the energy hypersurfaces in which there is a tendency to the
electron pair rupture, because the effect of the electron correlation is extraordinarily large in this
case. This not lead to a correct dissociation limit i.e. to the atoms in the Hartree-Fock ground
states. It is therefore necessary in the configuration-interaction (CI) method to assume also
quadruply excited states and include all single and double excitations with respect to all con-
figurations. The coupled-electron-pair-approach (CEPA) include those quadruple excitations.
However other quadruple excitations that are necessary for the proper dissociation are not in-
cluded in CEPA, and this is why CEPA tends to deviate from the experiment at large distances
[159].

Before discussing the applications, it should be noted that the correspondence between the
calculated and the experimental quantities need not be straightforward. Typically, the "ob-
served” quantity results also from an assumed theoretical model, which need not be compatible
with the assumptions involved in the ab initio calculations [166]. From example, the bond
lengths are most usually determined from the dependence of the total energy on the positions
of the nuclei, in the Born-Oppeheimer approximation. The interatomic distance corresponding
to the lowest energy is not compatible with the experimental bond length because the later is
not only due to the electronic energy, but it is also affected by the vibrational motion. Hence a
rigorous comparison requires that a correction of the observed value for this effect be performed,
i.e., the calculated equilibrium distances should be compared with the spectroscopic quantities
re and not rg [159)].

Another problem of a rigorous comparison of the ab initio results with the experiment is
encountered with any observable which is determined by a polynomial fit to calculated points.
Some molecular properties (mainly spectroscopic constants), depend on the fitting procedure
rather strongly and if an inappropriate fit is used the discrepancies with the experiment which
are found, may be erroneously assigned [46].

In an ab initio calculus, accurate predictions of the molecular properties are dependent on the
basis functions used and correlations effects. It is important to note that the above dependence
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is not always monotonic [167]. Since the ab initio self consistent-field (SCF) calculations were
still rather costly to performed, Pople and co-workers developed in 1965 a new set of methods
to provide approximations to these ab initio minimum-basis-set calculation which require only
a fraction of the computational time that is necessary in the purely ab initio case [168]. These
methods are the well known CNDO and INDO methods which are all-valence-electrons theories
[169, 170, 171, 172]. Their purpose is to mimic the ab initio calculation [167], and contain a little
semiempiricism through the use of the atomic data for the one-center coulomb integrals [169,
173], but is in the spirit of the atoms-in-molecules theory (174]. Because of their intent, CNDO
like methods should be viewed as clever numerical approximations to the ab initio theories, is
in fact a first order approximation of an ab initio calculus in an orthogonal basis of atomic
orbitals [175]. The results of the CNDQ/2 calculations on a number of ABj molecules are done
in [169, 176]. Of particular interest are the two Renner molecules BH; and N H,, for which the
electronic energy functions as function of the bending angle is computed.

For the N H; molecule the equilibrium state of the upper state 24; was calculated as bent
with a = 145.1°, even if early experimental work suggested that the upper state is linear [24].

In the last time a series of accurate ab initio calculations have been reported on higher order
force constants of small polyatomic molecules [158].

2.8 Simultaneous Treatment of Bending and Stretching Vibra-
tions and their Interactions

2.8.1 Matrix Formulation for Small Amplitude

Frye and Sears [112] used a small amplitude formalism to set up an interaction matrix which
take into account the Renner-Teller effect, bending anharmonicities, as well as Fermi interaction,
in order to fit the experimental data of the 211, electronic state in C’OéF molecule.

For the Renner-Teller interaction they use the Hamiltonian discussed at the eq.(2.95), with
bending anharmonicities from the eq.(2.96). A harmonic basis set is used, bidimensional os-
cillator for the bending vibration and uni-dimensional harmonic oscillator for the symmetric
stretching.

The matrix elements of H’ from the eq.(2.95) in the harmonic basis |A,v, K) , are done
in [112, eq.(7)-(9)], and for the anharmonic elements H,,, in [112, eq.(14)-(20)]. Using the
parameters Wy and W; from the eq.(2.136), the Fermi operator is,

Hrgr = Wiq1¢* + Waqi¢%o, (2.152)

with o, defined in (2.95), and ¢;, ¢ dimensionless harmonic coordinates, and the Fermi parame-
ters such as Wi and W, from the eq.(2.136) becomes:

1 1
Wi = '2‘(f1+é2 + f1_22) W, = §(f1+22 - f1_22) (2-153)

Other workers have attacked the eigenvalue problem for the Hamiltonian including Hrg , by
introducing higher order perturbation theory terms [177, 154], or by direct diagonalization of
a large matrix [178]. The matrix elements. of Hpp are done in [112, eq.(24)-(27)]. The main
advantage is the analytical calculus for all matrix elements, even if the size of the matrix becomes
inconveniently large as vy increases.

The energies computed on the basis of a perturbation theory treatment of matrix elements of
the Renner-Teller Hamiltonian (eq.(2.95)), followed by first order treatment of the anharmonic
corrections (eq.(2.96)) [111], are found to be different from those calculated on the basis of an
"exact” calculation involving diagonalization of a large matrix [112].

The derived Fermi resonance parameters for C’O2+ molecule are close to those derived for
BO, by Dixon et all [154]. This means that the bending motion is nearby exactly harmonic
when true valence field coordinates are used.
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2.8.2 Constants derived from Molecular Orbital Calculation

In a molecular orbital treatment of the electronic and nuclear states it is quite essential to
take into account the coupling of electronic, electron-spin and ro-vibrational momenta, in order
to explain the pattern of the ro-vibronic states. The three-dimensional adiabatic potential
energy function (APEF) for the electronic states can be obtained from the highly correlated
electronic wavefunctions and it can be computed the ro-vibronic energy levels of this species by
considering full dimensionality anharmonicity, rotation-vibration, electronic angular momenta
and spin coupling effects.

The electron correlation effects on the APEF’s can be analyzed in terms of anharmonic
force fields and the theoretical three-dimensional APEF’s are empirically modified to reproduce
the known vibronic band origins. In the computation of the ro-vibronic levels, the variational
procedure of Carter and Handy [128] extended by the effects of electron spin are employed [129].
The APEF’s have been expanded at their computed equilibrium geometries and the force field
constants can be computed in different SCF approximations or by standard perturbation theory.

The electronic levels formula for electronically degenerate states [111] and the Fermi reso-
nances are not considered at this stage. The variation of the bond length with the bending
angle from the semi-rigid bender effective Hamiltonian [14, eq.(21)], can be computed form an
inspection of the contour plot of the APEF projection, but the numerical accuracy of this value
may be uncertain, because of the very small differences in the bond length entering into the
fits. The Renner-Teller splitting parameter € can be calculated from the corrected APEF’s, in
good agreement with the value derived form the experiment. The Fermi interaction W; and
W, parameters can be computed from the potential constants in the appropriate units. The
vibronic levels exhibiting anharmonic Fermi resonance agree to within about 10 em ™! with the
experiments, using the Carter-Handy Hamiltonian.

With this method the theoretical potential energy and the ro-vibronic spectrum of X 11,
state of COJ have been analyzed [179, 180] and compared with the results previously obtained
from the small and large effective bending Hamiltonians (§2.3).

Calculus concerning @' A, and b B; electronic states of C H; are done by [142]. In [143, 181,
182] the Renner effect is not take into account. Some effects due to the angular momentum op-
erators have been discussed in [183]. When compared with the RENNER effective Hamiltonian,
some of the results derived from the variational calculus [143, 144] seems to be in error [141].

In the case of X 3B ground state of C' H; quasilinear molecule, the rotation-vibration energies
were carried out by [79, 184].

A stretch-bender calculation of the effects of orbital angular momentum and vibrational
vibrational resonances in the spectrum of C' Hy is done in [185].
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Chapter 3

The Symmetric Stretch - Bender
Model

3.1 Instantaneous and Reference Configuration

3.1.1 Reference Configuration

Following the approach from [5, 6, 14], we consider the instantaneous displacement, of the
molecule from a symmetrical variable reference configuration with bond angle o. The coordi-
nates used, in the present work, for the bending and stretching motion consists of two linearized
coordinates S° and S , corresponding to the two bond - stretching motion and one curvilinear
coordinate « , which, for small S° and S° is nearby, but not exactly, equal to the instantaneous
bending angle & . The angle « is equal to the instantaneous bending angle of a reference con-
figuration for the molecule, whereas the angle & is equal to the instantaneous bending angle of
the molecule itself. The reference configuration is chosen to ensure that the bond stretching is
of small amplitudes. Instead of « , the bending vibrational coordinate is chosen as p , because
for p — 0, the molecule will be linear: p = 7 — . The coordinate p (0 < p < ) describes the
large amplitude displacement.

The coordinate p defines the reference configuration that ”follows” the large amplitude dis-
placements. The definition of p has the advantage of yielding a kinetic energy operator with
minimized coupling between over-all rotation, small amplitude vibration and large amplitude
vibration [6].

The stretch-bender reference configuration is chosen so that in the molecule axis fixed system
(Figure 3.1):

L. the nuclear center of mass is at the origin

2. all the nuclei lie in a plane making an angle ¢ with the zz plane

3. the bond length can vary with the angle r%(p) , so that as the molecule bends the reference
geometry follows the minimum on the energy surface:

ri(p) = rf + Rilp) (3.1)

4. the zy plane bisects the bond angle « , so that the angular momentum of the reference
configuration vanishes in the molecule fixed axis system (the Eckart condition of [5]).

The coordinates of the i-th nucleus (i=1,2,3) in the molecule fixed axis system can be written:

k= a@i(p) + d; (3-2)
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c)

Reference plane —=

Figure 3.1: The definition of the molecule-fixed stretch-bender coordinate system and the displacement
coordinates used for a triatomic molecule with a symmetrical equilibrum configuration. a) Symmetric
stretching; b) Asymmetric stretching; ¢) Azimuthal angle ¢. The displacements in figure are much

greater than in reality.

,where t;, d;(p) and d; are three dimensional column vectors. The vector @ (p) contains the three
Cartesian coordinates (in the molecule fixed axis system) of the i-th nucleus in the reference
configuration and d; is a small amplitude displacement from this configuration.

Since we are considering a symmetrical reference configuration with variable bond lengths
it is more convenient to introduce vectors a_l;s and d_é‘ , corresponding to the symmetric S° and
antisymmetric S¢ vibrational coordinates, respectively. The d_f and d_i‘ , displacement are related
with d; by the condition: d; = d_;s + cff

The components of the vectors @;(p) in the molecule fixed axis system are given by (§A.1):

Ty .
ajz = ——2sinfcosy
p
Tp . .
a1y, = —Zsinfsing
aj, = -—rpcosf
mi\ Ty, .
Ay = <2—>—psm0c:osg0
ma/ P
mi\Tp . .
Ay = —(2—>—ps1n951nc,9
mg/ p
az, = 0 (33)
Ty .
a3z, = ——sinfcosyp
P
Tp . .
azy, = -Lsinfsing
a3, = r,cosf

where the two identical atoms have the masses m and the central atom has the mass my. r, is
a shortcut to 7(p). p has the following formula:

p=1+20
In the previous equation and below were employed the shortcuts:
6=2 and r,=r0=r%p) (3.4)

The @;(p) values may be chosen so that the molecule fixed axis system is a principal axis system,
but instead, it is chosen so that:

;m@(p) X (%ﬁ)’”) =0 (3.5)
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The equation (3.3) requires that the angular momentum of the reference configuration vanish
in the molecule fixed axis system (§A.2).

3.1.2  Displacements and Instantaneous Configuration

The vectors d; » 1=1,2,3 have each three components and all nine components cannot be inde-
pendent since they describe the small amplitude stretching vibration motions, corresponding to
only two degree of freedom. They are subject to the following constrains:

1. the nuclear center of mass remains at the origin:
> midi =0 (3.6)
i

2. the Eckart conditions [40]

3. the Sayvetz condition :

> m; (%L’”) di =0 (3.7)

i

Equation (3.7) means in essence that d; and (%‘(’p)) are ”at right angles” - this ensure separation
of bending and stretching.
Following the calculus of (§A.3) we find that the final relations between the displacements

—

d; and the stretching-bending coordinates:
1

diz = — 2(S'S+Sa)(sinl9—bcosB)cosc,o

(8° 4 5%) (sin @ — bcos #) sin

R

di. = —%(534—5“) (cos 6 + bsin 6)

dyy = (2%) %ss (sin 6 — bcos8) cos

dyy = - <QZ—;> %Ss (sin @ — bcos @) sin

dy, = (2%) % . §* (cos 0 + bsin 8) . (3.8)
ds, = —%(55—5‘1) (sin @ — b cos ) cos

dsy, = %(53—5‘1) (sin @ — bcos ) sin

dse = - (S°— 5% (cosf+ bsin6)

V2
In eq. (3.8) and below the following notations were used:

7

b=25 and Y =1¥(p) = 2l < SRl _ (3:9)

However, it must be born in mind that the reference bond length will always be a function of
the bending of the reference configuration. When r% = 0, the equations for the antisymmetric
and symmetric coordinate are identical to those derived by Jensen [6].
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The instantaneous coordinates in terms of the reference geometry and the displacement
coordinates are obtained by using the eq. (3.3) and (3.8):

1
T, = —r—psiHOCOStp—W(SS—I—S")(SinO—bCOSG)COS@
T, . . 1 . .
= Lsinfsiny+ — (5°+ 9% (sinf — bcosf) sin
wo= " o+ 72 (504 5°) Jsin

S
V2
Ty = <2m) [r_p sin 0 cos ¢ + LSS (sin @ — bcos ) cos c,o]

(S° 4 5%) (cos 0 + bsin 6)

z1 = —rpcosf —

ma/ LP V2
My Tp . . 1 S/ e . :|
= —|2— ) [—=sind ) 6 —bcosl
Y2 < m2> [p sin fsin ¢ + 7 (sin cos @) sin ¢
2y = ﬁ-S“-%(cosO—i—bsine) (3.10)
2
r3 = —r—psin0cosg0— % (S° —S5%) (sin® — bcosh) cosp

1
ys = _Lginfsinp+ 7 (S — 5%) (sin  — bcos ) sin ¢
p

%

z3 = r,cosf+ % (5% — S5%) (cos @ + bsin )
The Sayvetz equation (3.7) vanishes identically for the antisymmetric displacements d? , as it is
shown in (§A.3). This means that the relations between the displacements d? and coordinates
S® has a degree of arbitrariness. The choice of the eq. (3.8) ensure that the Jacobian of
the transformation, defined below (§3.2.2) is invariant in the case of a symmetric ABy and
asymmetric ABC molecule, respectively.

In the case of the potential energy, we need to obtain an expansion in terms of the reference
angle p , rather than the instantaneous angle, p. The reference configuration will be defined
below in (§3.3.1). The instantaneous bond angle may be written to the first order in terms of p
as:

= s Qa 8/3) s (815) a
I~ 11
5 (p, 5%, 5%) p+(655 s (pm) s (3.11)

Since our reference configuration stretches as the molecule bends, the higher order terms are
omitted because the difference between p and p is always small in our method (see the similar
[6, eq. (3.14)]).

The first derivative of p relative to the symmetric and antisymmetric stretching displacements
may be written as in (§A.4) and is based on the (Figure 3.2):

9 — 0 (3.12)

By analogy with p and g (the bending reference and respectively instantaneous bending coordi-
nate), we have two stretching coordinates: the reference and the instantaneous one; S* and S°
, 1 = 8,a. This is due to the p dependence of the bond length and therefore we have two bond
lengths: the reference and the instantaneous one.

If we consider the curvilinear internal displacement coordinates for the stretching vibrations
[6, eq.(3.1) and (3.3)] and our stretching coordinates, we are obtaining (§A.5):

Ary = rip—1ri(p) = % [Rl (ro,p) S* 4+ Rs (ro,p) Sa}
Ars = ro3—raa(p) = % [Rl (ro,p> S% — Rs (ro,p) S“] (3.13)
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"Potential valley"

"Potential valley"
N; ‘

Initls‘ll‘bcndin:g angle ; 4
a) - ; , f
p \ 3 ‘Final bending i
il bendi , 3 : ;
/ ‘ FII'I:ﬂ bending at!glc \  angle. ,
X \ Y Initial bending angle.
L3 B} : A p . i
\‘\\~ ',\ ’_' ] '_- \\‘ ‘\ ;
/e ® < e _
Shift of local minimum. Asymmetric stretch motion.
Symmetric stretch displacement. Shift of local minimum.

Figure 3.2: Interaction between stretching and bending motion in the case of: a) symmetric stretching
and b) antisymmetric stretching. The displacements in figure are much greater than in reality.

Here Ary, Ars are the displacements from the equilibrium position in the ”potential valley”,
riZ(p)a =1,3.

Since our reference configuration bends as the molecule stretch, we need to obtain an ex-
pression in terms of the reference stretching coordinates S* and S® (§A.6), rather than the
instantaneous stretching coordinates S* and S°:

Sf = S+ | = — Pe
( ()’0 )S‘S:SS (p p )

-~ ('}lgtu
S = §eq (2 - pe 3.14
( o )Sa:sa (P — pe) (3.14)

The above formula is correct for small changes in the bending angle, when dp = p — Pe. The
first derivative of the symmetric and antisymmetric coordinate to the p value may be written as

(§A.6):

() = V2 (28), = B ith), i (55) =0 019

There are some auxiliary functions, R;(r% p), i = 1,5, used for the conversion from the in-
stantaneous to the reference frame. They are also used in the definitions of the contravariant
g°“ metric tensor analyzed below as well as to express the instantaneous bond length and their
derivatives in terms of the reference coordinates:

Rl(ro,p) — (cos2 6 + psin? 0) —b(p—1)sinfcosd

Ry(r°p) = —2(p—1)sinfcosf+ 2b (pc0320—+-sin2 0)
R3(r% p) = (00320+psin2 9) —2b(p —1)sin fcos b + b? (pcos20+sin29) (3.16)
r?' '
= Ri(r%p) + (T—O) Rs(r°, p)
Ry(r p) = (sin2 6 + pcos’ (9)

+2b (p — 1) sin 6 cos 6 + b* (cos2 6 + psin? 0)
R5(r0, p) = (sin2 8+ pcos2 0) +b(p—1)sinfcosb

There are some aspects that must be emphasized:
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1. In the case of the rigid-bender formalism, the Ry(r° p) function became
Ry (r°, p) |pr=o= —2(p — 1) sinf cos § (3.17)

and express only the fix position of the center of mass when a symmetric stretch occur (in
a symmetric stretch, the p angle increases), as in the literature [5, 6].

2. The derivative of the symmetric stretching coordinate in the rigid-limit vanish:

95*
( 8p ) |7"=0_ 0

3. The eq. (3.11) and (3.14) together with eq. (3.12) and (3.15) can be easily understood by
analyzing the (Figure 3.3), where there are shown the extreme cases: a bending motion
(rigid-limit) followed by a stretch to arive in the potential valley and a stretch motion
followed by a bending motion (rigid-limit).

"Potential valley" "Potential valley"

Initial stretching displacement. Shift of local minimum. Shift to local minimum. Initial bending displacement.

Figure 3.3: Changement of the instantaneous reference frame in the case of: a) stretching motion and
b) bending motion. The displacements in figure are much greater than in reality.

3.1.3 Relations Between the Literature Coordinates and the Stretch - Bender
coordinates

The curvilinear bending coordinate p, used here, is the same as in the case of [5, 6]. The eq.
(3.11) for the case of the rigid-bender limit is equivalent to [6, eq. (3.14)], or [5, eq.(50)].

The difference arises when we consider the case of the internal curvilinear displacement
coordinates for the stretching vibrations and the linearized internal coordinates S°¢ and S°.

If we consider [6, eq.(3.1) and eq.(3.3)] and the eq. (3.13) , we find the transformation
between our internal coordinates and the generalized internal coordinates (§A.7), when p is not
very different from p.:

Aryo = Ar; + Ry (p) (3.18)

1

S

Aro i [Rl (ro, p) S° 4+ R; (ro,p) S“] + Riz2(p)
1

V2

where, for i=1 we consider ”"+” sign and for 1=3 ”-” sign, respectively.

[B1 (1% p) §* £ Rs (1°,0) 5°] + Riz(pe) (3.19)
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In the rigid-bender limit, the Cartesian vibrational coordinates S° and S are related to the
coordinates S{°" and Sy°* from [6, €q.(3.17)]. The later ones are used to define the A matrix
[7, Table I] , [186, Table I] for a triatomic molecule (§A.8):

S 1 en n
S° = m{mg [ma + my (1 4 cos p)]} (Si] + §J° )
a 1 en en
St = D {ma [m2 + my (1 — cosp)]} (Si] -5 ) (3.20)
where D = my (2m; 4 m3) + misin® p = m3p + m?sin?p

The coordinates S{°” and Sy are related to the internal Cartesian vibrational coordinates
S° and 5%, by (§A.8):

1
Si]en - \/5 [RS(T‘01 p)lr’:O - §° + R4(7‘0, ,0)'#:0 ’ Sa]
1
Sé]en \/ﬁ [R3(T‘0, p)lr’:O 87~ R4(7‘0, p)lr’:O : Sa] (321)

where from the eq. (3.16) we have:

R3(r° p)|ym0 = [p?i - p; : cosp] = [1 + 27721 sin® 0]
Ry(r°, p)|pmg = [p_—;—_l + p; 1 cosp} = [p—{— Qm—mzlcos2 0]
We will use the non-symmetric coordinates:
S1 = % (S°+ 5%
Sy = (57— g9 (3.22)

V2
Jen

and in this case the relation between them and the coordinates S{e™ and §J¢", in the rigid-bender
limit, are the following ( §A.9):

S=C .57 (3.23)

. ma(mi+mz)  mimscosp
O = D D

mimy Cosp ma(mi+my)
D D

with

and D defined in eq.(3.20).
If we use the equation [6, eq.(13)],[5, eq.(16)]

d=A-§ (3.24)
our A matrix, in the rigid-bender limit, is proportional to the B matrix of [5, Table I] or [6,
Table 3], as shown in (§A.9). The choice of our stretching coordinates makes more difficult the
use of the generalized moment of inertia [6, eq. (48)] and it will be easier the use of the metric
tensor into the kinetic energy formalism.
It is interesting to analyze the behavior of our transformation formula in the case of small
amplitude bending movement, it means when p — 0. In this case the auxiliary functions will
be, as it is shown in (§A.10):

Rilpmo =~ 14 [p—l—Q(p—l) <4dr>} %2

To

4d,
Rolpso = —[p—1—2p< )J-p

o
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r 2] p2
R3lpso = 14 |p—1-4(p-1) }-4— (3.25)

[ 4d, d, 2
Rilpso ~ p-|p=1=1(p-1) (3] 44 )}”—
] To 4
[
Rslps0 = p-— p—1—2(p—1)<
R(p

where we consider, from eq. (3.1), that
(§A.11),

= () e

= L)
Where(SS)Jen _ T(Sjen + 54)

(597 — % (5 — 5 (3.27)

It can be seen from (3.26), that the antisymmetric stretching vibration is in our case p times
lesser that in the usual case of [5, 6]. More than this, if we use the (5°)”*" and (5%)’*", we have
from the eq.(3.19),(3.22) and (3.26) an approximate formula:

(SS)Jen ~ R3 . 8%

(S8~ R,-S8° (3.28)
In the first approximation we have [7, eq. (23)]:

S ~ Aryy and  SY" ~ Arg, (3.29)
From eq.(3.13) and (3.19), in the rigid-bender limit, we find that:

($)7" =Ry - S° and (S°)7*" = Ry - S° (3.30)

The eq.(3.26),(3.28) and (3.30) are the same because, in the rigid-bender limit we have:
Ry|yi=0 = R3|ri=0 and Rylpi—o = Rs|r1=0
with: ,
(R) ' ~1-(p-1) 2 and (Rs) '

There are some comments concerning the

1+ 0]
. (3.13), (3.14), (3.18), (3.19):

o If the stretching displacement from the stretch-bender reference configuration is assumed
to be small [186], the reference bond length in the zeroth approximation is considered as
constant during the stretching motion and in this case the eq. (3.13) become:

1
P
e eq

Ard = % {Rl (ro,p) S°+ Rs (ro,p) S“}
Ard = % [Rl (ro,p) S* — Ry (ro,p> S“}

o If we consider the reference stretching coordinates, the formula (3.19) can be changed by
using the eq. (3.14) and will have the expression (§A.7):

[ L 0 s 0 a .
AT'ZQ = % [Rl (T‘ ,p)S +R5 (7‘ ,,O)S ] -I-Rz(p)
= A0+ R; (p)
because:  R(p) = R(pe) + R'(p) - (p — pe), for p near p,.
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e We see that the generalized internal stretching coordinates can be expressed either in the
instantaneous stretching coordinates for a reference bond angle (3.18), or in a reference
stretching coordinates for an instantaneous bending angle (equations above).

e For p— 0 we find ( Ry (r%p) =1 , Rs (r°, p) ~ p):
Ar?:%(Ss—i—p-S“) and Argzﬁ(ss—pm?“)

3.2 Kinetic Energy

3.2.1 Expression of the Classic and Quantum Hamiltonian

The classical kinetic energy is:
oT = Y m; (£;)* (3.31)
i

where the instantaneous position vectors of the atoms were defined in eq. (3.2). In order to
obtain the expression of the kinetic energy in curvilinear coordinates, we will change the classical
kinetic energy from the Cartesian coordinates to (p, ¢, S*, S5¢) . We are using the definitions of
Podolski [187] rather than those of Wilson, Decius and Cross [10].

Expanding the eq. (3.31), we have,

2T =3 m (2% + 92 + 3) (3.32)

When we change the coordinates to (p, ¢, 5%, 5%) , we find (§B.1)

2T = 3" mighbiais = gap tats (3.33)
i,a,,@ a“@

with @ = (p, ¢, 5%, 5%) , curvilinear coordinates and:

k
e gy

m(Ge) (32)+ (32) (B2)+ (G2) (22)] o
(k]

Here 9,5 1s the metric tensor element for the ¢ -th atom and gap is a pseudo - metric tensor
(because is multiplied by the mass). The eq.(3.33) may be transformed (§B.2), giving the final
classical kinetic energy:

2T = > g*° P, Pp (3.35)
af

Jap =

n
>
k=1
n
>
k=1

According to Podolski [187], the quantum kinetic energy operator connected with the eq.(3.35)
is given by:

2T = ui 3 Paptop ™% Py pii (3.36)
of

where:
e 1= g7 !, the inverse of the transformation Jacobian
® top = g°P, the elements of the contravariant metric tensor,

L4 Oz,ﬂ:p,(p,ss,sa.
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The quantum operators are:

P, = —ikif P, = —ihg
(3.37)
P P
Ps:_ZhW Pa:_ZTlW

The volume element for the kinetic energy operator eq. (3.36) is dV = dp dp dS°dS?, according

o [187]. In the kinetic energy operator we do not take into account the end-over-end rotation
and even more, any rotational terms, as well as the Coriolis coupling terms. The eq. (3.36)
analyses only the stretch-bending terms. The ¢ coordinate ( the rotation around Oz axis)
is taking into account because corresponds to the bending movement in the small-amplitude
formalism of the bidimensional oscillator.

3.2.2 Elements of the Metric Tensor and the Kinetic Energy Terms

Before trying to find the terms of the kinetic energy, we must find the analytical expressions
for the metric tensor elements. Using the formula (3.10) and (3.34) we obtain the metric tensor
elements after an extensive algebraic calculus (§B.3):

2

Gy = ’”21; {(coso+bsino)2+p(sino-bcoso) ]+ ’i’}’“ss [1+6% - 2¢/)
mT (S°) {p ") cos 8 + bsinf]” + [(1 — 2b') sin 6 — bc030]2}
i (45 {p [(1—2b6")sinf — beosh]® + [(1 — 2b') cosO+bsin0]2}
9o = 0
Gps = m125 {p[(1 —2b")cos@+ bsinb)] (sin & — bcosh)
~ [(1—2b")sin 6 — bcosb] (cos@ + bsin §) }
Jpa m125 {[(1 —2b") cos@ + bsin 8] (sin & — bcos6) (3.38)
— p[(1—2b")sin@ — bcosb] (cos @ + bsin 6)}
ml . pSS 0 2 a\ 2 . 2
Gop = ' rsin @ + 7 (sinf — bcosf)| + mq (S*)” (sinf — bcosb)
gos = 0
Gpa =
Jss = MM [p(sinO — bcosO)2 + (cos @ + bsin 0)2]
9sa = 0

Goa = ™y [(sinG—bcosﬂ)2+p(0050+bsin0)2}

Form the above formula we can observe that the ¢ coordinate do not couple with any other one
and than the tensor elements vanish because of the symmetry requirements. The g,z elements
do not depend on ¢ because the vibration is symmetric to the rotation around Oz axis. More
than this, the antisymmetric stretch coordinate arise only as a square value (exception in g,,
). This is quite normal because for a symmetrical molecule the bend and the symmetric stretch
belong together, but the antisymmetric stretch is orthogonal to them.

The Jacobian of the transformation is (§B.3):

4.4 2 0,2
R | ) e CO N ) B

{[(Sin 0 — bcos)® + p (cos + bsin 9)2}
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s 2
[(cosH + bsin 0)2 + p(sinf — bcos,¢9)2 + %ST (1 +b% - 2b')]
2

ay 2
+ % (ST) (1402 - 2b’)2 [P (sin 6 — bcos§)? + (cos 6 + bsin 0)2]}
As in the above comment, the p and S® coordinate belong together and S¢ is at square. In fact
the eq.(3.39) look very simple and ”symmetric”.When we analyze the g,g elements, they are
nearly ”symmetric”.

The contravariant elements of the metric tensor are presented in (§B.4). We can see that all
the elements g*¥, with a Ay are 0.

We assume that if the reference configuration is close to that of the instantaneous config-
uration, the derivatives of the displacements may be evaluated in the ”0” point, when S° = 0
and 5% = 0, i.e. (%‘é)o = (%>SS=S“:O
to antisymmetric coordinates ( S*), except the second derivative of g, will vanish. More than
this, the following terms will vanish also( because of symmetry requirements): g%°|o = gf%|o =
9°%lo = 0. Taking into account all the terms that must vanish (§B.5), the kinetic energy
become [188]:

where o = p,S5°,5% . In this case all the derivatives

1 1 1 1 L -1
T = EggpP3+5[Pp,g8p]Pp+§(go) ‘ [ngpp(go)g [va(go) 4]]

1

+ 596”32
1 ss p2 1 aa 2

+ EgO Ps + §g0 Pa (340)
1. -1 g 1 -1 1oL o -1

+ 5(90) 149 {Ps1g2 [Psag 4”()"‘5(90)“_9 [Pa,[Paag 4”0
1 1 s _1 1 L N -1

+ 5 (907 [P, 97 [P0 (90) 4}+5(go)“[Pa,g “lo [P» (90) “]

where the commutator of two operators: [F,G]= FG —GF and [F, G], means that the values
after the operations are in the reference system: (FG — GF),.

In the formula (3.40), the first row is the BL (and formally the HBJ) bending Hamiltonian,
the second row is a rotational Hamiltonian around Oz axis (axis of linear molecule), the third
row describe the stretching kinetic Hamiltonian, the fourth row incorporate some of the terms
described in the Up term of Jensen [6] and Watson [8], and in the fifth row are terms specific to
our model.

3.2.3 Comparison with Previous Formulas from Literature

In the case of the HBJ [5] large amplitude bending vibration approach, the (); and Q3 normal
stretching coordinates were used, instead of our S° and S® coordinates. The same normal
coordinates (Q1,Q3 are used in BL [14] semirigid bender Hamiltonian as well as in Hoy and
Bunker [17] and Jensen [6] non-rigid bender Hamiltonian. For this reasons, in all these papers
911 = 933 = 1,916 = g3a = 0, where @ = z,y, z, p. This simplify the kinetic energy formula, but
usually it is more difficult to use normal coordinates in numerical computing.

In the case of MORBID Hamiltonian [7], the stretching part is described in [7, eq.(15) and
eq.(39)], as: %SG”S’ (classical energy), and the G matrix has the form (6, eq.(3.20)]

(0 aa)

(3.41)

my
R.1 (l“u,p)

™y

0

for a symmetric molecule. This will determine a term of stretching as:
2

bt [()™] + dy [(8)]
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If we use the eq.(3.30) (with r'(p) = 0) , we will find that in our coordinates the term will
be:

%mlRe, (SS)Z + %m1R4 (Sa>2 (3.42)

If we are comparing the relation (3.42) with (3.33) and (3.38), we will see that it is the same
term as in our case, but g,; = 0 in the MORBID Hamiltonian.

In the HBJ formalism, the rigid-bender is used for the large amplitude bending vibration.
The g,, and g,, from (3.38), in the rigid-bender limit, coincides with I,, and I,,. The second
and the last two lines in eq.(3.40) do not exist in the HBJ formalism. The last term of the first
line from eq. (3.40) is different too, in our formalism we have g5” instead of ¢**.

The semirigid bender formalism of BL [14] is the same as the HBJ formalism, except that
9pp and gy, from (3.38) are identical with I,, and I,,. (however in [14], for the expression of
I,, the terms in " were omitted).

In the case of the non-rigid bender Hamiltonian, of [17] or [6], the first, third and fourth lines
of the eq.(3.40) have a similar formal behavior as in our model. We will emphasis the differences

between the two approaches:

e in the non-rigid approach, the bond length is constant and therefore r* = 0, in the Hag
terms

e the fourth line of (3.40) is similar with the term: %u% > [Pr,/f% [Pr,,u%” of [17] or [6].

The difference between the two approaches arise from the last formula, where p contains
Ize, Iy terms, compared with our formalism.

In the initial stretch-bender approach [186], the derivatives have been evaluated after setting
S$® =0 and S* = 0. This means that the metric tensor is in fact diagonal, 9o = Jaadap, and
all the derivatives other than 6—7; vanishes. The last two lines of the eq.(3.40) do not exist in

this formalism. The eq.(3.40) is correct to order of magnitude k%7, where:

1
e k is the Born-Oppenheimer expansion coefficient k& = (Z2)1, where m, and m are the
electronic and nuclear mass, respectively.

e T, is a typical small amplitude vibrational energy (evaluation in §B.6).
The kinetic energy order of magnitude is the same as for the non-rigid bender Hamiltonian
[17, 6].
3.2.4 The Final Kinetic Hamiltonian in Reference Coordinates

We are expanding now the eq. (3.40) and changing the wavefunctions for the pure bending

Hamiltonian, as in HBJ formalism [5]. We will expand some of the u,s = ¢°” terms in the

powers series of the reference coordinates ( implicit S* and S* are small stretching vibrations).
The rotation bending Hamiltonian will be obtained from the eq.(3.40) as:

1 1 1 _1 1 1
T = 98 P24 5 [P 29871 P + 5 (90)7 [Pp,gé"’(go)2 [Pp,go“”
1
+ 59 P} (3.43)
We will consider the substitution [5]:
-1
Ps(p) = (97)72 - Ds(p) (3.44)
This substitution will remove the linear derivative terms and the eq.(3.43) become (§B.7):
1 2 h2 po Yo p2
Tv =590 - P, t 59 Jolp) + 90 Fy (3.45)

290
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where:

fole) = (oo)F 6875 3 (00}t a8)?]

1

Jo(p)|p—0 ‘} (3.46)

1
4p7
term for small bending angles. We recover the rigid-bender formalism of [5] by omitting all the
derivatives in S and S® and by taking r® as a constant. If 70 is allowed to vary with the p

angle, we will obtain the semirigid bender formalism of [14].

The substitution (3.44) is equivalent to the transformation (g(‘)’”)% HEin (g{)”’)_% . This trans-
formation change the volume element dV = dp dp dS*dS® to dV = (98°) " dp dy dS* dse.

Before discussing in more detail the last term in the first row of eq. (3.40), we must analyze
the expansion of yep terms in (S°) and (5%) powers series. The expansion is similar to (8,
eq.(31)] or [6, eq.(4.24)] as it can be seen in (§B.8):

pap (P, S%8%) = plp— D > plsalrpl, S (3.47)
T by

Near p ~ 0 this correction term behaves like (—- ) as given by [5] and it is the most important

0 6 0 0 S, .0 0
+ Z - Has ar? Mg + Z Has a’r’y:u'yea‘inlu‘nﬁ - 8" 8¢
rt &y Svyen

where: ,
9gap 9°gap
ﬂgﬁ = Haalap  af = (agSr ) lo a?tﬁ = (asrgast) lo
The differences between the eq.(3.47) and the literature (term a%?, a missing %) arise from

the difference in our stretching coordinates. With this expansion, the last term in the first line
of (3.40) become (§B.9):

N

[P 1082 (90)* [P, 00)H]]

(P51 90)7 [P, (90)7F]] x (3.48)
(z THOEIESY f;t@)S’Sf)

where f1(p)" and fy(p)™ are functions of p, only. The last term in eq.(3.48) is similar to the last
term in [6, eq. (4.42)].
The stretching term in the kinetic energy, from (3.40) is:

1 1
Tsr—_ss'P2 -
t '2g s 2

By taking into account the consideration from (§3.2.2) together with the eq. (3.45) and (3.48),
the eq.(3.40) can be rearranged as it is shown in (§B.10):

3007 [P0 @)t B (007 = L

T

+(90)”~

g% - P2 (3.49)

il = T0b+Tst7‘

iyttt [Pt [P ], + Lt [ [

—58° (90) 7 [Pp 7 (go)*‘l"] {96° [Py, 9s0lo + 96° [Pa s 9ap)y) (3.50)

+500)7¢ [P (00)* [P, (00)77]] 68%)7 x {-a? - 5°

a8+ (a2 68" 0+ 0 g3 a)) (507 + [~aff + a2 g5 ag?] (5°)°)

0
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The second line of eq.(3.50) is similar with Uy from [6, eq.(4.44)], as previously discussed. The
second and the third lines can be incorporated in the bending kinetic energy because they are
functions depending on p, only:

Too = T + (row 2-3.50) + (row 3-3.50) (3.51)

r

The pseudo-potential term for the bending kinetic energy will be:

2

fp) = folp) + (%) — (96")™" [(row 2-3.50) + (row 3-3.50)]

Near p = 0, the f(p) terms behaves like fo(p) (§B.11).
The final kinetic energy term become:

T ~ T+ Tar

5 (90)7F [Bo 90)* [ (0)74]] (987)7 x {-a2? - 57 (3.52)

+[~a20 + (a8 g3° a2® + a® gb af?)] (S°)% + [~ a2t + a2 g& af?] ()}

3.3 Potential Energy

3.3.1 The Semi-Rigid Bender Approximation

In the semirigid bender approximation, we allow the bond length to vary with the bending angle
in such a manner that the nuclei move along the valley of the potential function as the molecule
bends.

We use the generalized internal coordinates, that are related to the internal displacement
coordinates by the eq.(3.13). If we are considering the symmetry coordinates, Ars and Ar, the
relation will be:

AT‘S = 7 AT‘IQ + AT‘23) R1 (T‘O y p) S°® + \/ﬁR(p)

Ara = % (A’I‘lg — AT‘23) = R5 (T‘O,p) S (353)

By analyzing the eq.(3.53) we find that the angle variation of the bond length along the valley
of the potential function (case when S® = S% = 0, no stretching movements) is:

Arglgs—o = \/ﬁR(p) and Arg|se=o =0 (3.54)

The potential corresponding to the stretching is the complete intramolecular potential function,
expanded as a Taylor power series in the generalized internal coordinates.
We choose the p dependent bond lengths r;; to be such that (g—g%) = 0 for each value of
ij

the bending angle p.

The potential energy expansion coefficients in the terms of an instantaneous configuration is
truncated after the cubic term (§C.1), to analyze only the terms connected with the bond length
due to the bond angle

1 1
Ve (p, Ars, Ary) = B (fuir+ fis) Ar? + 5 (fi1 — fr3) O]
+V2F1527 (5 = pe)’ + Olnimss (0" A17) (3.55)
By analyzing the eq.(3.55) we find that the angle variation of the bond length is given by [189]:

__Fin-(p-p)
)= Juu+ fis B0
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It we include the eq.(3.53) in the potential form (3.55), we will find the potential in curvilinear
stretch-bender coordinates, in an instantaneous configuration (§C.2):

1
V® (p, Arg, Ar,) = 5 (f11 + fi3) Rf(TO,P) (Ss)2 (3.57)
1
+ 5 U = 1) B0, p) (597 + O(p*)
There are some aspects that must be emphases concerning the above formula:

e The term corresponding to the Fermi interaction in the eq.(3.56) vanish in the stretch-
bender approach (eq. (3.57)), expressed in an instantaneous configuration.

e The coordinate r in the eq.(3.1) are effective bond lengths since they are averaged over
the stretching part of the potential function. These bond lengths are slightly different from
the effective bond lengths that occur in the rigid bender because of the separate treatment
of the stretch-bender force constants in the semirigid bender. These bond lengths vary
with the stretching vibrational state and with isotopic substitution [14].

e If we take into account all the terms in the generalized potential, not only those from the
eq.(3.55) and if we are neglecting the quartic and upper terms, the variation of the bond
length (3.56) do not change the expression for a linear molecule (§C.3), compared with the
BL formalism [14].

It is important that all the terms in the kinetic and potential energy to have the same order
of magnitude. The kinetic energy is assumed to have the order of magnitude kT, (see §3.2.3).
The derivation of R(p) formula (the p dependence of the bond length) is proceeded only in the
first order kT, of magnitude, because a term in the expansion (3.55), containing n powers of
vibrational coordinates (bending, stretching) is assumed to have the order of magnitude k2T,
n 2> 2. This apparently mismatch is due to the algebraic problem (for a rigorous k27, order of
magnitude, we must solve an equation of third order ( §C.3) and is important only for terms
greater than (p. — p)",n > 3.

3.3.2 Change from the Instantaneous Frame to Reference Frame

In order to do the change from the instantaneous frame to the reference frame, we need to
transform all the functions, from those in terms of P, to those expressed in terms of p. This
transformation has been discussed in detail in (83.1.2). It is important to appreciate that the
angle p (defined by eq.(3.5)) for the purpose of simplifying the kinetic energy expression, is
different from the geometrically defined angle 5 if the molecule is not in its reference configura-
tion. We use p because is leads to a kinetic energy operator with minimized couplings between
over-all vibration, large amplitude bending and small amplitude bond stretching. However, the
ab initio potential energy is expressed in terms of the isotopically invariant quantity 5 (see next
section) and we must express g in terms of p in order to obtain V as a function of R!, R3, p.
The equation relating p and p is (3.11). For $°* = 0 and S® = 0, this equation requires p = p as
it should be for the molecule in the reference configuration.

The semirigid bender approach is present in R, (r%, p) function, in (3.12) and express the
change of the reference configuration when the molecule stretch.

In the semirigid bender approach, the bond length change when the bond angle change and
this determine a changing of the stretching reference configuration in function of the bonding
angle. We are using the stretch coordinate of the reference frame in order to simplify the potential
energy expression in the instantaneous configuration (3.57). The R/(p) = r'(p) function, (3.15)
1s different from zero only in the semirigid approach and express the change of the reference
configuration when the molecule bends.
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3.3.3 The Potential Energy

The potential energy operator is initially written in terms of the instantaneous axis coordinates
(p,r12,723), since in these coordinates it is most easily to be compared with surfaces derived
from the ab initio electronic structure calculations.

V(p,Ariz,Argg) = Z [iRR 4+ Y FjRRRF
1<j<k
+ Z FuR'RR*R'+ 0 ((R) ) (3.58)
i<i<k<I

where
R! =Ariy=r12—ri R2:Aﬁ:ﬁ—pe RBZAT23=T'23—T'§3

and r{,, s, pe are the values at the minimum potential energy.

The parameters of the nuclear potential function in the Born -Oppenheimer approximation
are isotopically independent, since R' and Ap are geometrically defined coordinates [6]. The
F;;... terms are similar with those of [46]. In the potential, the series expansion is truncated
after the quartic terms and is consequently correct to order of magnitude k2 T,,.

Using Ap , we can rewrite eq.(3.58) for each value of p as series expansion in R! and R3
with p -dependent expansion coefficients (§C.3),

14 (ﬁ, AT‘12, AT‘gg) = Vb (,5) + Ves (ﬁ, AT‘IQ, AT‘23) (359)

The first term relates to bending and the second one to the stretching, as it can be seen:

VE(p) =Vo(p) = Faz(pe = p) + Faza (pe — P)° + Fazaa (e — p)*
VO (5, Arig, Args) = 2 F(p)R' + > F;i(p) R'R (3.60)
1<y
+ Z Fi(p)RRIRF + > EFju(p) RRR'RFR!
i<j<k i<j<ksl

and the F}; (p) terms are defined in (§C.3).

If (pe — p) is of large amplitude, that the power series representations for V4(p) and F;. (p)-
tensor elements will be replaced by the explicit functions, although it may be difficult to express
the p dependence of the F’(p)- tensor elements. We can, however, easily express Vy(p). It should
be noted that the functions Fj; (p) do not necessarily fulfill the equation (8,>, for p =0
(i.e. the potential energy function is not necessarily an even function of p). This does not
matter when the barrier to linearity is high so that the bending wavefunctions have a vanishing
amplitude near linearity. When the barrier to linearity is low (or zero), the parameterization
of Vy and the F(p) tensor elements must be chosen as an even function of 5, by symmetry (it
is no difference between V(p) and V(—p)). It is, however, essential in the development of the
stretch-bender theory that V (p, Aryg, Arys) can be expanded as a Taylor series expansion (with
p dependent expansion coefficients) in the small amplitude R! and R?® coordinates. This is
because the harmonic oscillator model is used to treat the 14 and v3 vibrations.

Since we wish to express the potential energy surface in terms of a reference configuration,
we will replace the eq. (3.59) by:

V (Ap, Ary, Arg) = VP (Ap) + V' (Ap, Ary, Ars) (3.61)

The change from the instantaneous to the reference frame is based on the transformation of all
the functions from p, Arys, Args to the p, Ary, Ars dependence. For p this type of transformation
has been discussed in eq. (3.11) and in [6]. For Ary, Ars, the transformation is done in eq. (3.13).

74



In our expansion (3.61) some of the terms above will be folded into the effective stretching
force constants, whereas for the large amplitude bending part, we have chosen to keep the extra
expansion terms. This means that some of the higher-order stretch-bend interactions will need
to be included in the perturbation terms (which will be discussed later).

We initially consider the expansion of the stretching part of the potential function since
we have separated V (p,Ary, Ars) into a bending and a stretching part and since the latter
vibrations are assumed to be of small amplitude, too.

The Stretching Potential

In the harmonic oscillator model we have assumed that the bond length obeys Hooke’s law, with
a potential which is almost harmonic , with a small anharmonic correction, too. Within this
approximation we write the potential energy operator in the ”potential valley” reference frame,
by taking into account the semirigid bender approach, as:

yes (ﬁ, Ary, AT‘3) = F]l(p) [AT’? + AT%] + F13(,0) -Ary - Ars (362)

The linear term in R’ in eq. (3.60) vanish in the zeroth order of the semirigid approach, because

(§C.3):

i(p)

(Ar1) o = ri(po) — 1) = - Falp

BN | =

~—

(similar to the eq. (3.56) and <8g/(:1;>))0 =0).

As we are assuming that the stretching displacement from the reference stretch-bender frame
is small, we can use the eq.(3.13) in order to expand the generalized stretching coordinates in
function of the stretch coordinates introduced by our stretch-bender model. We can rewrite the
eq.(3.62) by using these expansions, as:

Ve (pS*,8% = [Fu(p)+ Fia(p)) R} (7‘0»/5) (5%)°

+ [Fu(p) - Fis(p)) B2 (r°,5) (5% (3.63)
The q.(3.63) is similar to the eq.(3.57), but in this case the potential constants Fi;(p) are
functions of p and not constant, as in (3.57). When we are changing to the stretching reference
frame, we are obtaining some pure bending terms, which will be introduced in the bending
potential part, as mention above.

In eq.(3.63) and below we will suppose in the first approximation that Fi;(p) = Fy(p) , it
means the instantaneous and the reference frames are enough close and the stretching amplitude
is small relative to the reference stretch-bender frame.

We need to obtain an expression in terms of reference stretching coordinates, rather that
the instantaneous ones. The instantaneous stretching coordinates, may be written to the first
order in terms of the reference stretching coordinates, as in eq.(3.14). The potential energy in
the instantaneous configuration can be related to that in the reference frame by:

as 1
Ve (5,89 =% (0,55 + T (S (%%)0 (0~ p) (3.64)

1=s,a

_ !
Ve (,8°,5Y) = Vs (0,5, 5% + V3121 1(0) ol $% (o p.) (3.65)
Rl (T‘ ,,0)
with:
as s Qa 1 S s\2 1 a ay2
Vo© (p8%5%) = S f211 (p) (5°) + 5 err (p) (%) (3.66)
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o= )+ s (- (B (%))
Frr = ) - (o] (Rs (1°0)”

fi1(p) and fi3(p) are the potential coefficients in the reference configuration.
If we consider the terms from eq.(3.66) near p — 0, we have (with eq.(3.25)) the harmonic
terms [189]:

orf = [fu+ fisly (3.67)
o= Pl fu- fislo [cm™!/A?]

Apparent, in this reference system, the f¢ off antisymmetric term enter with a greater weight ( a

facto of p?) than in the true valence-force coordinate system as it is seen from above equation.
But from the eq.(3.26) we see that S = % ($%)7" and in reality

2(5%)% = (fu ~ fz)o [(5%)7"]

The covariants elements of the metric tensor (from eq.(3.38)) gss and gq4, have simultaneously,
near p — 0, the values: g;; = m; and g,u ® mq - p

The Bending Potential

As it was expressed above, it is easy to model V(p), the Born-Oppenheimer potential functions
for the bending problem. It is important to write the expressions for the Born-Oppenheimer
potential functions in such a way that the correlation between the parameters is minimized.

A general potential function can be chosen as a linear molecule harmonic oscillator function
plus a Lorentzian perturbation [5, 14, 147],

+ V2 (p) (3.68)

1
Vb 5=~k =2
(p) =S kp"+ b T 7
where the correction terms may be needed to polish the slope of the potential. But the pa-
rameters in eq. (3.68) become highly correlated when the molecule is strongly non - linear at
equilibrium and it is better to use the alternative form [147]:

_ hi (72 = p?)’
v (p) = =+ V2 (P) (3.69)
fol+(Bh—fot)p? " *
where h is the barrier to linearity for the Born-Oppenheimer component and f is the harmonic
oscillator force constant for the bending near p. (the equilibrium angle). The relationship
between the sets of parameters have been derived in [14, 6]. In addition to the above bending
potentials, it is necessary to include the corrections terms to quartic order [147]:

=2 (52 2)3
Vi (p) = k4 M (3.70)
(P* + p2)
The terms from (3.70) has a cubic dependence near the minimum and become quartic for p >> p..
In order to obtain an expansion in terms of the reference bending coordinates, rather that
the instantaneous one, we use the eq.(3.11), written to the first order.
The bending potential energy, in the reference frame is given by:

Vv (p) ED (Wb ) <%>Osi (3.71)

zsa

The (38—’7,—)0, 1 = s,a are done in eq. (3.12).

76



The final bending potential become:

b 70

Here the second term is a stretch bender interaction term and will be introduced to the stretching
potential.

The Anharmonic Term of Potential

We must emphasis some aspects of anharmonic term arising from the eq.(3.64) and (3.71). The
anharmonic term, linear in S (term which represents the cause of the Fermi effect) is:

1B o p) + B 1 ) Z 0= p [em™/A] (3.73)

where we suppose that, for p. — 0, V{ (p) = % f220% (from (3.68 and (3.69)). We discuss the
term arising from the bending potential(3.71) :

LIFVR(p) = %fggpQ (purely harmonic potential in the case of a linear molecule), we have

for small p angles in the rigid - bender limit, R, (p)=—(p—1)-p , and then:

IVep)\ R2(p) p—1 ,
. $% a 5 3.74
( 8p . \/‘Z r, f22 \/5 r, P ( )

This term is identical with (K224 K322) from [5, eq.(55)-(56)], where [%MLJ |sym =

r ulug-ufa)
W’% . The term arise during the transformation of the generalized coordinates to curvi-
linear ones. This term is similar with the A; term from [6, table 1], in the case of p — 0.

2. In the case of the rigid-bender limit, apparently, only the term from the eq. (3.74) con-
tributes to the anharmonic constant. But it is to remember the term Fiqop = %flgg, from
eq. (3.55), which will not vanish, and therefore it will be added to the potential constant.

3. In the semirigid bender approach, the term has a component which depends on r'(p) and
to the square of the bending angle.

4. The term of eq.(3.73) is correct in the case of a linear molecule, when pe = 0, but in the
case of a bent molecule it is probably to be necessary other definition of eq.(3.14).

The term from the stretching potential (3.64) arises only in the semirigid bender approach
(dependence on 7’(p) as it can be seen in eq. (3.73)). It should be noted that even if the
anharmonic term vanishes in the semirigid approach, as expressed in the eq. (3.57) and [153],
when we are changing the terms from the instantaneous frame to the reference frame, the terms
of eq. (3.73) will appear.

For p. — 0, when we are using eq. (3.56), (3.25) for Ry (%, p) and p — p., the term of order
of magnitude (p? - S°) is

(p-1)- \/fgzro ~2vV2- Fin [em™ /A] (3.75)

What it is interesting in eq.(3.73) is that we have a cubic Fermi interaction term which depends
on the potential function as well as on the masses, bond lengths and their derivatives. This is
obviously the consequence of:

e on adjusting the bond length on each angle p°
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e our definition for the stretching displacement S® and S° such that the stretch-bend kinetic
energy operator (eq. (3.40), pag. 69) is separable.

Obs. I In the case of the ”asymmetric” transformation

(5745 ) (3.76)

SS:SI-I-SQ 51:
(SS—Sa)

S*=51-5 Sy =

DO | =

used in [186], the formula (3.73) for the interaction term will change,

r'(p)

20 () (P—Pe)+f§ff(/0)m (p = pe) (3.77)

70

fe

where the constants fy2 and fJ, are those from the "asymmetric” transformation.

Obs. 2 The formula (3.66) for the effective harmonic stretching constants will be, for the ”asym-
metric” transformation:

2
Sro= 20fle)+ fis(e)] (R (2 p))
B o= 2l - fin() (Rs(®,p) (3.78)

Obs. 3 If we are comparing the eq.(3.66), (3.73) with the eq.(3.77), (3.78), we can define the
"stretching” mass, as mg, = 2 - my

3.3.4 The Relations between Literature and the Stretch-Bender Model Po-
tential Constants

The conversion of the potential constants between different types of coordinates may be done
only in the case of p — 0. This is due to the fact that the Taylor expansion in power series of
terms has an limited number of terms (usually up to fourth-order terms). In our case we are
concerned only with the term Fy,, ( third order term) and F),,,, (fourth order term), because
our potential type (§3.3.3) has a small number of parameters.

There are some points to be emphasized:

Obs. I The quadratic term in the bending potential [eq. (3.68) or (3.69)] take into account
some terms of higher degree when expanded in Taylor series, near p ~ p.. For values
p — pe (with p. = 0 in the case of the eq. (3.68)), both potentials have the known
expression of the harmonic oscilator potential:

kp

Obs. 2 The effective stretch potential coefficients in eq. (3.66) , include some higher order
terms interactions between the stretching and bending coordinate if expanded in Taylor
series (the R;(r®,p) and Rs(r®, p) functions). Instead of this, we will use the eq. (3.67)
which drops the series after the first terms.

Obs. 3 The quartic term correction in the bending potential (3.70), for values p — pe, has
the approximate form:

V3 () lpspe = ka p* (3.79)

The real V(p) term from the eq.(3.70) take into account higher order terms because it
can itself be expanded in Taylor series near p ~ p,.
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Obs. 4 The only anharmonic term that mix bending and stretching vibrations is a cubic term,
the cause for the Fermi interaction, eq.(3.73). We will neglect the upper terms because
their weight seems to be small. Also, the cubic term from eq.(3.73) can be expanded in
Taylor series, due to R(r°, p) and Rs(r° p) functions, but we will drop the series after
the first terms, and in consequence, the term will have the form from eq.(3.75).

Using the above observations, the potential from literature that we use is:

1 i
V=3 (33% + 11012),) + fiszizs + 5f22$§ + Figa(z1 + 23)23 + Faazas (3.80)
where,as in [46], the force constants are defined as:

2

fij = 33?; gwj
3

fizz = 3%—&:1 = 2 F (3.81)

faa2e = g%/ = 24 Fyo

(z1,23) are the stretching coordinates and zy is the bending one.

We need these conversion relations in order to compare our constants with those from the
literature, or to take the literature potential constants as initial values in our model.

We will consider geometrically defined coordinates:

e Cartesian coordinates, useful when the displacements are small (3, 4].

e generalized internal coordinates (valence coordinates), employed in variational and non-
rigid bender calculations [6, 17].

¢ symmetric coordinates: S° and S for the stretching displacement and p, for the bending
displacement, used in the stretch-bending model [186]

Conversion to and from Internal Generalized Coordinates (Valence Force Displace-
ment coordinates)

In the case of the internal generalized coordinates we will adopt for the bending coordinate the
convention used by [5, 6, 17] and not the convention from [43)].

Using the eq. (3.25), together with (3.11)-(3.15), we find from the eq. (3.19) the required
relations between the generalized and curvilinear coordinates (§C.4):

R! ~ % [SS (1 —|—Aap2) + 5 (p - Aap2>] + dp?
R® ~ % [5° (14 A4up?) = 5% (p - Aup?)] + dp? (3.82)

A
5= 1 + _Pss]
p P [ \/57"
where we use the following notations:

d
Ap = Rg:(P“l)—&’;

A, = -Rf:i(p_n <1—8(;l> (3.83)

1 d
As e ZRi} “QFAP
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S® and S are the symmetric and antisymmetric stretching coordinates, while R] and R are
derived from the eq. (3.25) and are defined in (A-63) and in (A-67).

Here and in the following considerations we take for r;(p) the same dependence of p like in
eq. (3.56):

R(p) = dp (53:850)

If we use the method from [46], or the method from [3, 4], we find the general relations between
the cubic and the quartic potential constants (§C.5):

fss = fu+ fia
Joa = [fll—f13]-p2
foo = fa (3.85)
A -1
Fopp = f227‘2%+\/§'d(f11+f13)'(g—11m—)
Foppp = Fagaz +2dFi90 + d* (f11 + fi3) + O(upper terms)

The equations from the harmonic constants in (3.85) are identical with those from (3.67), dis-
cussed previously. The gp factor defined below in eq.(3.152), is used when d is not defined as
in (3.56), otherwise it is equal to unit (gp = 1).

If we consider the d expression from (3.84) and (3.56), the cubic potential constant from the
eq.(3.85) is the same as in eq. (3.75). The relations between the curvilinear and generalized
coordinates are, (§C.5):

1
S = 7 (Rl + R3> (1 - Asﬁz) —V2dp* + O(upper terms)
1 1
S = — (R'-R? <1+Aa—2) 3.86
75, ( ) o (3.86)
A
p =~ p [1 - 2—: (Rl + RS)] + gApﬁS + O(upper terms)

The equations corresponding to the stretching coordinates (3.86) are identical, in the rigid-
bender limit with the eq. (3.26). We compute the potential constants, from the eq. (3.86)
as:

fir = 5 (St o5 fon)
fis = 5 (foam = )
feo = fop (3.87)

1 A
F122 = EFspp . dfss - 2_:fpp

A,d
r

Fazes = Fippp — \/§dFspp + d? fss + fop + O(upper terms)

For the harmonic stretching potential constants we see that the antisymmetric stretching po-
tential terms is weighted with #, in connection with the corresponding term in (3.67).
Conversion to and from Linearized Generalized Internal Coordinates

The linearized coordinates are mainly used in the small amplitude treatment of all vibrational
displacements. In order to do the calculus, we use the relations between the linearized and
internal generalized coordinates previously obtained by [3] and [4]. Using the eq. (3.82) together

80



with the formulas from [3] and [4], we find the required relations between the linearized and
curvilinear coordinates (§C.6):

o, 1 S{ [ 1 J 2} _1__ a - 2
9% = \/55 1+ (A, 4(Ap-f—l) P +\/§S (p Aap)
<1 - 8—q> p? + O(upper terms)

r

S® {1 + [Aa - % (A, + 1)] ,02} - % $* (p— Aup®) (3.88)

ool =3

1

;
5

(1 - 89) p? + O(upper terms)

1 d] 5
Yo =~ [1+\/_ (A, +1)SJ 72 [1—24 ]p + O(upper terms)

ook ]

The constants A;,A4, and A, are defined in (3.83) and the dependence of the bond length on the
bending angle is the same as in (3.84). We find the general relations between quadratic, cubic
and quartic potential constants, by using the method from [3], (§C. 6):

fss = i+ fis

Jaao = P*- (f101 - f103)

foo = 3 (3.89)
Fop = VaF— 0z (1-80) (404 1) + 2222 18 4 2B (1, + 12

d d\?
F2222_Z(1—8 >F122+64 (1—8 ) (f?l+f103)

1 d\ .
= 5 (1 - 24;) fa2 + O(upper terms)

12

Fopop

The relations between the curvilinear and linearized coordinates are (§C.7):

s 1 d r d
S° = ﬁ (qé + qg’) [1 — (As - 2;) 73] + m (1 - 8;) vé + O(upper terms)
1 : 1
s = () (1 a1) 150
Vap (10 QU) p’Yo (3.90)

_ Ap+1 74, 3 Ap d\ 3
p = 70[1— o7 (‘J0+(Io)]—? 1_8; Yo

il
= = 75 + O(upper terms)

The symmetric stretching coordinate has the same weight (;) as the corresponding equation
from (3.86). The transformation (3.90) leads to the following relations between the quadratic,
cubic and quartic constants of the potential energy expansion in terms of the linearized valence
force coordinates and the curvilinear coordinates:

f?l = (fss faa)

faa
f103 = (fss - )
2 = fpp (3.91)
r A, + 1)
F1022 = FSPP+§<1 ) Jos = '(_—f.’QT_fpp_Qdfss
P 2 d 2
F20222 = Foppp + B (1 8‘) sop + — 64 <1 . 8;) Jss
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1 1 d
— [ﬁ + gA" <1 - 8;)] fop + O(upper terms)

In the case of the rigid bender limit (d = 0), the cubic and quartic terms from the eq. (3.91)
are the well known formula from [4].

3.4 Solving the Eigenvalue Problem

In order to solve the Schrodinger equation we diagonalize the Hamiltonian matrix for each vi-
bronic state. This matrix is set up using basis functions which are products of numerical bend-
ing functions and stretching functions that depend parametrically on p. These basis functions,
®(p,p,S°,5% can be written as:

i s a 7 1 1K ss s aa a
(I)vl RIVIRTEN ¢ (P ,9,5%,8 ) i q)vz ,K(p)ﬁ B X, (S ;p) Xoug (S ;P) (3'92)
In (3.92) we introduce the signed quantum number K as the eigenvalue for the N, operator [15]:
3}

N,=J,-5,=—-th—
A
where as previously noted, ¢ describes the orientation of the molecular plane with respect to an
arbitrary reference orientation. ®;, g (p) is the bending wavefunction and x;° (S°%; p), X2 (5% p)
are the symmetric and antisymmetric wavefunctions, respectively. The basis function (3.92) must
be multiplied by an electronic factor, to give a Born-Oppenheimer basis function.

We may evaluate the vibronic coupling matrix elements involving the L, operator by using
approximate electronic factors which become exactly correct for p — 0, only. These factors must
transform accordingly to the representations of the Cyv point group and have to be [15]:

1 : .
=+ e — - = iA(v—o) —iA(v—y)
Vil -pip=0)=—= le te ] (3.93)
which transform as the Cy, point group A; and Bj representations respectively.

In the above considerations, the variable v is the azimuth angle describing respectively the

averaged motion of the electrons with respect to an arbitrary reference configuration, and the

operator L, is: L, = —th=2— describing the averaged motion of the electrons with respect to

Av—e)
the molecular plane. An alternative formulation [15] can be obtained by choosing basis functions
which are symmetric and antisymmetric linear combinations of the Born-Oppenheimer functions

(3.92)-(3.93). In the linear limit this amounts to taking electronic angular factors:
1 :
+ hp— — FiA(v—)
V—pip=0)= ——e 3.94
W= pip=0) = < (3.99)
These factors represent waves moving freely around the linear molecule axis in opposite direc-
tions, rather than standing waves as implied by (3.93).
With the electronic wavefunction (3.94), the vibrational wavefunction (3.92) is written as:

{ s a ) 1 (A — 58 5 aa a
ST (IRZINCLNCL S 3 ,I(P)me(h Ay (8% p) X22 (S p) (3.95)

where A is a signed quantity- the eigenfunction of L, operator when p = 0. The term in ¢ is
just the angular factor for the two-dimensional oscillator with vibrational angular momentum
quantum number [, \/% e % so that we obtain the well known relation:

[=K—-A or K=I1l+4+A (3.96)

The functions (3.95) will be called the [-basis, |Avl) , instead of the K-basis functions from
(3.92). It may appear that the [ basis introduces [ as a new quantum number, but in fact [
merely replaces the parity quantum number implied by the form of (3.93) [15]. More arguments
in using the [-basis instead of the K-basis are done in [15].
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Obs. In the eq. (3.93) and (3.94) only the dependence (v — ) has been specifically indicated
in the electronic factor and the radial part of the electronic wavefunction has been omitted
since L, (electronic operator) does not act on it.

3.4.1 The Stretching Equations

In our approach to solving the equations we assume that we may use the harmonic oscillator
approximation to evaluate the necessary integrals, and hence the potential stretching energy
may be written as:

Vo(S*,5%50) = 2, (0) (%) 4 L f2y () (5°)? (3.97)

where the stretching part as well as f? 15 and fl . are taken from eq. (3.66).
The equations for the symmetric and antisymmetric motions are then solved separately for
each value of p, i.e.:

h? H?
[zgmm*‘hﬂ”)%ﬁfw=%wﬁwm» (3.98)

with € = s,a and ¢ = 1, 3 respectively, for eq. (3.98) and below. The solutions of these equations
are:

Ey, = hewe(p) [vi + %J (3.99)

The p-dependent stretching frequencies (cm=') are obtained by using the eq. (3.38) and (3.66)

as:
rO,
hcw1 = h‘ /9%° fs RT,ElRf p()p)
and (3.100)

aa a L )frr( )
hews(p) = h\)‘ g f mlR:) ,P)p

The eigenfunctions of the eq.(3.98) are normalized harmonic oscillator functions which depend
parametrically on p, e.g.:

e
Xo, (5%5p) = Ny (p) €72 Hy, (&) (3.101)

where £, is related to the stretching coordinate by &, = (o) S€ and

N _aelp) (3.102)
' nz 2vi (v

The functions a(p) are related to the y(p) functions (used by [6]) by the relation: ¢g**« 2(p) = v(p)
, hence the « functlons are connected to the harmonic stretching frequencies of eq. (3.100) by:

_ |27 we(p)
== B (3.103)
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3.4.2 Minimization of the Renner-Teller Coupling Terms

In the approach so far we have described a model for an isolated state of a molecule. From
the infinite manifold of electronic states, we shall now pick a pair which becomes degenerate in
the linear limit. The two potential functions are denoted as V*(p) (upper) and V= (p) (lower),
respectively [15]. Following [15], we start with a completely general simplified equation which
leaves out the spin-orbit effects and the z,y rotation:

[Ho(p) + HE) v 0, 0)+ VO (p) - E] 9D (v, 0,p) = 0 (3.104)
In eq. (3.104) Hy(p) is the bending Hamiltonian ( first row of eq. (3.40) and Hr(jg(u,cp,p) is
the rotational Hamiltonian ( second row in eq. (3.40)).

In the semirigid bender limit, Jungen and Merer [15], could reduced (3.104) to a pair of
equations for each value of I, which involves only the bending angle p. The pair of differential
equations is coupled through an electrostatic splitting. When we include the interaction between
two states, which may become degenerate when linear, the resultant coupled equations may be
written, in the original [ basis adopted in [15], as:

Hy(p) + U (p) - E Hg (p) @ ,(p)
=0 (3.105)

Hi (p) Hy(p) + U (p) - E oF (p)

where we have essentially two effective potential functions U,;t (p) and a coupling function Hx (p).
The potential and the coupling functions are:

Ui(p) = V(o) + %Vm(p) + [%h:’ gé”“"(p)] (K +A)?

Hg(p) = %Vm(p) (3.106)
where

Vaa(p) =V (p) =V~ (p) (3.107)

Obs. The sign & refers to upper and lower state, and are different from the signs in eq. (3.93)
or (3.94), where the signs are refering to the symmetry of the wavefunctions.

The term in (K £ A) in eq. (3.106) is recognized as the angular part of the Hamiltonian for the
two dimensional oscillator, with ! taking the values (K % A), corresponding to the two values
FA for the orbital angular momentum.

In order to solve these equations Jungen and Merer [15] proposed and implemented the
following strategy. First of all, energies and numerical bending wavefunctions are obtained
in the [ basis using one of the potential energy curves (3.106), usually the lower one. Using
these basis functions, the matrix elements of the perturbation (3.107) are evaluated and used
to construct a H matrix. This is then subject to an unitary transformation using a S matrix,
which is a generalized form of Renner’s original transformation. This preserves the identity of
the unique level.

The matrix after the transformation is referred to as the H' matrix:

H =StHS (3.108)

Finally, the energies and the numerical bending wavefunctions are obtained by using one set of
the ! basis functions for the second state. These are used to construct the final matrix to be

diagonalized, the H” matrix:

H'=TtH'T (3.109)
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where the off-diagonal Renner-Teller coupling is minimized.
In (3.109) T is the overlap integral matrix, defined as:

T, =buw TS5 =T F=
T =8 g a (D)@ e a () (3.110)

In eq. (3.110) the sign F refer to the wavefunctions computed using the V¥(p) potentials in
(3.104).

The final interaction matrix which is to be diagonalized, the H” matrix from (3.109), has
the size of the Renner-Teller coupling elements minimized so that in general they are smaller
than a typical vibrational interval. We will refer to the wavefunctions with which the final inter-
action matrix is constructed as the ”primitive” wavefunctions, and the matrix of the numerical
wavefunctions U, as the ”primitive” eigenvector matrix. There are these wavefunctions which
are used to construct the off diagonal coupling elements of the final interaction matrix.

In the expression (3.105) and (3.106), in the place of V*£(p) we use the zeroth order effective
bending potential, thf(p) By taking into account the eq. (3.68) - (3.70) for the bending
potential and the eq. (3.100) for the stretching energies, we find:

1 1
‘ﬁ,(ﬂ y U1, U3) = th()?:b(p ,S7, 8% + hcwft(p) [vl + 5} + hcwg(p) [03 + 5] (3.111)

Obs. 1 It can be also included in this potential the diagonal terms due to the stretch-bend
interactions discussed below.

Obs. 2 The difference between the eq. (3.105), (3.106), (3.111) and the initial method of
Jungen [15] is that in the present model we have included in the pseudo-potential term
f(p) (3.46) the elements arising from the tensor elements corresponding to the symmetric
and antisymmetric stretching displacements (see (3.50).

Obs. 3 In our method, first of all we will solve the Renner-Teller coupling elements and find
the bending eigenvalues and only after that we deal with explicit anharmonic stretch-
bender coupling.

Obs. 4 One of the advantages of building the vibronic interaction in the present way using the
Jungen and Merer [15] transformations is that at the intermediate stage of the calculation
(the H” matrix), the Renner-Teller matrix elements are off diagonal between the coupled
electronic states in the primitive basis functions used to construct the final interaction or
H” matrix.

3.4.3 Introduction of Anharmonic Coupling
In the stretch-bender model the stretch-bend interactions are introduced in two ways:

o the effective bending potential heV{(p, 5%, 5%), given in eq. (3.71) contains the term
0
—he (%) %2’7‘—;;’158, which causes a cubic stretch-bend interaction.

o the effective stretching potential hcV*(5,S5%,5%), given in eq.(3.64) contains the term

(%) %oﬁ% (p = pe), which causes a cubic stretch-bend interaction.

These corrections involve at this point only the potential energy. It exist also a correction
involving the kinetic energy operator, because the bending kinetic energy operator acts on
the p dependent stretching functions (3.101) and (3.103). The last one represents the ”fast”
stretching motion. If we use in the / basis the wavefunction from (3.94) and (3.95), we have the
total wavefunction (electronic and vibrational):

1 it g (KFA)p

U inind = g EEM L () TR o0 (g p)yaaik (g ) (3.112)
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If we introduce the wavefunction (3.112) in the eq. (3.104) and we are taking into account the
potential energy (3.111) and the above observations, we obtain two equations, each of them

involving the two vibrational factors <I>v2 Lo ws(P) @and @0 (p) . The equation are obtained
by multiplying the eq.(3.104) on the left side by \/127 et 10 lKFA)e (glectronic and rotational
wavefunctions) and by integrating over v and ¢ (§D.1). We have then the interaction matrix
(for simplicity we neglect at the first step the x‘“‘i(S“ ; p) function):

(A-ET)B=0 (3.113)
where:
I — is the identity matrix
— K+A ll=II\;+A -
K 1=K+ '=K-A
H1l;1_,1[}2+A (P) %VQA (P, vl) Hvl,vi,vg (P) H’U],’Ui,’ug ('0)
1 I=K-A o =K
EVZA (pv ’01) Hvl U2 (,0) ll¢:RK+_AA( ) l=l\"—A( )
V1,7 V2 V1,07 ,v2 P
A= ' ' : C | (3.114)
I=K+A llZII\:+11\\ I=K+A 1
=K+ =K - /
H‘Ul ,’Ui U (IO) Hvlﬂf; U2 (10) Hyl’yz (p) §V2A (P, Ul)
I=K+A i . lV ( ’U,) Hl =K- A( )
U'=K-A I=K—-A 2 V240, 1y vl v P
Hvlyvi,vz (P) Hvl,viy'v'z (’0) '
[ bt (0:5%) ]
w’ug yU1 ,‘U3 (p1 )
B= ' (3.115)
K+A,
1’01}2:{,1:: (p’ Ss)
K—A,—
Q’Z)U:v”i,vs (’0’ Ss)

The matrix elements of the A matrix are the following;:

— ¥ hz
H=E*A ) = Hy(p )+ V(03 ’01)+ VQA(,O, vl)—i—?gwlz

1 { l( ” (p3 m)) N ((')V},_};(p;'m]) l Ry (12, p) -
0 6'0 \/51‘“(;}) '

2
ovas+ s? avasv‘(Ss,p) R (ﬂ) ‘”
’ [( asv )0+( GER o] Balr a0, P [ P )

(3.116)
pehchy = L[ Ka"en f””l)) (aveff(p; ”1)) ] Falr®p) s
L #) = 3 )y \ T ) Vel
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Vet (Sep)\ [V (S%,p)
ass ) a5 0

The wavefunctions from eq. (3.113) which enter as matrix elements in B vector are the following;:

R'(p) L
Rl (T‘O, P) (P - pe)} Fyhy; (P)

1[)1]);1:?,::; (,0, ) = (i);)l-g,K+A,vl ,vg( ) le (Ss ’ ,0)
¢U21U1,U3 (p7 ) = é172,1\"—A,v1 U3 (,0) Xf}f (Ss 1,0) (3117)

In eq. (3.116), Fi’llv, (p) is the Fermi resonance integral, issued when the stretching coordinate
g1
of the anharmonic term is integrated over the harmonic oscillator wavefunction:

ING Rt * 3 i 1 v! + 1 1 v
E” (p)= o) S'XSdS' =4, ; \/’ O, w1 — 57—\ =
Vi, vl (P) Loo (XU,) Xui vi,v;+1 a/i-’l (p) 9 + Vi Vg lai’l (p) 9

where ozi-”’(p) is function of w!(p) and W} (p).

(3.118)

Obs. From the last two terms in eq. (3.116), we observe that, if the [ basis of Jungen and
Merer is used, the resultant anharmonic coupling terms are:

{

within each electronic

(%)

state and

{

(%)

ov+

0S°

ovt

0S¢

I+l

oV -
dp

)

[(ov-
[\ 9p

)+
)|

ov-

a5

ov-

05

Ij
Ij

between the states.

This result is similar to the Fermi resonance parameters Wy ~ (f'+ f") and Wy ~ (f'— f"),
introduced by Hougen [37],[153] in order to treat the Fermi resonance in linear teriatomic
molecules.

3.4.4 Adiabatic and non-Adiabatic Terms

The adiabatic and non-adiabatic terms are connected with the correction involving the kinetic
energy operator. This represent, as mention above, the "fast” stretching motion. The treatment
involving the kinetic energy operator can be carried out at three levels:

1. Born-Oppenheimer approximation

We suppose that:

o .. 7

557 B tonn (P) X3 (5% )] = 33 (5% ) 37 Pntons (P) (3.119)
and the Fermi interactions arise uniquely through the S°-dependence of Vo(p, S%,5%). This
should correspond to the semirigid bender model of Bunker and Landsberg [14], but it does
arl
Er3

not exactly since the terms in (r i = are missing in their expressions.

2. Adiabatic approximation

In eq. (3.119) we add a second term and the equation become:

62 ‘ ee 02 )
W I:(I)‘Zj%livl!vl’v (p) XU’ (S ”0)] = X'Ui (S ) a a9 Qvg,l v1,V3 (IO)
‘ 9? ee( Qe
+ Qs (P) 972 X (S%; p) (3.120)
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In eq. (3.120) and below, j = (+,-), i = 1,3 and ¢ = s, a respectively. The second
term generates the matrix element:

2

h2 h2 i £e &€ * a g€ £ £
-5 9" 182 () = -5 97 /_ X5 (5% 0)] 9,7 Xon (9%5p) dS (3.121)

which is the adiabatic correction to the effective potential (eq. (3.59),(3.64) and (3.71)).

The value of the correction term I(f) (p) is given by (§D.2):

ViV

. £ £ 82 £& & €
fﬁf,),,i(p) = / X (573 0)] g7 Xu (5  p)dS

u,-.u,+4% ( ‘1 8041’(/’)) Vi + 1) (v +2) (v + 3) (v + 4)

1 ailp) (1 dai(p))? - "
[ai(p) dp? <ai(p) dp ) :l \/( i+ 1) (vi +2)

1
5u£,v,-+2§
1/ 1 3az(P))2 2
Syt = | —— : s+ 1 122
ot g <a,-(p> o) (o vit) (3.122)
1] 1 0alp) 1 da;(p)\?
+(S,U(,U_— —< ) vz_lvz
RO [az(p) p? ai(p)  dp (i =1)
1/ 1 80{1(p)>2
+0y7 4, — ( v; —3) (v; — 2) (v; — 1) vy
kN 4 4 ai(P) (9p \/( ) ( ) ( )
. Non adiabatic approximation
One now has bending momentum coupling terms:
i} . x 0 0
—h2gee1) (p)— = —h? PP/ (5% p)|" == XT(S5%; p)dS = 3.123
91, (P) 3 97 | Issin] o (stindsey (3.123)

which couple different stretching states v; and v). The term from the eq. (3.123) arise
from the eq. (3.120) when we are considering all the terms:

0° q)j e (Ge . = v (S¢ 0 (I)]
a_pz [ ‘U2,l,U1,’U3 (p) XU,‘( 7p):’ - hX’U,'( ’p)a_p2 'UZyly'Uly'US (p)J
B.O.a;)pro.r.

(I)j 0? ee(ge . 9 ee(ge . 9 (I>j

+ vo,l,v1,v3 (P) 8_'02)(1;1' ( ) ,0) + Qa_pXW ( ,P) a_p' V2,001 ,U3 (p) (3124)

adiabati‘crapproz. non—adial;t;tic approx
The value of the integral ]5}1}{ (p) is (§D.2):

(1) ® [ eeqge. 21" D eeqge .
ooy = | st sn) g xii(s7inds (3.125)

1 LM —5v§,v,~+2\/(vi + 1) (05 +2) + 8yt 2\ vi(vs — 1)
2 \ai(p) 9p

The eq. (3.123) gives an additional contribution to stretch-bend interaction (3.64) and
(3.71), which also produces off-diagonal elements in v;.
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3.4.5 Symmetry of Matrix Elements

We can see from the eq. (3.122) and (3.125) that these equations don’t have an evident symmetry.
For this reason we must evaluate the symmetry of the energy matrix. We are interested only
in analyzing the eq. (3.122 and 3.125) , the other terms of the energy matrix are multiplicative
and, for this reason, symmetric.

We must find the symmetry of the matrix element:

Hig ji = / / ixi (20 x) + @; x!'| dpds® (3.126)
0 J—oo
in the base {®;(p) x%(S°%; p)}. In this section the following shortcuts are used:

=0, . (p) Xk = XE(S5p)

(3.127)
/I— 3 " — 6%
— 9p — 8p?
The eq.(3.126) can be written in an other form, as:
Hz'k,jz=2/0 P fri(p) @; dp+/0 ®; gri(p) ®;dp (3.128)
where:
fulp) = / Xk X1 dS°
-0
o "
gu(p) = / Xk x| dS° (3.129)
[ee]

are the integrals corresponding to I,E,l) and I,E?) respectively. The properties of the functions
fit(p) and ga(p) are (§D.3):

o =—fie gu =g +2f (3.130)

By taking into account the eq. (3.130) and by integrating by parts, we find that:

V' ™
Higji = 20 fu®;|§ —2/ (D fri) @;dp+ / D91 D, dp
R —— 0 J0

=0
= —2/0 O} fr @; dP—Q/O D; fr ®; dP+/0 ®; (g +2f1]) ©;dp
= /0 D, fi ®; dp-}—/() D, 91D dp (3.131)
= Hj i

As it can be seen from the eq. (3.131), the matrix element is symmetric.

Obs. 1 The formula (3.131) is valid only for the wavefunction with the volume element dV —
glw dpdS®dS*®, because in that case we have:

™ oo dpdS*®
Hiyp st~ 7‘17/0 g!’/’q)i/_oo [2fqu’9+gqu)j] pr

= ﬁ2/0 (I),-/ [Qf;dq);-—{—gk[ ‘I’j} dpdSs (3.132)

and in this case the eq. (3.132) is identical with (3.126).

Obs. 2 When the volume element is dV = dpdS°dS?, the matrix element of the kinetic
energy is not symmetric (§D.3).
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3.4.6 The Final Interaction Matrix Elements

The equations which therefore lead to the calculation of the bending and stretching energies,

before integrating over (I)i,l,vl s (p) bending functions are:

(X5 (5% 9) X32(S% 2)IHs(p) + Vs s (p) 5 (S% p) X22(S% ))
= Sufor By us Burvrna) o 10y, (0) = 0 (3.133)
The equation (3.133) takes into account the effects previously analyzed:
1. the anharmonic coupling (3.116)
2. the stretching equations (by using for the V,s¢(p) the formula (3.111)
3. the adiabatic and non-adiabatic couplings (3.121) and (3.125), respectively.
In order to solve the eq.(3.133) we split the problem into two parts:

1. In the first part, the zeroth order Hamiltonian H°, contains the diagonal contributions of
the stretching to the bending potential energy curves. This was discussed above in the
section (§3.4.2), and it has the eigenvalues EO:%

V1,Y2,V3"°

2. In the second part, the perturbation Hamiltonian H’, contains all the remaining perturba-
tions terms due to the stretch-bend interactions. The perturbation Hamiltonian, H' results

from the kinetic and potential energy operators, acting on the functions (I)viz,lvws (p).

After integration over the stretching functions, the resultant off-diagonal stretch-bend interaction
terms in the final interaction matrix, may be written in the I-basis as:

H @, kin 00 (3.134)
_ _5_2 or [ (2 +](2) ]—h2 PP [I(l) +1(1) ] i_;ﬁ e (1) f(1)
= 2 g viv1 ViU g viv1 AR 5/} g Vv TURva

adiab,:zrpprox. non—adi;b approx. D—D resonances

(55):(85) Ve H ), () ) -

>

'I\DI)—I

v
anharmonic potential terms

X @ ke (P)

{58, (5) ) B + (55 ), - (55) ] meoto e} e
X O KA. (P)

In the case when A = 0 (V*(p, 5%, 5% = V= (p, 5% 5% and do not exist the Renner-Teller
effect), the last term from the eq.(3.134) vanish. In the evaluation of the matrix elements,
the ”primitive” wavefunctions discussed in (§3.4.2), 'I)fg,l,vl,va depend upon vy and vs, since the
effective bending potential (3.111) is a function both of v; and vs3. The treatment of the coupling
in the stretching-bender model can be carried out at four levels:

1. Neglect all perturbation terms, this is the semirigid bender limit, as derived by Jungen
and Merer [15].

2. Include the potential coupling only and then evaluate:

(e~ oy M rermi(P) 120, Kt 1,05 (P)) (3.135)
Vg A FA,V,Y
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where we have the coupling function
il Vst vy Ra(r°, p)
rmi = —¢= . # 3.136
Jrermi() 2{ [( 9p )g (0 V210 (p) S

ov+ V- R’( )
[(a—ss—)oi (ass) l 7 (10 !p)(!’ Pe)} Eyry, (p)

3. Add the adiabatic correction to the effective potential, by evaluating:

2
Q;'Qvl ’Ul,’U3 )| - ?gpp I( ) |®U2 l’Ul,U3 (p)> (3-137)

4. Include the off-diagonal coupling terms arising from the non-adiabatic approximation, the
main terms of this type are the following:

. 2 (1) 0 -
<(:Dv§,l,vi,vé (,0)' —-h gPP Iv¢v£ b—plq)vg,l,vl,vg (p)> (3138)

where v; is either v; or vs.

The other significant terms arising from the non-adiabatic coupling is the resonance between
stretching states with two quanta of excitation, the Darling- Denison resonances. These are
calculated using the product of the integrals: I( ), X I(I),, and writing o}(p) = BO‘T"‘S"Z, giving rise

to ( together with the formula (3.125):

M) O o _1Te(p) eblp)
Ly, (P) X Iy, (p) [ai(p) as(P)J

1Yt 3“ 4
X l:_(svi w142 \/(Ul + 1)(”1 + 2) i 61}1 U1 —2 Ul(vl = 1)]

X [_5vé,v3+2 \/(UB + 1D (vs+2) + 6y vy—2 y/v3(vs — 1)] (3.139)

We must add in the eq. (3.135) the term arising from the kinetic energy, term which is linear in
S* symmetric stretching coordinate (the fourth row of the eq. (3.50)). This will give the next
term:

<¢17£,R’:tA,U; ’US ( )’ fhn (p) v 1v1 ( )|@':2,I\’:|:A,’Ul ,Us (p)) (3'140)

where:

S = =a22 (a8) [, ) [0 (a8) 1] (o)’ (3.141)

and ¢ = (+, —) for the upper or lower potential state, respectively. From the kinetic energy, the
third row of the eq. (3.50) add a value function depending only of p to the bending potential
energy:

0 =5 (66") ()" [P0 () st [Prosi] 08 [Ponsi],) e
and 7 = (4, —) as above.

Obs. We can introduce in our calculus the last two lines from the eq. (3.50), and in this case,
we will have terms arising from:

/ Xf}?(s ) ¢ dSl ~ 6 vl v 2 +5v’ Vi +5U'1U1_2

— 00

but these terms have a lower weight (an order of L).
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If we introduce all the previous terms together, we get the interaction matrix ( for simplicity we
neglect at the first step the x3%(S*; p) function):

(A-EI)B=0 (3.143)
where:
I — s the identity matrix
[ 1=K +4A 1
I=K+A I'=K—-A
H1l;1 {}2+A (p) 0 v,V ,v2 (p) V1,V 2 (o)
0 s M(p) (oSl KA
V1,07 ,U2 (,0) V1,V U2 (P)
A= (3.144)
I=K4+A ll’=—II\;'+11\\ I=K+A
Hv1 RIRTS (r) v;v{ VU2 (p) Hvl,vz (0) 0
I=K+A I=K-A
l':]\"—A( ) l=}\"—A( ) 0 Hv1,1}2 (p)
V1,902 p v1,v],v2 p
q);;,h +A,v1,v3 (P) ]
(I>172,K—A,v1 V3 (r)
B = (3.145)
(I);z,K+A,v{ ,vs(p)
¢;_2 1K—A7U§ U3 (p)

The matrix elements of the final interaction matrix, before integrating over the bending functions
are the following:

52
Hil)lfz:t/\(p) - E’([I)li‘U2’U3_ Qgpp :t ul v1+fp( )
2
Hilfiuﬁ(/o) _ F;gpp i]g)u _ p2 gees i]ii)u 88 n ;Fj’w () {7E.(p)
3 [<0V0+)+<5V0 ) ]Rz( p) [<3V+)+<3V‘> ]R'(p)(P—pe)}
0p Jo \ 9p /ol vV2r0(p) 05° Jo \05° Jol Rai(rp)
(3.146)
i - () - ()
vy,vl v 9 dp . dp 0 \/§T’O(p)
v V= R'(P)(P“Pe)} i
— = F,
+ K 5 ) (69)0] R0 p) § Temlf)
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Obs. We can introduce from formula (3.146) the terms:

77,2
+ ,x
) = 5 9" * 1], (3.147)

in Ve?f(p) from (3.111) and in that case the ”primitive ” bending wavefunctions will be
better adapted to the stretching perturbations.

3.5 Numerical Calculus Considerations

3.5.1 Bond Length Parameters and Connection with Rotational Constants

The bond lengths of the component electronic states are treated as independent quantities which
are permitted to be different except at p = 0, where they must be equal. In order to find the
linear bond length and the p dependence of the bond length, we follow the algorithm described
in [147] (§E.1):

1. We consider the formula for the mean rotational constant:

e for the linear molecules
Bi™ ~ Be — ae(v2 + 1) 4+ O(vy, v3) (3.148)
e for the bent molecules [5, 190]

By = B, — ac(vp + %) + O(vy, vs) (3.149)

In the previous equations B, ~ 11—0, is the equilibrium rotational constant and «, is the
vibration-rotation coupling term. The bond length is that which reproduce in the best
way B, = £(B + C) rotational constant, for vébe"t) = —3 or v¥" = —1. In the same time

it must reproduce the unperturbed levels corresponding to the specific electronic state.

2. After finding the r® value it is necessary to fit the positions of the unperturbed bending
levels which correspond to an electronic state by taking into account a bending poten-
tial function as discussed in (§3.3.3) simultaneously with the rotational constants B,,,
corresponding to those levels. In this iterative approach, we find the dependence of the
bond length with the angle. This dependence is taken as in [147, eq.(15)], near the linear
configuration( as in eq. (3.56)):

r'(p) = r° + d tan? (g) + df p? (3.150)

where ¢ = (+,—), corresponding to upper or lower state, respectively. If we consider
the previous algorithm and the » = f(p) dependence from (3.150), we find the analytical
expression for the bond length and the d factor (§E.1):

C"qﬂﬂ
= 151
N 2my B, (3 )
R AR T
2myB. 4\ 4p 4pB?

Obs. The iterative approach discussed above work well for linear molecules. For the bent
molecule, we must consider these two steps:
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e find the bond length (reep = f(pmin)) and the p,i, value.

e determine the variation of the bond length with p, preserving rech = f(pmin) value (
it means that r° value change, when d} and dj values change in (3.150)).

Now we must emphasizes some important aspects:

1.

The eq. (3.150) , for p — 0 can be expanded in power series and has more terms that the
eq.(3.56), taking into account upper term influence of the potential constants.

. The eq. (3.56) which describes the dependence of the length with the angle, was obtained

in the approximation p — 0, from the potential constants in the generalized internal

coordinates. The <%)0 = 0 condition simplify the stretching potential in the reference

frame as shown above, in (§3.3.1).

The dependence of the bond length with p angle from the eq.(3.150) is obtained after a
fit of rotational levels, but it is not obtained from a minimum condition of the potential
constants.

From the previous two items, and after some easy transformations in (§E.2), it seems that
the two approaches are not identical. Indeed, R{¢:cost)(p) ~ R(theor)(p) because the
functions have the same dependence type in p? for small angles, but the multiplication
coefficients are quite different.

For this reason we introduce a new parameter which describe the matching of the two
approaches as:

R(rot.const.) (,0)

R (theor.) (P) (3152)

gD =

The gp parameter needs some additional comments:

e In the generalized internal coordinates, the bending potential must go to infinity for
p = m, as have been considered by Pliva et al. [191], and emphasized in [5]. But in
the same time, Hougen, Bunker and Johns [5] and Jungen, Hallin and Merer [147]
find that such a potential give no practical advantages and the bending potential
(3.68)-(3.70) does serve to reproduce the experimental data much better. The semi-
rigid bender model proposed by Bunker and Landsberg [14] is described without any
reference to the bending potential shape.

e Obviously something has to go to infinity at p = =, either the potential energy or the
bond length. Jungen et al. [147] have chosen the bond length, because from physical
point of view the two outer atoms of the molecule must interact when the vibration
bring them together, and a more realistic picture of the molecule would then be a
diatomic molecule (consisting of the two outer atoms) loosely bonded to the central
atom which is already on the way to dissociation according to

B-A-B— A+ B,

In this method, when the stretch - bend interactions were introduced (coupling be-
tween the normal coordinates ) and @)3), the possibility of dissociation along the
pathway previously mentioned was allowed. This dissociation pathway is just as
important as the more familiar one

B-A-B—+B+A-B

which correspond to a superposition of @; and the antisymmetric coordinate 03, as
mentioned in [147].
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Let analyses in detail the algorithms to obtain the bond length dependences of the bending
angle. The algorithm of Bunker et al. [14] was analyzed in detail in (§3.3.1). In order
to establish the formula for the approach of Jungen et al. [147, 150], we start from [150,
eq.(8)]. After some calculus, we find that ., the dependence of the rotational constant
over the bending angle is (§E.1):

B2 9 4dChJ : _ 4 ChJ
—a, = dp=t <m+ i ) = Bup <B;) (2” L_4d ) (3.153)

L:)g 4m To 6:22 P o

In order to find the same constant in the generalized internal coordinates, we start from
[5, eq.(64)-(67)]. These equations have been obtained from the Hamiltonian (5, eq.(62)],
using the contact transformation [45], and is done in (8E.3), in the case of the semirigid
bender model. In the calculus we have considered only the leading terms in (v2 + 1) from
[5, eq.(64)-(67)], because the other terms are multiplied by
2 2

h—2 = 64 p? (2) <1073

a

Wy
and can be neglected in the first approach.

With these observations, we find from (§E.3) the values for the o; terms (notations from
(5]), in the case of a symmetrical molecule:

_aharm — Bep (%) 4 (QL__l - 4_0!'?_])
w2 P ro

B.\ 202 1
Cor e 2 P
—alor = Bep<~—)- , [ 4P ] (3.154
P A 7 = S g )
2\ 202 [ 1
—a®™ = —B.p (5)2&[34-%]
WQ p wl (US

Because the rotational constants in the two approaches must be equal, and with (3.153) -
(3.154), we have (§E.3):

_ L (@ 1 (A Cor | Anh
gp = 1+ B.p (Be> 3235(—7“011'122) (L_f_ %) (a +a )

o w3
= 1+ & 1+ 1 < Lo P ) (3.155)
16}).83(—1"[)!(122) P (5_2 + %) L:.)% = L:Jg ng — (:)%
1 3
~2
ro wy [ 1 P 1 1 p >
= 1+_——[T+T:| 1+ B ==t i =
2dPL p &F " &2 p (% + :;2) wi -0 @f -0
1 3

where dB” is defined in [14, eq.(21)] and in (E-147). In (§E.3) there are also underlined
some important considerations concerning the calculus of the ¢gp factor in the rigid bender
or in the semirigid bender approach.

The formula (3.155) needs some special considerations:

e The deviation of the gp factor from unity is done because the Coriolis and the an-
harmonic perturbation is considered. The anharmonic term arise when passing from
generalized internal coordinated to the curvilinear ones, as in (5, eq.(56)] and eq.
(3.64), (3.71). This means that the gp factor is in some extent an indirect measure-
ment of the anharmonic and Coriolis perturbations.
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e Even in the absence of the Coriolis coupling, the gp factor is greater than unity, due
to the last term in the parenthesis of eq. (3.155), and which arise from the change of
coordinate (3.11) and (3.14), from generalized to curvilinear frame.

e From the previous considerations result that formula (3.150), used in Jungen approach
for the unidimensional bending motion take into account in an indirect way the
anharmonic coupling which imply Fermi interactions, as pointed out in [153], as
well as Coriolis coupling. This can explain why the model, with a small number of
parameters, can reproduce the experimental data much better than other formalisms.

e The value for the gp factor must be considered when comparing the results issued
from this model, with variational techniques potential surface results, as well as results
from linearized coordinates formalism in the case of small amplitude bending motions.

o If we consider a quadratic dependence of the bond length with the angle, as in the
eq.(3.150), the relation between d{*’ and dPL constants may be rewritten with for-
mula (3.155), in a more visible form. Putting (3.152) into another form

d§™ = gp dBL (3.156)
and because gp =1+ fB’QL—, we have
1

The previous formula has the main advantage that the gp term depend only on the
bond length and the vibrational frequency for the stretching and bending motions,

~2

_ _r0w2[1 p] il ( 1 4 )

gp=7—|=+=| 1+ > — + = - (3.158)
2 p lof & p(&+&) \Wi-0f  &3-a

1 3

and then it is easier to be computed and used in the calculus.

5. Because in the stretch-bender formalism that describes the Fermi interaction, we have
R(theor)(p), and the bond length dependence with the p angle done by R(rot-const)(p) we
must substitute the former by the last, using the formula (3.152). Then the eq.(3.73)

become:
Ra(r° p) Fors(P)  1'(p)
—f —p)+V?2 . (p—pe)| S* 3.159
" arip) (p—pe) Ri(®.0) oo (P~ pe) (3.159)
The eq.(3.159) ensure a correct use of the (%) = 0 condition and in the same time allow

the use of the Renner-Teller formalism for the bending displacement, as it was developed
by Jungen and Merer [15, 147].

3.5.2 Connection between Renner-Teller Formalism and the Total Interac-
tion Matrix of Stretch-Bender Model

As it was pointed out in the section (§3.5.1), for the bending coordinate we use the formalism
developed by Jungen [15]. With the potential parameters for the bending potential ( eq. (3.68)-
(3.70)) and the bond length dependence with the angle ( eq. (3.150)), the bending energies, the
bending eigenfunctions and (ST U) matrix of [15, eq.(38) and (42)] are computed.

96



atrix has a block structure. The matrix is:

We see that the (ST U) matrix is computed for each value of the stretching quantum number
U) ma

and the total (S T

( \
(sTU)™) 0 0 -
(n1+1)
(STU)tred = ’ (STU™ ’
0 e 0 (STU)(”D
/

where each (STU)(”;) matrix is orthonormalized.

(3.160)

Also, the initial total interaction matrix, H(%%!) has a block structure, where the terms are:

(v1)
e F?= initial bending and stretching energies

e W, = Matrix for the anharmonic coupling Fermi resonances of type:

=157, (%))
” O | da )
with o = p, 5%, (the same as the term H'=E£A from the eq. (3.146)).

v1,v1E1,v9

e W, = Matrix for the anharmonic coupling Fermi resonances of type:

~ da ) da )
I=R+A
with & = p, §% (it is the term HY=KA (p) from the eq. (3.146))

vy, +1,v0
° Nlﬁ)n = Matrix for the adiabatic and non-adiabatic couplings, proportional with

[1(1) r + 1(2) } (the same with H'=EE8  from the eq. (3.146)).

v, v1,v14%2,v2
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/ Bend Block Adiab. and \

— — non-Adiab
(”1()) Fermi Block Block
El 0 —_— ’_'—’(2) —_—
Wi W, Ny 0 0
2
) ML 0 N
0 E?
1)
EY 0 @)
Wi, W, . Wi W, N,Yn 0
Wy, W K W. (2)
? ! w1tD) 2 M 0 Nagn
0 E?
Fteta) (3.161)
w1+2)
@) EY 0
Noin 0 Wi W, i W1 W,
0 N(Q) Wy Wi e Wy, Wi
atn (U 1+2)
0 E?
© 1%3)
E 0
. N® 0 Wi W '
(2) Wy W
L Na+n 2 ' 13
0 o

\ : : : : )

The matrix blocks situated on the diagonal position, are already diagonal, due to the multipli-
cation with:

H{) = (STU)* H®) (STU) (3.162)

This situation determines a pre-diagonalization of the initial interaction matrix (3.161), by
multiplying with (STU)(*) from (3.160). We can write the H(t%)) in a block structure as:

(v1)
Hdia_q H’U1 w1+l

Hitetal) — I 3.163
H, 4 HEM (3.163)

where each H‘(;Z;L,Hvl,vl—{»-l is a matrix of dimension twice the bending base ( in the case of

Renner-Teller coupling) or of the bending base. We will have:
[(STU)(total)]+ H(total) (STU)(total) (3164)

The pre-diagonalization is easy to do, because in the H (%) matrix, each non-diagonal block
from the row v; and the column v] will be multiplied by:

(sTU))]" R, ,; (STU)Y (3.165)

This means that is not need to do a full matrix multiplication.
After the multiplication (3.165), each non-diagonal block will have the terms like:

g g — large elements
S — small elements
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As it can be seen in the above block, the large elements are on the diagonal of the matrix.

Another problem to be taken into account is the phase of the bending wavefunctions com-
puted above. As a limit case for the bending functions, in the rigid bender limit, for linear
molecules, we consider as wavefunctions, those of a bidimensional oscillator. In the literature,
there are three phase conventions:

1. The convention used by Shaffer [44], [11], where the wavefunction is:
v,l

ih(z, ) ~ a7 e F Ly (c) e (3.166)

where 2 ~ p? and L!(z) is the associated Laguerre polynomials. If we consider the above
functions, we have the matrix elements for

¢+ = g tig, = get¥ (3.167)
as:

LIt elnl) = -+ 1+2)}

(W=1,141lgs|v,l) = %(v—l)% (3.168)

©=10=Tafol) = —— o+

<U+ 171 - 1|Q—Ival> =

2. The convention used by [47], [49] and others, where the wavefunction is defined as:

w%s}‘(m, @) ~ zTe"% L' (z) el® (3.169)

2

and z ~ p? Ll,,;, (z) is the associated Laguerre polynomials with other definition and
slightly different 2behavior.
The connection between the definition (3.166) and (3.169) is:

P (2, 0) = (1) 2h(z, ) (3.170)

This means that near z — 0, the new wavefunction will be always positive:
VUM, )0 ~ 3 (3.171)

If we consider the eq. (3.170), the matrix elements (3.168), will change the sign.

3. A convention used by Hougen [37], Jungen and Merer (33], where the matrix elements have
the formula:

(vE LI+ 1gglv, ) ~[(v+1) £ (14 1)]
(vt L,i~1g_|v,l) ~[(v+ 1) F (I - 1)]

TS

(3.172)
The relation between the Shaffer phase convention and Jungen phase convention is:

PO (z) = (~1)%H ¥t (x) (3.173)

v,l

99



The relation between the Messiah phase convention and Jungen phase convention is:

ot (x) = (1) )" (z) (3.174)

The relation between the linear and bent molecule bending quantum numbers is v = 2v,+|!|
and we introduced in (3.173) and (3.174) the quantum number vj.

Obs. I In [33, eq.(11), eq.(14)] it is a mismatch between the definition of the wavefunction
and the matrix elements.

Obs. 2 Moffitt [52] use another phase convention for this wavefunctions which can be related
to those of Shaffer’s function by:

Yhi(e) = e2'ygh(a) (3.175)

Obs. 3 It is important to know the matrix elements for ¢, g_, because we can find the matrix
elements for ¢2, as:

1
¢* =5 (g+q- +9-94) (3.176)

All of the wavefunctions used in the bending computation have, near p — 0, the behavior [15]:

o tn,0a () ~ P
and are computed with the phase convention used by Messiah [47].

Because in the stretch-bender model we use the Hougen [37] convention for the anharmonic
coupling matrix elements, the phase of the wavefunctions must be changed, as in eq. (3.174).
We must change also the rotation matrix (STU)®), after the formula (§E.4):

(STU)itretch—Bender — (Sl)+ (STU)(v') (3177)
where (S!) is a diagonal matrix:
(Sl)n,m - (_1)71—1 (Sn,m (3.178)

The ”primitive” wavefunctions are computed with a volume element of dV = dp, instead of
dV = 22 as was pointed out in the section (§3.2.4) and in the eq.(3.132). For this reason, we

gPP) -
must scale the bending wavefunctions with /¢??:

(1)212,101,1/3( ) Vg°r vz,l vl,vs( ) (3.179)

The last problem to be pointed out in this section, is the bending potential constant, used to
compute the initial bending energies and the ”primitive” wavefunctions (3.179). The effective
potential to be used is (3.111), but the algorithm for the bending displacement take into account
the VF®(p) potential from (3.111), instead of V,s;(p). For this reason we must adapt the poten-
tial constant in VF®(p) (the eq. (3.68) - (3.70)) to take into account the stretching component
to the bending potential ( last two terms in (3.111)).

We have two cases:

1. Bent molecules (eq. (3.69) and (3.70)).

The minimum angle value p,,;, and the barrier to linearity (h) can be computed directly
from the shape of VO:Fb(p) function. The harmonic force constant (f) and the anharmonic
parameter (k4), are found by using an iterative least-square fit, to match better the Vi (p)
function.
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2. Linear molecules (eq. (3.68) and (3.70)).
The harmonic force constant (K) and the anharmonic parameter (k4) are computed di-

rectly from the shape of the VO:Fb (p) function. The parameters for the Lorentz perturbation
are found using a least-square fit of the function:

L=14 ﬁz,li/ where { (3.180)

Yi

Yi is the difference between the ”correct” potential Voqcb(p) and the ”approximate” one
7ko® + V2 (p).

In the above procedure the terms from (3.147) are supposed to be enough small.

3.5.3 Computational Details

In the previous section (§3.4.6) we have not take into account that the dependence of the bond
length with the p angle is function of the upper and/or lower state, too. If we consider this
dependence, the auxiliary functions R;(ro%, p), i =1,5, defined in (3.16) are different for the two
states and therefore they must be written as RE (70, p). We have to make the same consideration
for R(p), defined in (3.1), which, in connection with (3.150), gives:

R*(p) = df tan? (g) + di p? (3.181)

We must write the expressions involving RE (% p) and R*(p) from the eq. (3.134) and (3.146)
by taking into account the previous observations:

= 9‘“'1;’) R3 (%, p) <8V0‘> RQ—(T‘O'_,p)}
[( dp |, V2rot(p) + 5 ) Varo(p) (3.182)

1 oVt (R*(p)) L VTN (R (p)) -
ar; (855>0R1+<r°’+,p>(”"’6+)i£ (653)01%;@0’-,[))(”"’6)

In the same time, the stretching energy, (3.100) is a function of the upper and lower state. In
the W, integrals from the eq. (3.161), there are involved harmonic oscillator functions between
upper and lower bending states (bias the bond length dependence with the p angle). We have
the integrals of type:

P i
/_ X& (S5 P)(S)" X5 (5% p) dS® ~ py (3.183)

where « is a constant to obtain the dimensionless constant & = S’ for the Hermite polynomials.
In the case of the integrals (3.183), we have made the crude approximation:

a(p) = 5 [0* (o) + o™ (o) (3.184)

In the same time, the dependence of the stretching energy with the bending angle, involved in
(3.100) was approximated with:

W (p) = wf + (W) Ep? + (L) 5t (3.185)

?

where ¢ = 1,3 for the symmetric and antisymmetric stretching respectively. The formula (3.185)
1s obtained by expanding in Taylor series as function of the p angle, the expressions in (3.100)
and by canceling the series after the quartic term.
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In the stretching potential we must include the contribution of an anharmonic term in the
usual way by using the parameters z;:

i:21,3wi(p) (vi * %) [1 i % (”" + %)] (3.186)

This contribution includes the potential terms proportional with S? in the second order approx-
imation and S# in the first order approximation.

When computing the integrals from (3.161), we have various types of terms (we use the CGS
system and the spectroscopic units, instead of the MKS system):

1. The Fermi integrals, of type:

/: UZ (xszi(5%0)) ™ 8% 50" (8% p)dS?| %

-

(B)
i d
(‘I’vz,z,vl,ve, (P)> ®F) 1t 21 (0) Sermi(P) X ngp (3.187)

~ =]
v

(4)

where 1,7" = (+, —) for the upper and/or lower state respectively and:

50 ), o
(ggj)o(n} rof p) +(3623>0 (p p’ )pe)}} (3.188)
s (45, B0 () ]

<8v+> (R*(p))’ <p—pe>_<av ) (R~ (p))’ (p—p;)”
85" )y Rf(ro%,p) 85 )y Ri(r%,p)

_|_

+

The bending wavefunctions were multiplied with \/¢?? (eq. (3.179)) and then the part (A)
. The matrix element has the dimension [em™!],

from eq.(3.187) has a dimension of [CTT;I]
dimension of energy, as it must be, due to the fact that the part (B) from eq.(3.187) has
a dimension [em].

The constants which enter into the metric tensor element ¢g#? from eq. (3.187) vanish
because we have: \/g—P—\/Z]”_ ,,p = 1 and the others are in [em™!]. The integral (B) is
proportional with a(p), where a(p) is the known constant from the adiabatic harmonic
oscillator,

ai(p) = “’1‘; L (3.189)

In the previous formula we have w;(p) in (s7') and p is the reduced mass of the stretching
atoms. The value of a(p) is (§E.5):

o;(p) = 17.222085 - 10° \/,u [amu] w; [em™1] (3.190)

The value used effectively during the computation is not that from (3.190), the value is

¢ . -1
017222085 /1 [amu] w; [em 1] (3.191)
Ca
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because we multiply a;(p) 1078, where 10~2 is the conversion factor between

1 N 1
r0[A] 0 [em)]

2. The adiabatic and non-adiabatic integrals , of type:

o0 82 SS ]
[/ Des=(S%, 0)]" aQX:i(S,p)dS}X

-

e

(B)
. [(I)::Q,l,m,va (p)]* 8% (0 ;T/; (3.192)
) (4) J
2 /[/Oo X" ) (5" e
(B)
7 (p) [q’i,z,vl,vs (p)]* %(I);Iz,l,ui,vé (r) !%

(4)

The bending wavefunctions are multiplied with /g?? eq. (3 179) and therefore have the
dimension of \/g??. The (B) integrals are function of 2 7— and a—(p?, eq. (3.122) and

(3.125) and therefore are dimensionless. The dimension of (A) integrals is that of (A2 g#7),
because, as above, we have /g?? . ,/g?P = 1 The integrals (3.192) must have the
dimension of [em™!] and for this reason are d1v1ded by (hc).

After some calculus, we replace (§E.5)the factor (fi%2g??) in (3.192) with:

-1 3
16.85771 g°* [amu -A] (3.193)

Cyop

3. The integrals from the kinetic energy terms f(p)* and flp )i defined in eq. (3.141),
(3.142).

After some calculus we find that the numerical constant is equal with
Cyer = 16.85771
and in the metric tensor elements all masses are expressed in [amu] and the lengths in [A]

Obs. The connection between the numerical constant in a(p) factor and that from adiabatic
and non-adiabatic factor is: Cgee = \/_Tlc—

3.6 Extension of the Formalism for non-Symmetric Molecules

3.6.1 Reference Configuration, Displacements and Instantaneous Configura-
tion

Following the approach originated by HBJ [5], we consider the reference configuration of a
molecule which lies in the plane making the angle ¢ with the 2z plane. This means that we
must multiply all a;; ,a;y i = 1,3 from [5, eq.(2)] with cos ¢ and sin @ respectively. The values of
d;(p) are chosen so that satisfy the eq. (3.5) which will fix the angle £ between the local Oz axis
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and the bond length ro3 (Fig.2.1 and Fig.F.1). The displacements are subject to the constraints
(3.6)-(3.7), discussed previously. We compute the relations between the displacements and the
stretching coordinates in a similar manner as in (§3.1.2). We get the instantaneous coordinates

(§F.1):

me +m m
T S [__2+_3rl2 — Sl] sin(p — €) cos p + —rygsine cos
m
. 17, cos( )
—= cos(p — €) cos
]. —¢&l T12 p 14
mo+m . . . .
Yy = [ﬂ—-‘o’rlg + Sl] sin(p — e) sinp — ET‘23 sin € sin ¢
m
1 r
_ 1_E,icos(p—s)singo
m2 + M3 m3 2
21 = —|——ri2+ S1|cos(p—¢) — —ryzcose — 5 -—=sin(p — ¢€)
m m — &' 712
mi ms3 ms .
= |—r g —€ — —S5
Zq [m 12+m 1] sin(p )cosgo+[mr23+m2 3] sin g cos
1 ri,my 1 rhamg
- 5 —12——cos —€g)cosp — 5 —ﬂ—cosecos
1—¢"rigmg ('0 ) ¥ 36 T23 Mg 4
my my . ms m3 . .
= —|—r ~lg —€ - [— —S
Y2 [m 12+ — 1] sin(p — €)sing [mr23+ - 3] sin € sin ¢
1 rigm . 1 ry3 ms3
+ TEITjQ o cos(p —¢€) smcp-i—Sgg—m—z COSE sin @ (3.194)
m m
Zy = [—17’12 + —51] cos(p—€) — [_37'23 + —53] cose
m m m mo
1 1
+ ___r12 kb sin(p —¢) — 3—@@ sing
1 — &' rigmg €' ro3 ma
my . my + mo . 1 o3
3 = —rizsin(p —¢€)cosp — |————ry3+ S3|sinecosp + Sz COSE COS
m e’ rq3
m my+m 17
Yys = ——Lr sin(p — e)sinp + [grzg + 53] sin g sin ¢ — Sg—;i?’ cosesin
m € T3
my mi + Mo ra
= Tz cos(p —€) + |———Fra3 + Sz cose + 53——3 sine
r2

In the following equations we will use the quantities[5, 14, 6]:

up = my (mg+ma) (rfy)”
us = mg(mq+ms) (r3)?
Uz = MM3Toe oy
m = m;+my+ms (3.195)

As in (§3.1.2), in the case of the potential energy, we need to obtain an expression in terms of
the reference angle p, rather than the instantaneous angle, p. We find, similarly with (3.11)
that:

dp dp
Sus=os (L) se(Z) s o
p(p, S1,53) ~ p+ a5, 1+ 953 ) 5,0 3 ( )

With the same assumptions as for the eq. (3.12), we obtain the derivatives of p (§F.2) relative
to the stretching coordinate, as:

(%) () S (22) - () g
3G, = - "0 7)o\ ) co SImp
(951 S$1=0 mo 12 1—e¢ (ED) ma %
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n (ﬂ) ( 1 ) (rfy)’ cosp
mo 1-¢ r?2 7‘83
<2&) _ (T?'&g-f—ﬂl’z) (r33) (l) R (@) isinp
953/ s4=0 My rps &'/ s \mg) 1}y

i (1”_3) (é) MC“’S?} (3.197)

ma 93 7 12

The relations between the stretching coordinate of Jensen [6, eq.(31),(33)] and the stretching
coordinates in our model, S; and S3, are (§F.3):

my + mo m3 1 (7”83)[ .
A — — 0 = —=95 - — V0
r r12 — ri2(p) — i [cosp+ iy sinp| S3
my 1 (%) . m3 + My
A _ .0 _ 1
3 T23 — T'y3(p) Py [cosp + =2 sinp| 51+ — S3 (3.198)

Ary and Arg are the displacements from the equilibrium position in the "potential valley”, as in
the relations (3.13). We consider also the relation in terms of the reference stretching coordinates

(§F.4):
T‘O !
(52), = 5{ e+ R [ (14 22) + 2 (cmpe 2 L i )
7 m rO ’
+  [Rizlp) — Ris(p)] [(Hm—i)‘m_z (COSP+$'(rZ§’Z) smp)]} (3.199)
as B 1 , , m m 1 (7-0 )/ .
(3), = p{mremon[(1+ 212 fonrs Ly LB o)

= [Ria(p) — Ris(p)] [(HZ—;) - % (COSP+ 1—15' ' (:1?22)/ Sinp)”

where the denominator D is:

oy . ma mims 1 (%)
D = | 4+ — 14+ —] - _
2{( +mg)( +mg> m2 [COSp-i_l—e' po, SPLX

12
1(r2.)’
{cos e (r %3) sin p] } (3.200)
& Tay
In the rigid-bender limit, the eq. (3.197)-(3.199) become:
el _ 1 o 0 _ 1 .:
<ESPT)7'I:O - % .ESIHP (8_6%>r’=0_ %z-' @Slnp

Ary|pr—g = (1 + %) S; — %cospsg, Arg|p—g = (1 + %) S3 — %cospSl (3.201)

%) - (ﬁa) -

( 9 ) p1=g 0 90 /) y1=0 0

We see that again, the derivatives of the stretching coordinates to the bending angle vanish in
the rigid bender limit, as it must be.

3.6.2 Kinetic Energy

In order to obtain the kinetic energy in curvilinear coordinates, we assume that, if the ref-
erence configuration is close to that of the instantaneous configuration, the derivatives of the
displacements may be evaluated after setting S; = 0 and S3 = 0 [186], i.e.:

(af) _ 0 (fls;=s:=0)

o - (3.202)
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The quantum kinetic energy operator is given by (3.36), where the quantum operators are:

P, = —ihg P = —ihgd-
(3.203)

P, = —ihzs Py=—ihz%

Elements of the metric tensor

We must consider (3.202) in order to evaluate the metric tensor elements, in the ”0” point only
and in this situation we will not have a stretching coordinate dependence, g?j = f(p). The
metric tensor elements are diagonal for the p and ¢ coordinates and will be (§F.5):

0 _ 1 n2 1 ("'0 )! ’ ) n2 1 (rO )/ :
Yoo = E{(l—s) [1+(1_5,)2( ,1?22 ) ] ur + (€) 1+—(6,)2 (—7‘233; ) u3
. 1 (?.0 )1 1 (7‘0 J}
- e |- g () 3 (G cons

1 (T‘O )I 1 (T‘O )/ )
o [ () v ()

1
gffw = [ul sin2(p —€) +uzsin?e — 2uy3 sin(p — €) sin 5]
my(m -{-m)r 1 (79, 2 :
0 1 1 2 12
= 1+ 5 3.204
. Z o () } .

o _ mamatma) [ 1 (%))’
g3z = 1+ 2" 0
ma (8') T'a3
0 mimg | | 1 (r2)"\ [ (r9s)’
= et od 14 =
Yia ms {[ (1—¢)e ( i 25 cosp

1 ( 0 ) 1 (I'U ): .
+ L:;( ?22‘; )+ =9 ( ""?; )l sin p}

Jpo = Gop=0
wherea = ,1,3and f=p,1,3

The Jacobian of the metric tensor is function of p only:
g0 = 99,95, |61 93 ~ (9%5)7] (3.205)

Obs. 1 In the case of the rigid bender approach
eq.(37)].

Obs.2 The gpp from the eq. (3.204) is different from the value of [14], in the semirigid bender
limit, with:

) g&p and ggp have the same values as in [5,
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Obs.? The contravariant metric tensor elements are the following:

~1 0

pp 0 11 B

9o = (gpp) 9 = 73 0 )2
911933“(-‘113]

]

-1
wp _ 0 33 _ g
7= (o) = iy (3.207)
TR 3.207
0
057 =a =0 gt =t

M -'fsos_'(y?a)z
withae=¢,1,3 and f=p,1,3

The Kinetic Hamiltonian

We consider the kinetic energy operator by taking into account the eq. (3.36) and (3.203), and
Appendix (§F.6):

1 1 1 1 1 _1
T = 598”P3+ 5 [F0 90" B + 3% [Pp,gé’”gc? [Pp,go "”
1
+ 59? Pj
1 1
+ 59 P+ 595 P +95° PPy (3.208)

In the formula (3.208):
o the first row is the BL semirigid bender Hamiltonian [14]
o the second row is the rotational Hamiltonian around Oz axis
e the third row is the stretching kinetic Hamiltonian

The stretching part of the kinetic Hamiltonian is not diagonal. We must change the coordinates
in order to make it diagonal:

Si = sinCS;+ cos(Ss

S3 = cosCSy —sin(S; (3.209)

We get the condition for g'® to vanish by using (3.209) in the stretching kinetic Hamiltonian
(§F.6):

2 13 2 0
tan2( = 0 = =01 (3.210)

9%°— 9" 98 — g%y
We make the changes in the previous section by taking into account the new coordinates defined
in (3.209):

1. The p derivatives to the new stretching coordinates, from (3.197) and (3.209) can be
computed as:

9) (80 uce (22
<0§1>0 (551 OsmC—i— 053 OCOSC

(55),= (@), ¢~ (55) e o
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2. The derivatives of the new stretching coordinates to p become ( with the eq. (3.199) and

(3.209)):
= (%—il)osing-i— (%%)()cosc

(5)
o/,
85'3 _ 351 853 .

(3_9)0 N (('J’_p>ocosC B (3—p>0smc (3.212)

3. The relations between the stretching coordinates of Jensen [6] and the new stretching
coordinates of our model, are found to be (from the eq. (3.209) and (3.198)):

. ) o )
Ary = {msing“—cos(% cosp-l-?((??J)SinPl}ﬁ'i
2

mo I'ag

u ) )
+ {Mcos(—ksing‘@ cosp-l—l,( 4 )emp]}s
m mo | €}
0
1

2 ’*u

m3 - M3 . T [ 1 ( 2] G
A = ({(—= - — S
T3 { ; cos( — sin( ; cosp + T ( (:]-_ sin p ]

r 0y -
— {—m3 + me sin ¢ + cosCm cosp+ 1 ! ((Lsz)) COSP] } Sa (3.213)

/
mo mo i =E) 12

We make the substitution (3.44) for the bending wavefunction and the kinetic energy will be
[192]:

T =Ty, +Ts, (3.214)
with
e T9 the same as in eq. (3.45)
o _ 1 iipz 1 3550
d Tor = 590 F1 + 590 F3 (3.215)
where the new contravariant tensor elements are the following:
gOii = gg'sin? (4 g5° cos® ¢ + g5 sin 2¢
95 = 63" cos? (+ g5 sin® ¢ ~ gb® sin 2 (3.216)

3.6.3 Potential Energy

We introduce the auxiliary functions R%l)(p) ,R%S)(p) ,R(sl)(p) ,Rg’)(p) in a similar manner with

previously defined R;(r, p) Rs(r, p) functions, in order to simplify the expressions. With these
new functions, the eq. (3.213) can be written as:

Ary = Rgl)(P) S+ Rél)(P) Sy
Ars = RO(p) 51 - B (p) 85 (3.217)

If we consider [6, eq.(3.1) (3.3)], the relation between our stretching coordinates and the gener-
alized stretching internal coordinates is similar with(3.18):

Y(p) 81+ B (p) 85 + Ra(p)
D (p) 81— B (p) S5+ Rs(p) (3.218)

A’f‘lg = R(i
Arys = R
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The Semirigid Bender Approach

To find the dependence of the bond length with the p coordinate, we use the potential expanded
in Taylor series up to the Fermi cubic term in the instantaneous coordinates:

1 1
Vo (Ari2, Args, p) = §f11A7“%2 + §f33A7‘§3 + fi3Ar1Args (3.219)
4+ FigArigp® + Fap0Argsp?

= 0 and (3V—m

v str )
0Args Sl =§3=0

With the minimum conditions (m = 0 we find the angle

)51 =§3=0
variation for the bond lengths as (§F.7):
(f33F122 — f13F322) 9
R = - -
! Tufa=fh PP
(f11F522 — f13F192) 9
Rz = - - Pe 3.220
: Tuda—fh 7P 20
If we introduce the equations (3.218) in the potential function (3.219), by taking into account
the condition (3.220), we find the potential energy in the instantaneous configuration (§F.7), as:

VE(S1,55,0) = fi1(0) 874 1 fiale) S5+ a(p) 51 s (3.221)
where the effective potential constants are the following:

fiie) = i [ROW)] + 2 [RO0)]” + 2050 () RO )

fale) = fu [RO0)] + 2 [RO0)]” - 270 () RO ) (3.222)

fa(p) = SR (ORI 6) ~ 1RO ()R () + fis [ () RO(0) - B () RO )]

The comments made for the eq.(3.57) are valid for the previous equations too.

The Potential Hamiltonian

If we change from the instantaneous configuration to the reference configuration, we must use
the formulas (3.11) and (3.14). The derivatives are those from the eq. (3.211) and (3.212). If
we make the same changes as for the symmetric molecule, the final potential energy , in the
reference frame, is:

Vil (S1,8350) = VE(p) + Ve (81,85 p)
vy <ap>
— + -
+ [( ap )0 95, fu(P)

vy dp 8Ss\ N
* [( a,: )0 (d—sg) + fa3(p) (8—:) (P - pe)} Ss (3.223)
7

and V@ (p) is the bending potential defined in eq.(3.68)-(3.70).

3.6.4 Comparison with Symmetric Molecule Model

In the case of the symmetric molecules, we have the relations:
g = £
— 0

N

I
=W
w

0 (3.224)
2
If we use the relation (3.224) we find that ¢?, = g2, from the eq. (3.204), and then from (3.210),

the rotation angle is ( = §. In that case the eq.(3.209) is similar with (3.22) and S; = S* and
S5 = S® coordinates.

109



The Jacobian of the pseudo-metric tensor is unchanged , as it must be (§F.7):

88 ,aa

g1 933 — (913)° = 98° 9§ (3.225)
The new functions are the following (§F.8):

Bp) = BO(p) = SR

RW(p) = RS)(p):%Rs(r,p) (3.226)

If we consider the eq. (3.226), the equation (3.218)become identical with (3.19).The bond length
variation with the angle is equal and

Fio Y
Ju+ fis (0= re) (3.227)

The potential constants, defined in (3.222) become (§F.8):
ii(p) = firs(p)
SQ(P) = f ! f(P)
i5(p) = 0 (3.228)
If we consider the formula (3.227), the derivatives (3.199) will be:
351> (653) R'(p)
— = = 3.229
( dp Op Ri(r,p) ( )
and from (3.212), the derivatives are:

S, = R (05)

=1} = B =
(ap )0 Vi Ratrn) -~ \op

953 (39“)

294 — 3.230
( o8 ) 0 (200

The formula (3.211), become for the symmetric molecules (§F.8):

(55, = (35).= 355

051 0 0 \/_7'0 )

() = (2 .

From the equations (3.225) - (3.231), we found the formulas for the symmetric molecules with
the assumption that the derivatives of the functions are evaluated after setting the stretching
coordinates to 0 (S; = Sz = 0) [186].

Ri(p) = Ra(p) = -

3.7 Conclusions

In this thesis we have derived a vibration-rotation Hamiltonian for a symmetric molecule, the
Stretch-Bender model, which is based on the use of a stretch-bender frame, chosen so that as
the molecule bends the reference geometry follows the minimum in the potential energy surface.
This therefore minimizes the size of the displacements required to reach the instantaneous axis
geometry. This new Stretch-Bender Hamiltonian has been combined with the Jungen and Merer
[15] method of solving the Renner-Teller coupling problem to produce a compact method for
the variational calculation of the energies for a symmetrical molecule possessing a degenerate
electronic state when linear. A key role in the understanding of the combined stretching -
bending motions is played by the gp term, introduced here for the first time, which relates the
end-over-end rotational motion to the angle-dependent reference geometry. The Fermi coupling
arises naturally from the change of the configuration during vibrational motion. The extension
to asymmetric molecules is outlined.
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Chapter 4

Linear Triatomic Molecules Treated
with the Stretch-Bender Model: CO»

and COJ Molecules

In order to test the Stretch-Bender model described in the previous chapter, a series of linear
molecules was considered. The CO, molecule is a perfect example for testing only the Fermi
interaction, because the great majority of its levels are modified by this effect.

For testing the coupling of electronic, electron spin and ro-vibrational angular momenta, in
order to explain the pattern of the ro-vibronic state, the CO7 ion of the former molecule was
considered. The Fermi interaction shift a limited number of energy levels, hence the influence
of the ro-vibronic coupling can be taken into account with the Fermi coupling.

4.1 Linear Molecules without Renner-Teller Effect: COy

4.1.1 Introduction

The carbon dioxide is one of the most important components of the environment. Although
it is considered a trace gas in the terrestrial atmosphere, its strong opacity in the IR domain
has a major impact on the environment. Accurate knowledge of the spectroscopic properties of
the carbon dioxide molecule is necessary for understanding the greenhouse effect and planetary
atmosphere. It is a prime factor in atmospheric remote sensing of temperature and constituent
profiles. C'O, is often a contaminant in spectra.

From the spectroscopist point of view CO, is a case particularly simple, with A = 0 and a
linear geometrical configuration. Then no couple occur between the orbital angular momentum,
electronic spin and bending vibrational motion and which is commonly referred to as the Renner-
Teller effect.

In exchange the vibronic energy levels exhibit a pure and large Fermi interaction and it is
why the Fermi resonance has been discovered by analysing the Raman spectra of CO5 molecule.
Then C'O; is an ideal molecule to test the new Stretch-Bender model. Due to its great interest
and the simple behaviour, a large number of vibronic levels have been identified, which make
the fit procedure to be more reliable [155, 193, 194, 195, 196]. The analysis some of phenomena
that contribute to absorption is done in [197, 198].

4.1.2 Results and Discussion
Bond length parameters

The first step is to determine the ground state geometric structure of the molecule. The algo-
rithm to find the bond length parameters was explained in (§3.5.1), and follows [147]. The most
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practical quantity to work with, is the structure for vé""e” = -1, v; = vs = 0, because good
rotational constants are available for 0, I, 0 levels, which are not subject to interactions. The
mean value (B + C) was considered. The C constant is subject to vibrational Coriolis effects
[150], and then the C constant has to be corrected for this.

For the ground state of CO; the accurate rotational constants of Rothman et all [194], when

. . : : linear . :
treated iteratively as in (§3.5.1), give the v( ) — —1 structure as in Figure 4.1
) 2
r(C—0)=1.1631A (4.1)
1.1618 <r< 1,1700 re1.1628
0.401 ; F 0399 ; Py
0';00 =1.1618_~ 0.308 Limit: d1=0.0 7
T P~ s
— ol .997 -
e i o
2 ozss Pt Ao - : >
S 093 = 3 )
o 0392 / o C
; &

Bv
o
@
]
S

Figure 4.1: Changements in the rotational constants due to various settings for the bond length and the
dependence of the bond length with the p angle. It is an iterative process to find the best parameters for
dgChJ)

the bond length. The maximum slope of the rotational constants is for = 0. The experimental

points are represented with circles.

The value was then kept fixed for the rest of the calculation. After fixing vélmear) = —1 bond
lenghts, we determined the variation of the bond length with p, using the observed variation of
B = (B +C) with v,. For the ground state we set d; = 0 in (3.150) and we found, with (4.1),
(see Figure 4.1):

r(p) = (1.1631 +0.2449 tan® (g)) A (4.2)

The vibrational Coriolis effects have been included. More considerations about the form of the
eq.(4.2) is done in (§3.5.1).

The accuracy of the small bending amplitude (harmonic oscillator) for the CO; molecule
can be verified if the values from eq.(4.1) and eq.(4.2) are compared with the values computed
with (3.151).

A comparison between the values found using the two ways is given in Table 4.1. The small
error in the bond length (1.05 %) and the dependence of the bond length with the angle (3.69 %)
indicate that the harmonic oscillator approach can be used successfully for the C'O, molecule.
This also explain the good results previously obtained with this approach [155].

Also, in the case of the small amplitude approach it is no difference between d; and ds
parameters in (3.150), because the higher order terms in the power series expansion of the
tan? (£) have a limited influence.

If we use the definition of the bond length variation with p from [14] and the potential force
constants from [39, 46] we have dgth) = 0.1429 from Pliva and d(lth) € [0.1218 — 0.1539] from
Pariseau, depending on the data sets. If we use the contour map of the potential energy from
(46, Fig.2], we have dgth) = 0.1917. With these values, the ¢p parameter defined in (3.152) takes
a value of:

gp = 1.722 £ 0.103 (4.3)
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Table 4.1: Comparison between the values obtained with the Stretch- Bender formalism and the values
obtained from the harmonic oscillator approach, or from the literature.

= - ¢ Equation (3.151)
r(p=0) 1.16188 1.1631° > Data from Table.4.2
J
; 0961547 é;i}lgb ¢ Computed with ry from [155]
1 - : b 4 From unperturbated rotational
an 1.8067: 1.8730 constant fit
v e 32633;61‘ , Cauation (3.155)
z1 ==( —0 .00262f 9 Computed from the Fermi matrix
; D p element fit in Fig.(4.7)
Be 0.3894 0.390330? " Computed from [37]
) . 0.39025 P " Computed from [39]
—a - 10 7.5804 7.076429 ! Computed from [46)
i |

Computed from [155]

Potential parameters

By now it will be appreciated that it is necessary to go through the calculations twice, the first
time to get certain expectation values based on the potential parameters, which are then used to
optimize the input parameters for the second attempt. Seven potential parameters were found to
be necessary to describe the shapes of the Born-Oppenheimer curve for the bending potential, as
well as the stretching potential behaviour. These are k; , k4 for the bending potential (described
in §3.3.3)) and w; , w{2) , w§4) (defined in (3.185)) for the stretching potential.

An anharmonic term z; for the stretching potential is found enough important to be included
between the fitting parameters. The gp factor, describing the influence of the Coriolis coupling
and anharmonic perturbation is taken into account as a variable parameter. The dependence of
the stretching energy with the bending angle, described in (3.185), allows for the stretch-bend
interaction and is similar with the f bending parameter dependence on the degree of excitation
of the stretching states, as defined in [186].

The full list of molecular parameters for the CO, molecule are given in Table 4.2. The results

Table 4.2: Parameters used to model the Fermi resonance structure of the ground state XIE'Q* of COs.
The zero point energy corrections for the stretching vibrations are included in the effective potential
energy functions for the bending

Bond length variation

r(p = 0) 1.1631 A

di, coefficient of tan® £ 0.2449 A

k 38833.67 + 29.91 em™lrad=2
ky 8145.35 + 121.79 cm™lrad=?
w? 1345.25 + 1.15 em™1

w!? 81.94 + 10.45 em~rad=?
] -0.00248 + 0.00021

9D 1.8730 &+ 0.0029

of the calculation using the parameters from the Table 4.2 are given in the Table 4.3 together
with the effective rotational constants. The standard deviation in the least square treatment
normalized to the unit weight was 0.625. In order to see the influence of the different parameters
to the energy levels, each parameter was initialized with zero value and the differences to the
initial computed levels are given in Table 4.4. In the case of the k4 parameter, the behaviour is
normal, because if the anharmonic bending term vanish, the levels will be lower than the initial
values. The levels which change sign are supposed to be subject of a strong Fermi interaction,

which change the order of levels. The behaviour for w§2) and wfl) parameters suggest that they
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Table 4.3: Observed and calculated band origins and rotational constants for XIE;' ground state of
CO». All parameters are given in cm ™!

Band Diff. Rotational constants
vi v, w3 origin o-C B C 1(B+C) 1(B+C)" Rel
0 0° 0 0 0.3905 0.3896 0.3901 0.3901 h
0 0.3902 0.3902 c
0 0.3902 d
0 0.3902 exp
0 1* 0 667.18 -0.20  0.3914 0.3904 0.3909 0.3909 h
667.400  -0.02 0.3909 0.3909 €
667.381  -0.001 0.3906 d
667.38 0.3912 exp
0 2° 0 1286.39 -0.982 0.3923 0.3903 0.3913 0.3907 h
1285.39 0.018 0.3916 0.3904 ¢
1285.414 -0.006 0.3905 d
1285.408 0.3905 exp
0 22 0 1334.89 0.242 0.3924 0.3909 0.3916 0.3916 h
1335.14  -0.008 0.3916 0.3916 c
1335.123  0.009 0.3917 d
1335.132 0.3917 exp
1 09 0 138743 0.754 0.3905 0.3896 0.3901 0.3901 h
1388.19  -0.006 0.3890 0.3902 c
1388.188 -0.004 0.3902 d
1388.184 0.3900 exp
0 3% 0 1933.44 -0.970 0.3933 0.3910 0.3921 0.3915 h
1932.46 0.01 0.3924 0.3912 c
1932.482 -0.012 0.3907 d
1932.470 0.3917 exp
0 3% 0 2003.06 0.186 0.3933 0.3913 0.3923 0.3923 h
2003.28  -0.034 0.3924 0.3924 c
2003.234 0.012 0.3924 d
2003.246 0.3924 exp
1 1' 0 2075.96 0.896 0.3914 0.3903 0.3909 0.3915 h
2076.85 0.006 0.3897 0.3909 c
2076.875 -0.019 0.3904 d
2076.856 0.3913 exp
0 4° 0 2549.61 -1.243 0.3942 0.3910 0.3926 0.3915 h
2548.24*  0.127 0.3931 0.3910 c
2548.380 -0.013 0.3911 d
2H48.367 0.3911 exp
0 4% 0 2585.83 -0.808 0.3942 0.3915 0.3928 0.3919 h
2585.01 0.012 0.3931 0.3920 c
2585.049 -0.027 0.3920 d
2585.022 0.3919 exp
1 29 0 267129 -0.147 0.3923 0.3903 0.3913 0.3916 h
2670.83*  0.313 0.3903 0.3885 c
2671.122  0.021 ' 0.3895 d
2671.143 0.3896 exp

Perturbed rotational constants [155, eq.(25)]
This work

Reference [155]

Reference [195]

¢ Reference [194]

e Levels not considered in the fit in [155]

a o P~ |
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Table 4.3: (continued)

Band Diff. Rotational constants
vi vy, vz origin o-c B C L(B4+C) L(B+C) Ref
0 4% 0 2671.65 0.065 0.3942 0.3918 0.3930 0.3930 h
2671.88  -0.165 ¢
2671.7256 -0.010 0.3931 d
2671.715 0.3931 exp
1 22 0 2759.98 0.745 0.3924 0.3908 0.3911 0.3919 h
2760.69 0.035 0.3903 0.3915 c
2760.778 -0.053 0.3915 d
2760.725 0.3915 exp
2 0° 0 2796.06 1.076 0.3905 0.3896 0.3901 0.3909 h
2797.03 0.106 0.3877 0.3906 c
2797.135  0.001 0.3906 d
2797.136 0.3906 exp
0 5 0 318229 -0.826 0.3951 0.3916 0.3933 0.3922 h
3181.35% 0.114 c
3181.472 -0.008 0.3910 d
3181.464 0.3923 exp
0 5% 0 3241.13 -0.507 0.3951 0.3919 0.3935 0.3929 h
3241.48 -0.857 c
3240.688 -0.065 0.3927 d
3240.623 0.3927 exp
1 3' 0 333941 -0.054 0.3933 0.3910 0.3921 0.3922 h
3339.10 0.256 c
3339.306  0.050 0.3900 d
3339.356 0.3912 exp
0 5° 0 334059 -0.062 0.3951 0.3923 0.3937 0.3937 h
3341.00  -0.472 c
3340.605 -0.077 0.3938 d
3340.528 0.3938 exp
1 3% 0 3441.82 0.395 0.3933 0.3913 0.3923 0.3929 h
3442.93 -0.715 c
3342.342 -0.127 0.3922 d
3442.215 0.3922 exp
2 1Y 0 3499.90 0.772 0.3914 0.3903 0.3909 0.3919 h
3500.46 0.112 C
3500.677 -0.005 0.3904 d
3500.672 0.3917 exp
0 6° 0 3793.04 -0.356 0.3959 0.3916 0.3937 0.3914 h
3792.45%  0.234 c
3792.673  0.011 0.3918 d
3792.684 0.3918 exp
0 62 0 382209 -0.078 0.3959 0.3921 0.3940 0.3929 h
3822.038 -0.026 0.3924 d
3822.012 0.3923 exp
0 6% 0 3898.34 -0.026 0.3960 0.3924 0.3942 0.3930 h
3898.05%  0.264 c
3898.460 -0.146 0.3934 d
3898.314 0.3937 exp

Perturbed rotational constants [155, eq.(25)]

Reference [155]

=
h This work
C
d

Reference [195]
¢*P Reference [194]
i Levels not considered in the fit in [155]
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Table 4.3: (continued)

Band Diff. Rotational constants
v v, v origin o-c B C L(B+C) L(B+C) Ref.
1 4% 0 394255 -0.007 0.3941 0.3910 0.3926 0.3923 h
3942.15%  0.393 c
3942.561 -0.018 0.3896 d
3942.543 0.3896 exp
1 42 0 4007.92 -0.006 0.3942 0.3915 0.3928 0.3929 h
4007.873  0.041 0.3914 d
4007.914 0.3914 exp
0 65 0 4009.83 -0.154 0.3960 0.3927 0.3943 0.3944 h
4009.884  0.208 0.3945 d
4009.676 0.3945 exp
2 20 0 4064.11 0.165 0.3923 0.3903 0.3913 0.3924 h
4063.97°  0.305 c
4064.197  0.078 0.3896 d
4064.275 0.3896 exp
1 4% 0 412233  -0.061 0.3942 0.3918 0.3930 0.3936 h
412229  -0.021 v
4122.527 -0.258 0.3929 d
4122.269 0.3929 exp
2 22 0 4197.20 0.161 0.3924 0.3908 0.3916 0.3926 h
4197.426 -0.065 0.3916 d
4197.361 0.3916 exp
309 0 4224.92 0.177 0.3905 0.3896 0.3901 0.3915 h
4224.71 0.387 c
4225.043  0.054 0.3910 d
4225.097 0.3910 exp
0 7' 0 4415.31 0.839 0.3968 0.3922 0.3945 0.3922 h
4416.121  0.028 0.3926 d
4416.149 0.3931 exp
0 7 0 4466.13 0.986 0.3968 0.3925 0.3947 0.3936 h
4467.223 -0.107 0.3931 d
4467.116 0.3930 exp
0 7° 0 4556.97 0.625 0.3969 0.3928 0.3948 0.3943 h
4557.883 -0.288 0.3941 d
4557.595 0.3941 exp
1 5% 0 4590.95 0.166 0.3950 0.3916 0.3933 0.3930 h
4591.027  0.089 0.3907 d
45691.116 0.3912 exp
1 5% 0 4676.70 0.09 0.3951 0.3919 0.3935 0.3935 h
4676.812  -0.022 0.3922 d
4676.790 0.3922 exp
2 31 0 4753.711 -0.2567 0.3933 0.3910 0.3921 0.3930 h
4753.270  0.183 0.3903 d
4753.453 0.3912 exp
1 5% 0 4801.94 -0.575 0.3951 0.3923 0.3937 0.3942 h
4801.836 -0.471 0.3935 d
4801.365 0.3935 exp

r Perturbed rotational constants [155, eq.(25)]
h This work

¢ Reference [155]

4 Reference [195]

¢P Reference [194]

e Levels not considered in the fit in [155]
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Table 4.3: (continued)

Band Diff. Rotational constants
vi vh w3 origin oc B C ;(B+C) L(B+C) Ref
2 3% 0 4800.74 -0.644 0.3933 0.3913 0.3923 0.3934 h
4890.277 -0.181 0.3922 d
4890.096 0.3922 exp
3 11 0 4939.18  -0.827 0.3914 0.3903 0.3909 0.3924 h
4938.324  0.031 0.3912 d
4938.353 0.3911 exp
i Perturbed rotational constants [155, eq.(25)]
This work

Reference [195]
¢P  Reference [194]

are not so important for the fit, which we can also see from the great relative errors in Table
4.2. The parameters act through the bending parameters, but also in the interaction matrix,
(4)

because the behaviour is not the same as for the ky parameter. w; "’ parameter is less important

than w:{Q) one. The major influence of these parameters seems to be mainly bias the interaction
matrix due to the a(p) functions and not bias the bending potential.

The anharmonic stretching parameter z; act in the same way, bias the bending potential
shape, because it is linked to w;(p) stretching frequency, and due to the minus sign, the main
influence is opposite to the k4 parameter.

The stretching part in the transformation Jacobian (as was discussed in the theoretical
chapter, which is contained in f,(p) pseudo-potential term), have only a minor influence on the
fit of the levels. This could explain the success of the Jungen and Merer formalism, even if they
do not consider the whole transformation. Because the shitf trend is uniform, it can easily be
compensated by another parameter variation.

The gp parameter act only bias the Fermi interaction, which explain the apparent chaotic
spread of plus or minus signs in the terms. Because k4 column has the same behaviour, this
suggest that the main influence is from the derivative of the bending potential to the bending
coordinate, in the Fermi interaction.

The Lorentz potential parameters ¢ and b (3.68), seems not to have any influence in the
improvement of the actual fit of the experimental data.

Using the conversion formulas for the potential force constants (3.87) from the curvilinear to
the generalized coordinates system, the force constants from Table 4.5 are obtained. It must be
emphasized that in the formulas (3.86) the theoretical dgth) are used and not our Value,dg()h‘])
because the formulas for the convertion were obtained in the Bunker and Landsberg approach
[14]. The change between the two values is done with (3.152), as:

t)

(ChJ)
4 = 4 (4.4)
9D

If we compute the value of gp parameter theoretically, with the (3.155) formula, we obtain
the value from the Table 4.1. The difference between theoretical and fitted value is about 4.7
%, which confirm the valability of the formula (3.155) obtained in the frame of the harmonic
oscillator approach. The theoretical value from Table 4.1 is in the error range of (4.3) value and
all the gp values are correlated each other, which is quite normal due to the conversion relations
between the formalisms. The influence of the stretching vibrations on the bending potential is
shown in Figure (4.2), where the potential contour map is drawn in a (p,v1) coordinate system.
It is important to mention that in the curvilinear coordinates, the potential valley is a "straight”
ascend line, compared with [46, Fig.2], where it is a bend line, with a minimum point.
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Table 4.4: The influence of the various parameters used in computation of the vibronic energy levels.
The relative influence is obtained by considering each parameter equal to 0 (excepting from w§4) which
initially was zero), in Table.4.2 and is measured by using the shift of the computed energy levels (AE =
Ereat — Ep;=0). The band origins are the calculated values with the parameters from Table.4.2

Band Par. Par. Par. Par. Par. fi(p)!
vi vh v origin. k4 =0 sz) =0 w&‘l) =4539 2, =0 gp=1
0 0" 0 0 0 0 0 0 0 0
0 1' 0 667.18 9.29 0.55 -0.05 -0.11 12.16  -0.12
0 2° 0 1286.34 16.55 1.19 -0.04 -3.21 54.34  -0.13
0 22 0 1334.90 23.30 1.13 -0.05 -0.18 31.78 -0.19
1 0° 0 138741 11.25 1.13 -0.07 -3.70 -18.74  -0.15
0 3 0 1933.37 34.14 2.34 0.00 -3.41 92.99  -0.20
0 3% 0 2003.09 42.04 1.69 -0.01 -0.25 59.25  -0.22
1 1' 0 2075.92 26.19 2.35 -0.05 -3.75  -13.38  -0.24
0 4° 0 2549.52 49 .87 3.95 -0.11 -6.63 85.43  -0.19
0 42 0 2585.75 56.77 3.47 -0.10 -3.56 13757 -0.22
1 20 0 2671.27 27.54 2.39 0.02 -13.55 36.32  -0.11
0 4* 0 2671.69 65.51 2.30 0.12 -0.28 95.03  -0.19
1 22 0 2759.95 45.51 3.57 0.03 -3.84 237 -0.27
2 0° 0 2796.01 @ 33.91 3.51 0.03 -7.37 161.11 -0.25
0 5 0 318221 75.05 5.21 0.27 -7.53  -84.88  -0.20
0 5 0 3241.06 84.38 4.55 0.26 -3.69 -173.22  -0.19
1 31 0 3339.33 53.18 4.39 0.10 -12.23 72.25  -0.17
0 5% 0 3340.65 93.74 2.76 0.28 -0.29  139.64 -0.12
1 3% 0 3441.80 69.27 4.76 0.17 -3.94 27.52  -0.26
2 1! 0 3499.91 52.76 5.20 0.15 -8.11  232.82 -0.28
0 6° 0 3793.00 -88.14 7.08 0.51 -10.79 -29.51 -0.15
0 62 0 3822.02 -103.75 6.81 0.50 -8.056 -70.82 -0.16
0 6% 0 389830 116.99 5.57 0.48 -3.81 -162.04 -0.11
1 4% 0 3942.60 61.46 4.93 0.26 -22.79 -96.37  -0.02
1 42 0 4007.80 82.03 6.22 0.25 -11.86 114.96 -0.16
0 6% 0 4009.91 126.76 3.24 0.48 -0.28  193.72  -0.01
2 29 0 4064.20 50.29 4.88 0.24 -23.12 25.22  -0.05
1 4% 0 4122.33 97.54 5.94 0.37 -4.05 62.00 -0.20
2 22 0 419723 271.46 6.96 0.35 -8.53  304.39  -0.28
3 0 0 4225.02 66.69 7.01 0.36 -11.40 186.04 -0.27
0 7' 0 441534 -80.46 9.13 0.82 -12.49 3.34  -0.10
0 7% 0 4466.11 -95.37 8.34 0.79 -8.45  -4454  -0.07
0 7° 0 4556.95 -114.68 6.53 0.74 -3.93 -138.92 0.02
1 5' 0 459092 -81.00 7.53 0.44 -21.78 -110.22 -0.03
1 5% 0 4676.57 -109.54 7.95 0.47 -11.74 -165.92  -0.11
2 31 0 4753.73  -96.72 7.41 0.41 -21.90 52.59  -0.07
1 5% 0 4801.96 130.33 7.08 0.62 -4.14  106.09  -0.01
2 3% 0 4890.82 329.35 8.71 0.60 -8.87 -262.74  -0.23
3 1Y 0 4939.35 443.55 9.12 0.62 -12.97 238.22 -0.25

T The pseudo-potential function f;(p) in the bending hamiltonian is computed without
the stretching contribution
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Table 4.5: Force constants in the generalised coordinate system, computed with the stretch - bender
force constants from the Table.4.2

Force constants Ref.h Ref.® Ref.?

Kiz2(Fi22) [£25] -0.647 -0.618 -0.570 ; -0.588
Fyna(Kazos) [:2% 0.171 -0.041 -0.065 ; -0.010 ; 0.002
Fii(K1) [4%] 8.530 8.014 8.095

Fyg(Kgp) [24] 0.386 0.393 0.393

2 ‘This work

Reference [39]
®  Reference [46]

Rotational constants B and C for the CO; molecule

The bond lengths given previously refer to the véli"ear) = —1 structure (corresponding to the

equilibrum with respect to the bending vibration) and were obtained using the values of B =
%(B + C) for the 0, I*, 0 levels (v = I levels), which are unperturbed. In fact the constants
B and C vary with the vibrational quantum number in a fairly complicated way because of the
large amplitude and the vibrational Coriolis effects [150].

The levels are not affected by the rotational-electronic Coriolis perturbation, so that in order
to reproduce their B values, we calculate both B and C constants as expectation values over the
vibrational basis functions. The inertial contributions are done in [150] and in (§E.1).

The observed C constant includes also the effects of the vibrational Coriolis interaction
between the antisymmetric stretching vibration vs and the two vibrations v; and vy. The
procedure to evaluate them it is explained in [150]. A comparison of the observed and the
calculated rotational constants for the levels of the ground state in COy molecule is given in
Table 4.3. The calculated values are based on the potential parameters and the geometrical
structure from Table 4.2. The importance of the vibrational Coriolis effects is very clearly seen
from Figure (4.3). As we can observe, if the Coriolis correction is neglected, B increases too
rapidly with v5"?". The Coriolis contribution to the C constant has been evaluated using the
value w3 = 2349.49 cm™! of the antisymmetric stretching frequences from [155]. In the general
case, the fit of the levels is not so good, due to the perturbations which arise (see Figure 4.4). In
order to have a quite similar behaviour with the experimental values, we must use the relations
between the perturbed Bf and the unperturbed B; rotational constants [155, eq.(25)]. In this
case the general behaviour of the B = f(v;) dependence is the same for the levels with v; = 0
(no stretching levels), but it is not so good for the levels with v; = 1. These results can be
due to the method of rotational constants computation: the expectation values are computed
using only the bending wavefunctions. The stretching contribution is included indirectly, in the
harmonic and the anharmonic bending potential constants. It seems that this approach is good
only for the bending wavefunctions with v; = vz = 0, but for the stretching wavefunctions a
more direct influence in the stretching wavefunctions must be used. From the Table 4.3 it can
be seen that the error in the rotational constant is nearby of the same order of magnitude as in
the case of Courtoy study [155] and the rotational structure is resonably well described by the
effective asymmetric top hamiltonian for a semi-rigid molecule.
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Figure 4.2: Potential energy of CO, valley and contour map as a function of the stretching quantum
number (stretching displacement of one oxigen atom) and the bending angle. Contours are drawn at
intervals of 3.13 102 em™!, which correspond to approximatively 5 quanta of bending mode.

0.3938 |
A
e
§
-5 B with Coriolis P ;%
i 0.3928 - —Aa-- B without Coriolis P =
E //,’/ .
8 o5
— P
Q s
Q -7
Y o
= 0.3918 | o .
7
a.
e /’/
Vs
.
0.3908$’ A :
1.0 3.0 5.0
Vo
. == 5 17
Figure 4.3: Values of B = %(B + C) for the levels of 0,1',0 type, as a function of vg mear), calculated

with and without Coriolis correction to C.

120



Bexp K=0

0.3938

c ] C Bexp Kat -
. -1
-~ Bwith perturb ! -5 Bwith periurb Yi= 3 §
03930 - - B with Coriolis ; o B with Coriolis o
i ! ¥ "
- - —¢ B withoul Coriolis e =~ 03928 = _. B without Coriolis " ,-"_--’/-
L . -, S L - e
8§ 03920 - Lt 5 e
o B g g
3 o =" 3 o
@ Y c AR
§ 03910« T . o 7T
- ! st = 03918 - e
i e
03900 & &
. o Ll n =
: o
0.38%0 - — - 03908 L _—
00 20 20 10 30 50
vy V2
.
&
oasdot © B exp 5-8 ,/ﬂ ' o Bexp Ka1l .~
T o Buwith pertub P 03945 - . Bwilh perturb et
! R ; .
© .v B with Coriolis e - ! -5 Bwith Coriolis /’/,
] o
~ 03930 - _.  Bwihout Coriolis A T 03935 - —& B without Coriolis o e R
3 o & ' 4 .
3 gt < e )
$ oaszi s g . P
d@ O L = D 03925 - o =
i 2 A > o e = e
el i Pt T . o S
! 2 - - S e
0.3910 - /,',/ = 03915 - T
e 3 C
Pel "0 e
ome_{" — — 03508 —— -
00 20 40 60 1.0 30 60 7.0
vy V2

Figure 4.4: Vibrational variation of the B = (B + C) rotational constants, with vgli"e“’). The experi-
mental values are taken from [194].

Fermi Interaction in the CO, Molecule

From the 74 vibrational levels of the 2C'0 molecule reported by Courtoy [155], only 12 are
not in resonance; they are of the type 0, I!, v, with I=0,1,... The most important resonances in
CO;z are determined by the cubic force constant fi22, which has been discussed in (§3.3.3), and
for CO; this is found to have slightly different values in the various calculations (39, 46, 155].

In the Table 4.3 and Table 4.4 it was used the traditional labeling of CO, levels involved in
the Fermi resonance from [155]. The real labels for the energy levels have to be interchanged [190,
199] in the case of the CO; molecule. The Table 4.3 needs some special comments concerning
the algorithm used to fit the levels. In the fit done by Courtoy (155], 20 parameters were used,
without the Fermi interaction analysis. The Fermi interaction analysis was done by groups of
interacting levels, solving matrices of dimension 2x2, 3x3 and so on, for two sets of interacting
levels, respective three sets, or more. After this, all the effective Fermi interaction parameters
are fitted with a general formula allowing for the dependence of the Fermi interaction constant
with a linear function like f(vy,vq,vs,!).

In our approach the Fermi interaction is introduced in a more natural way and do not
need special parameters. Then, the interaction arises in the moment of construction of the
interaction matrix with the general bending and stretching potential constants, but without a
special term figp in the curvilinear coordinate system. In the Fermi interaction analysis we
have some distinct groups of levels (see Figure 4.5). For K = 0 and K = 1 levels, the Fermi
interaction analysis can be done up to four sets of interacting levels, for K = 2 and K = 3,
up to three sets of interacting levels and for K = 4 and K = 5 only for two sets of interacting
levels. In the figure it can be observed the reverse order of the unperturbed levels. 02°0 has
a greater energy than 10°0 level, for example. This is due to the initial unperturbed levels,
and to the magnitude of the (vy, v}, vs|H|v; + 1,0}, vs) term, which is not enough great to
change the initial order. As an example, (0,0° 0|H!|1,0°0) ~ 51 cm™!, Eg,oO,o ~ 674 cm™!,

2
E?,oﬂ,o ~ 2013 cm™! and the perturbation AV ~ EO_(H_LQEO;
0,00,0 0,000

order. In fact Ep o~ EY g0 o — AV ~ 672.1cm™1, Ey go o = EY oo+ AV ~2015cm™! and the

~ 1.9cm™! can not change the
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Figure 4.5: Patterns of the bending vibronic and stretching vibrational levels for the ground state )212;'
of C'O4. Arrows indicate the shifts of the levels due to the Fermi interaction.

1,09 0 level was shifted only with ~ 1.9 cm™?.

In order to show that the assumptions about the angular dependence of the force constant
( from w;(p)) and the bond length are resonable, the calculated matrix elements of the Fermi
resonance coupling 0, vé, 0 and 1, (ve — 2)1, 0 states of the C'O; molecule are plotted in Figure
4.6. It can be seen that, as in [186, Fig.3], the slope is almost linear when plotted against
[(vg + 1) (va + 2)]%, as one would expect in the harmonic oscillator limit. But, contrarily to
[186], the behaviour of the matrix elements is almos linear up to great v, numbers, even if the
individual terms from the matrix elements (3.159) are not linear for large vs values.

The purely vibrational coupling is exemplified by the resultant energy pattern shown in
Figure 4.7. The comparison with the [186, Fig.4], let us to observe that in our case there is not
curves crosing, and always the levels with smaller v; stretching numbers belong to a higher energy
(as was shown in Figure 4.5). More than this, the Fermi resonance occur for all sets of levels,
contrarily to the case of C'H; molecule, discussed in [186]. The two dimensional wavefunctions
used to demonstrate the Fermi interaction mixing in the case of CO; molecule were carried out
using the parameter set from Table 4.2. The effects of strong vibrational mixing in this case is
evident from the asymmetric pattern of the final wavefunction in Figure 4.8. This asymmetry
suggest the strong coupling between the stretching and the bending motion, in a similar fashion
as was described in [186]. From the figure we see that the small oscillation approximation works
for the CO; molecule, because the bending wavefunction domain do not exceed 0.4 rad (~ 23°),
and the stretching oscillation is about 0.12 A.

The Hougen interaction parameter for the Fermi resonance can be computed using the equa-
tions from [37, 153]:

o (@ \ o
W B f122 <2f11) (2]2:22) (45)
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Figure 4.6: The calculated Fermi resonance matrix elements between the levels 0 ,v9,0and 1, (va—2)°, 0 of
the ground state X 1E+ of CO; plotted against the expected function for a harmonic oscillator basis. The
total element matrix shows the almost harmonic oscillator relationship, while the individual components
from (3.159) deviate from linearity (7 - component issued from the bending potential derivative; A -
component issued from stretching potential derivative).

where all the values are in em™! and the equation is valid in the linearized generalized internal
coordinates. If we use the equation (3.91) for the conversion of the coordinates, with theoretical
(th) for the d variable, we find W = 38.56cm™!

From the Table 4.1 we see that the value computed using the slope from the Figure 4.7 is
about 22.9 em~!. The value computed from the W° parameter of Courtoy is approximately
32.89 em™! (we use the formula W = 2 > because WO has another definition).

The anharmonic stretching parameter from Table 4.1 has both the same sign and order of
magnitude as the values from [39, 46], if we put z; = ZL (which represent the definition of
from (3.186)).

From the previous discussion we can see that the parameters found in Table 4.1 are consistent
with the literature data, but our approach has the major advantage of using a much smaller
number of parameters in order to fit the experimental levels.

4.2 Linear Molecules with Renner-Teller Effect: COJ

4.2.1 Introduction

The COY ion belongs to the familly of triatomic molecules possessing fifteen valence electrons,
including radicals and ions such as NCO, BO,, N,O*t and CSJ. All these molecules have 211
ground states exhibiting an orbital as well as a spin degeneracy, and they are characterized by
a strong 25T —2 11 electronic transition, situated in the near UV domain.

Several ro-vibronic states of the electronic ground state have been detected in the electronic
spectra of COJ [110, 180, 200, 201, 202, 203, 204, 205, 206, 207, 208]. In addition, vibronic
components of the bending mode have been measured by infrared diode laser absorbtion spec-
troscopy [209]. Recently Frye and Sears [112] have applied the diode laser spectroscopy to the
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Figure 4.8: Three-dimensional wavefunctions for K = 0, (a) (020) and (c) (040) vibronic levels of the
ground state XlE;' of CO,. For each state the primitive wavefunctions , as well as the final wavefunctions
are represented. For the (020) state, the final parentage is (b): 49.8 % (020) and 47.6 % (100). For the
(040) state, the final parentage is (d): 28.1 % (040) and 45.2 % (120) and 19.5 % (200).

CO; ion and determined the lower spin-vibronic states associated with the v = 0,1 and 2 bend-
ing levels, with very high precision. They used a hamiltonian operator for a linear triatomic
molecule in a 2IT electronic state, derived by Brown and Jorgensen [111] to fit the observed
data, together with the previously reported infrared measurements.The A-X system vibrational
analysis was further revised and extended [180] by unambiguous identification of bands involving
several members of the ”Fermi polyades”.

The bending anharmonicity in the 2II, state of COJ and the geometry variation of the
(L.) electronic angular momentul expectation value have been interpreted by Gauyacq and
Jungen [113, 210], and Larzilliere and Jungen [153]. According to this model, vibronic coupling
and bending anharmonicity in the XZHQ state have a common physical origin, namely the
Hertzberg-Teller interaction between the X 2II and A2ST states.

Brommer et all [179], followed by Chambaud et all [180] which used the last available data,
have obtained the three-dimensional APEF’s for the electronic ground state of COJ from the
highly correlated electronic wavefunctions and calculated the ro-vibronic energy levels of this
species by considering full dimensionality, anharmonicity, rotation-vibration, electronic angular
momenta and electron spin coupling effects. The electron correlation effects have been analysed
in terms of anharmonic force fields. As was seen, one of the best experimentally investigated
examples of the 2Tl states in linear molecule is the COfY ion, which provides a very good basis
for testing the coupling effects, especially in connection with the CO; case, analysed in the
previously section.
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4.2.2 Results and discussion
Potential parameters

The determination of the bond lengths and potential energy curves is based on the knowledge of
the rotational constants and the vibronic energy levels deduced from the band origin. Initially
we used the bond lengths given by Larzilliere and Jungen [153, Table A1}, and these ones have
been adjusted to take into account the coupling terms derived from eq.(3.185), which allow for
the stretch-bend excitation [186].

We have assumed the bond lengths and their variation with the bending angle to have the
form from eq.(3.150), as in [153, 186], where the bond length parameters rco(p = 0) and dgo
are to be determinate from the rotational structure. We must remember that eq.(3.150) makes
r vary as p? near p = 0, which is equivalent to the semi-rigid bender model of [14]. For a
given bending potential of type (3.68) or (3.69) the bending levels are calculated numerically,
as mentioned in (§3.5.2) and in (§3.5.3).

Using this form of the bending potential we have calculated the rotational constants by
using the method from [147], used previously for CO; molecule. We have found that in order to
reproduce the observed By and ap value, as well as the observed energy levels, the bond lengths
and the d; parameter must be the same as in [153]. In the first moment this may seems unusual
because our formalism is more general than the formalism of Jungen and Merer [15], but, as
was pointed out in the study of CO, molecule, the rotational constants have been computed
using the bending wavefunctions and the stretching part seems not play an important role in
the rotational analysis.

We are choosing to use only the d; parameter, but we have found that d; and d, parameters
are nearby equivalents (it means, a variation of the parameter dy ~ ‘—fiL will produces the same
influence on the rotational constants, which suggest that COJ exist mainly in the region of the
small amplitude bending vibration).

The algorithm to find the bond lengths parameters was explained for the CO, molecule. For
the ground state, we found the bond length equation:

r(p) = (1.178 + 0.22 tan? g) A (4.6)

The contribution of the vibrational Coriolis interaction to the rotational constant has been
included in the calculations following [150]. The value w3 = 1435.4 ¢cm™! of the antisymmetric
stretching frequency from [179] has been used.

Having established the bond lengths parameters from the rotationl constants, we can evalu-
ate the levels positions for the X2IT state of COJ. For the bending analyse we have used the
numerical treatment introduced by Jungen and Merer [15], as explained in (§3.4). The treat-
ments accounts for the combined effects of the large amplitude bending motion in each orbital
component of the II electronic state, the a -axis Coriolis coupling between the components (the
Renner-Teller effect), as well as the spin-orbit coupling,.

The Fermi interaction treatment was explained in the theoretical chapter. The results are
given in Table 4.6.

The spin-orbit constant was assumed to vary with the bending angle according to [153, 112]:

A% (p) = A% (p = 0) + d*p? (4.7)

The p dependent electronic Coriolis coupling matrix element between the Born-Oppemheimer
component states has the form [15, 153]:

WYL PT) = A — 9K (4.8
CIFILIT7) = A - 555 )

where A = 1 for a II electronic state. A(p) is the « - axis rotational constant which tends toward
1

infinity proportional to Y when p approaches to zero. The eq.(4.8) therefore makes (L.) vary
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Table 4.6: Parameters used to fit the bending levels of the X2II state of the COF$ molecule. Error limits
are one standard deviation (standard deviation: 0.351%,0.230%1.87°)

Bond length variation

r(p=0) 1.178 A

d1 , coeff. of tan® £ 0.22 A

A%°(p = 0) —160.66° £ 0.051 —161.57*+0.151 —161.23°+2.32  cm~!

d*°, var. of A°° with p> —48.8994+1.25  —10.91°+3.63  —4551°+6.11 cm~1rad =2
gk, var. of (L) with p  3.11 (fixed) 3.45° +0.06 3.11 (fixed) cm™!

k+ 18979.5% £ 55.0  18952.1°+190.7 18618.5°+19.2  cm~lrad—2
kT 8785.2° £143.1  8574.3°+£298.9  10891.6°+111.3  cm—lrad—*
k- 28037.0°+51.1  28075.2°+181.9  27609.8°+24.5  cm~lrad-2
> 8036.2°+£101.2  7825.9°+253.4  11880.7°+138.9  cm—lrad—*
w? 1244.6 4 0.91 1244.1°+ 357 1267.1°+4.0 cm™1
W@t 212.6% + 45.2 245.6°£156.7  —33.0°+14.1 cm~!rad 2
W™ 269.7 + 46.4 287.4° £161.2  —108.8°+ 62.3 cm~lrad =2
gt 1.3735% £ 0.0077  1.3944°+0.0738  1.441° + 0.093

95 1.59312 £ 0.0065 1.6108°+0.1031  1.652° + 0.087

zt 0.4926° & 0.183

x7 —0.0057¢ £ 0.0011

Experimental data from [112]

Experimental data from [180], only the levels assigned in [112)

Obs: The differences are due to a different treatment for finding the vibrational band origin.
Experimental data from [180]

as p? near p = 0. gx is a small constant which measures the departure of the Coriolis coupling
from the pure precession value A as the molecule bends (34, 15].

The gp factor which describes the influence of the anharmonic perturbation and Coriolis
coupling in the rotational constants is taken into account as a variable parameter.

In the Table 4.6 three sets of data have been computed. The first is the data set related to the
experimental values given by [112]. These data are important because all the literature analysis
are based on them. The second set of data consider the new experimental values from [180], but
take into account only the levels previously assigned. We consider this step, because we want to
observe the change of the parameters when the full available data are taken into account. The
last parameter set are obtained when all new levels are considered. It is easy to see that the first
two sets of parameter are quite equivalent, as it must be, because the new refined data are not
significant different from the old ones. In the second minimization, even if the match of data is
better, the errors assigned are greater, due to numerical procedures. When all data are taken
into account, some new parameters must be introduced, as in the case of the CO5 molecule.
The new parameters are the anharmonicity of the stretching potential (the z; parameter) and
the dependence of the stretching frequency with the quartic term of the bending angle. We see
that in fact all the potential parameters are nearly the same (in the range of errors), except the
dependence of the stretching frequency with the bending angle. But we must remember that
the behaviour of the w, parameter, described in eq.(3.100), is only approximatively described by
equation (3.185). The last equation is used for numerical reasons, as discussed in (§3.5.3), and
allow the bending potential parameters to depend on the degree of excitation of the stretching
states, as was pointed out in [186].

With the parameters used to describe the levels of the X2II state for COY from the Table
4.6, the results from the Table 4.7 are found, together with the effective rotational constants.

The data in Table 4.7 needs some comments. The energy levels obtained by Frye and Sears
[112] are based on a harmonic oscillator basis, with matrix elements and wavefunctions which
are orthonormalized. This fact ensures that in the interaction matrix there are only a few non -
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Table 4.7: Vibronic energy levels and rotational constants in the XII state of COJ (cm™!)

Band Diff
vy v, K ¥ State origin o-c® B,k Ref.
0 0 1 § M 00 0.380506 el
-0.011 0.38052 ]
0.0 0.380548  hl
0.0 0.380548  h2
0.0 0.380546  h3
0 0° 1 -5 7Ny 159.598 0.380506 el
159.33 e2
159.608 -0.01  0.38052 ]
159.502  0.096 f
158.6 0.958 c
158.3 1.298 a
159.33 0.0 r
159.239  0.359 0.380548 hl
159.21 0.12  0.380550  h2
159.70  -0.37  0.380546  h3
0 1 0o 4§ 2zt  467.259 0.381672 el
467.18 e2
467.259 0.0 0.381750 j
467.244  0.015 f
473.6 -6.341 c
472.4 -5.141 a
468.36  -1.18 r
467.371* -0.112 0.381709* hl
467.12*  0.06  0.381714* h2
466.04*  1.14  0.381695* h3
0 1 2 §  ?A; 511599 0.381682 el
512.36 e2
511.622  -0.023 0.38167  j
511.588  0.011 f
511.2 0.399 c
512.9 -1.301 a
508.98 3.38 r
511.748  -0.149 0.381710 hl
51261  -0.25  0.381710 k2
510.13 2.23  0.381696 h3
0 1" 2 -5 Ay 668.040 0.381682 el
667.78 e2
668.020  0.02  0.38167 ]
668.091  -0.051 fi
667.9 0.14 c
668.0 0.04 a
665.28 2.76 r
668.077 -0.037 0.381709  hl
667.99  -0.21  0.381714  h2
666.88 0.90 0.381696 h3
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h2

h3

Experimental values
from [112)
Experimental values
from [180]

Reference [153]
Reference [112]
Reference [179]
Reference [180]

This work, using
experimental values
from [112]

This work, using
experimental values
from [180], but only
the previous found
in [112]

This work, using
experimental values
from [180]

Mean values from the
spin projection levels
(differences due to
numerical errors).
The values from the
sets 7, f Bl are
compared with ¢!;
the sets ™, #? and #3
are compared with 2.



Table 4.7: (continued)

Band Diff
vi vy, K % State origin o-c? B,k Ref.
0 1" 0o I == T719.074 0.381443 el
719.22 e2
719.174 0.0 0.381450 j
719.154 0.02 f
727.6 -8.426 c
726.4 -7.226 a
723.64 -4.42 r
719.308* -0.134 0.381383* hil
719.18* 0.04 0.381381* h2
717.51* 1.71 0.381373* h3
0 2° 1 % ZH% 939.684 0.383273 el
939.8 e2
945.915  -6.231 0.38264 J
939.667 0.017 f
942.2 -2.516 c
942.2 -2.516 a
939.65 0.15 r
939.773  -0.089 0.382327 hil
939.85 -0.05 0.382320 h2
942.08 -2.28 0.382274 h3
0 2° 1 -3 My 949.995 0.383273 el
949.7 e2
952.792 -2.797 0.38264 ]
950.014 -0.019 f
957.6 -7.605 c
956.9 -6.905 a
952.80 -3.1 r
950.063  -0.068 0.382317 h1
949.76 -0.06 0.382326  h2
950.68 -0.98 0.382274 h3
0 22 3 5 &z 1021.000 0.382916 el
1022.5 e2
1020.988 0.012 0.38274 ]
1021.079 -0.079 f
1016.9 4.1 C
1022.2 -1.2 a
1016.65 5.85 T
1020.742  0.258 0.382728 hi
1022.33 0.17 0.382731 h2
1020.56 1.94 0.382698 h3
0 22 3 —% 2<I>g 1173.052 0.382916 el
C1172.7 e2
1173.060 -0.01 0.38274 ]
1173.112 -0.06 f
1171.3 1.752 c
1172.9 0.152 a
1168.69 3.91 T
1172.831  0.221 0.382728 h1
1172.56 0.14  0.382736 h2
1173.07  -0.37 0.382697 h3

129

el

e2

4 a0 W .

h2

h3

Experimental values
from [112]
Experimental values
from [180]

Reference [153]
Reference [112]
Reference [129]
Reference [179]
Reference [180]

This work, using
experimental values
from [112]

This work, using
experimental values
from [180], but only
the previous found
in [112]

This work, using
experimental values
from [180]

Mean values from the
spin projection levels
(differences due to
numerical errors).
The values from the
sets 3, f 8 Bl are
compared with ¢!
the sets 7, "2 and 53
are compared with €2,



Table 4.7: (continued)

wlH M

rof=
W=

Ol

N

N[
=

p—
Wi

Band Diff
origin o-cB By k Ref.
1242.023 0.383273 el
1241.6 e2
1242.025 -0.002 f
1242.5 -0.477 c
1242.5 -0.477 a
1243.39  -1.79 T
1241763 0.260 0.380535 hl 4 Byoerimental values
124151 0.09  0.380533 h2 froﬁl (1]
124144  0.16  0.380559 h3 @ g
1250.606 0.383273 el fmﬁl 1180]
1251.0 ?2 7 Reference [153]
1257.162 -6.556 0.382740 ¢ Reference [112]
322316 :(8)834 £ ¢ Reference [129]

' ' @ Reference [179]
1258.1  -7.494 a .

Reference [180]
This work, using
experimental values
from [112]

1255.96  -4.96 T a1
1250.879 -0.273 0.382266 hl
1251.13  -0.13 0.382264 h2

1252.56  -1.56  0.382238 h3 k2 This work, using
1287.489 0.383273 el experimental values
1287.2 2 from [180], but only
1265.5635 21.954 0.382240 the previous found
1287.495 -0.006 f in [112]

1297.1 -9.611 c k3 This work, using
1297.1 -9.611 i experimental values
1293.74  -6.54 r from [180]

1287.226  0.263 0.382265 hil *

Mean values from the
spin projection levels
(differences due to

1287.14 0.06 0.382267 h2
1287.74  -0.54  0.382237 h3

1405.3 e2 numerical errors).
1398.40 6.9 r B The values from the
1402.39* 2.91 h3 sets 7,4, ¢ P are
1425.153 0.383273 el compared with el;
1425.1 e2 the sets 7, #? and 3
1425149 0.004 f are compared with €2,
1423.6 1.553 c

1422.9 2.253 a

1424.95 0.15 r

1425.402 -0.250 0.380534 hl
1425.17  -0.07  0.380535 h2
1426.14 -1.04  0.380559 h3

1426.6 e2
1422.20 4.4 T
142743 -0.83 h3
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Table 4.7: (continued)

Band Diff
vi vy K ¥ State origin o-c By g Ref.
0 30 2 -3 A, 14404 €2
1447.63  -7.23 r
1446.14  -5.74 h3
1 1 0 § 2zt 17387 €2
1739.66  -0.96 r
1738.06%  0.63 h3
1 11 2 5 PAs 17570 €2
176129  -4.29 r
1758.63  -1.63 h3
0 3 o0 1 2z~ 18084 e2
1813.45  -5.05 r
1808.96* -1.96 h3
111 2 -3 Ay 19489 e2
1948.21  0.69 r
1948.72  0.18 h3
1 1 0 3§ 227 19984 e2
2006.56  -8.16 r
1998.15*  0.25 h3
2 0° 1§ My 24969 e2
2491.32  5.58 r
2495.82  1.08 h3
1 22 1 =% 2, 254244 e2
2546.44  -4.0 r
2542.09  0.35 h3
1 22 1 3 My 25787 e2
2588.40  -9.7 E
2578.86  -0.16 h3
2 0° 1 -3 I 26824 €2
2677.65  4.75 5
2682.63  -0.23 h3
2 1 0 1 xt 30005 e2
2995.76  4.74 r
3000.75*  -0.25 h3
3 00 1 5 My 37384 e2
3724.36  14.04 r
3737.71  0.69 h3
2 22 1 -3 I 38205 e2
3819.39  1.11 r
3819.75  0.75 h3
3 00 1 -3 My 39322 e2
3923.28  8.92 r
3933.18  -0.98 h3
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e2

h3

Experimental values
from [180]

Reference [180]

This work, using
experimental values
from [180]

Mean values from the
spin projection levels
(differences due to
numerical errors).



zero elements. In our treatment, the bending wavefunctions are computed numerically, and even
if they must be orthonormalized, in practice it is a factor of f € [0.01 — 0.3] of non-normalized
interaction, which perturb our calculus, especially for the terms which belong to different Renner
components (see Table 4.8). This may be the cause which determine that variational calculus

Table 4.8: Overlap integrals between wavefunctions corresponding to a bidimensional oscillator for the
state (00°0)*II3 and (0v30)°ITs and (0v30)°IT5 states. The bending paramaters are: ro = 1.178,dy =
dy =0,k = 28794 em~Lrad= 2.kt = 19372 e~ lrad—2

II state
(1000)21_1% (1200)21'[% (1400)21'[% (1220)2H% (1420)21'1% (1620)2H%
(0000)211_% 0.99214 -0.00765 -0.00019 ce 0.69622 -0.40798 0.28865 - - -
¥ state
(1110)22"’ (1310)22‘*‘ (1510)22+ e (1110)22+ (1310)22"’ (1510)22"'
(0110)22"' 0.98465 -0.01042 0.00032 e 0.98465 -0.01042 0.00032 - -
A state
(1110)2A% (1310)2A% (1510)2Ag (1330)2A% (1530)2A§ (1730)2A%
(0110)2Ag 0.98465 -0.01042 0.00032 cen 0.79794 -0.40777 0.25817 ---

could not obtain better results. We see from Table 4.7 that the APEF analysis, could not fit
better the available data, in the two cases taken into account. Our model fit remarcably well
the experimental data, with a smaller number of parameters than in the variational techniques.
Another observation is that with the 14 initialy levels available, the match is much better,
probably due to the fact that only two Fermi levels were involved, and the algorithm of Jungen
and Merer [15] which we use, was designed to handle very well the bending levels.

Numerical Tests

In order to verify the symmetry of the adiabatic and non-adiabatic terms from (§3.4.4) and
(§3.4.5), a special numerical calculus was done. The test was used to verify the formula (D-36),
and bias this formula the volum element for the bending wave function. The results are done in
Table 4.9. As we can see from this table, the volume element of the wavefunctions must be

1
9°°(p)

in order to obtain in our formalism a symmetric energy matrix, as was pointed out in (§3.4.5).

As in the case of the CO;, molecule, in order to verify the importance of different parameters,
each parameter was initialised with zero and the differences to the initial computed levels are
given in Table 4.10. It must be emphasized the influence of the kf , k; parameters, especially
for the kj parameter which is not zero, as in the case of [153]. These results concerning the
anharmonic parameters are discussed below, with another anharmonic terms. From the non
uniform behaviour of the anharmonic parameters, we presume that the main influence is in the
matrix interaction parameters, as in the case of the C Oy molecule.

The behaviour of the gli) parameters are quite uniform, in contrast with the case in C'O,
molecule. We know that the gp parameter acts only in the interaction matrix, and we suppose
that the apparent uniformity arrises only due to small number of levels taken into account.
As in the case of CO,, the stretching part from the pseudo-potential function has a minimum
influence, and the same comments are valid.

In contrast with the anharmonic parameters, the behaviour of w%mi is quite uniform and
indicate that the main effect is done bias the quadratic bending potential constant, in contrast
with the case of the CO; molecule. If we use the formula (3.100) for the p-dependent stretching

dp dS, dS,

132



Table 4.9: Integrals from adiabatic and non-adiabatic approximation, computed with wavefunctions
defined for a volume element dV = dpdS1dSs. The integrals are computed over 2000 points with the
Simpson method.

va’ - Hv’v
1 2 3 21 22 23
1 -0.277258  0.263225  0.01236
2 0.2461143 -0.742649 0.461691
3 0.027229  0.400883 -1.101677
21 0.277258 -0.246143 -0.027229
22 -0.263225 0.742649 -0.400883
23 -0.012360 -0.461691 1.101677
Formula (D-36)
1 2 3 21 22 23
1 -0.277245  0.263239  0.012375
0.246157 -0.742634 0.461706
3 0.027243  0.400897 -1.101663
21 0.277245 -0.246157 -0.027243
22 -0.263239  0.742634 -0.400897
23 -0.012375 -0.461706 1.101663

Table 4.10: The influence of the various parameters used in computation of the vibronic energy levels.
The relative influence is obtained by considering each parameter equal to 0, in Table 4.6 and is measured
by using the shift of the computed energy levels (AE = Fyeq — E,, = 0). The band origins are the
calculated values with the parameters from Table.4.6
Band Par. Par. Par. Par. Par. Par. Par.
origin__ kf ki W™ W7 gb g5 g

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

159.614 0.581 -0.24 0.09 -0.06 0.30 -0.16 0.0

467.488 21.08 -0.55 3.05 -0.51 1142 -0.19 -0.06

511.871 12.06 5.21 1.59 0.89 6.38 4.07 -0.06

668.138 14.51 427 181 0.71 771 3.39 -0.06

719.345 -1.67 13.31 -0.81 3.22 -0.36 10.32 -0.05

939.842 55645 1.15 4.65 -0.24 36.02 1.89 -0.08

950.009 53.10 0.26 425  0.27 3250 -0.34 -0.09

1020.923 32.83 12.03 3.15 149 1789 9.75 -0.10

1172.512  39.10 9.79  3.50 121 2132 8.03 -0.10

1241721 1.75 1735 224 315 -9.69 33.14 0.06

1251.062 2.82 31.73 0.07 446 274 3451 -0.05

1287.169 -2.84 16.20 0.18 4.61 3.83 -7.39 -0.02

1425616 1.84 1.64 3.07 254 -3.43 -7.29 0.11

' The pseudo-potential function f; (p) in the bending hamiltonian is computed
without the stretching contribution
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frequencies, together with (3.25), we find for small p values, after expanding in power series:
2)Th
wilp) =~ Wl +w?p? 4 0"

S (0= D + 0" = of [14 2 (o~ 1) 2| + (o) (49)
The previous formulas need some special comments. It is very important to note that the
wy = f(p) dependence exist even in the case of the rigid-bender approach ( case with d; = 0), as
well as in the case of our formalism, as was explained in the theoretical chapter. This fact is due
to the very existence of our functions R;(p,rg), defined in (3.16). If we take for the quadratic
stretching force constant a formula similar with [186, Eq.(47)], we will have for (4.9):

a w?+

1
wrlp) = {1+ £ [0- 1) - 341} (4.10
Here we used the approximation for the small p angles:
1 1
T o T —?’%p? (4.11)
1+ %p2)? 1 +3%07)

When comparing the results obtained with (4.10) and (4.9) with the values from Table 4.6, we
find find the results listed in Table 4.11. As we can see, the values from Table 4.11 indicate that

Table 4.11: Comparison of the molecular parameters for X Il state of cof

This work  Other sources Unoits
ro 1.178 1.1785% ; 1.11769° A
d 0.22 0.1642° A
a5 1.3735 1.651¢1  ; 1.518°2 .  1.98¢
95 1.5931 1.371¢Y . 1.448 . 1.139¢
gpeen  1.4833 1.45¢ ;  1.57°
Wy 1244.6 124449 . 1244.0f ;  1278.0% em™?
Wt 2126 341.19  ;  414.76* em~!
WP 2697 351.07  ;  414.76* em™1
A% -160.66 —161.022¢ ; —161.48.0/ ; —160.0" em™1
€ -0.193 -0.1939 ; —0.196/ ; —0.198"
€1 -0.451 —0.451f
€9 0.345 0.343f
Ja 3.99 4919 ; 5.35" em™!
g4 0.18 0.5569 1.48" em™!
Wi 47.54 35.479  ;  30.637 ; 39.74% em™!
Wo -0.077 2659 ;  0.877 ; 6.62" em™!

> Equation (3.152)

¢l Equation (3.155) with wj*¢?" €2 equation (3.155) with w¥

Values computed from [179] with BL formula [14] and definition of gp
From contour map of the potential from [179)

Reference [153]

Reference [112]

Reference [179]

Reference [204]

Equation (4.10)

Equation (4.9)

T O - TLS

the formula used in [186] seems real, because otherwise the w}Q) parameters will be too high.

This is a difference from the CO; case, where the computed value is too high, compared with
the fitted value. More than this, it suggest that these parameters must be positive, at least for
d, < p—gl. Because in the case of the C'H, molecule, analysed in [186], the p value is near unity
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(p ~ 1.1666), it explains the & f; negative value obtained. When we analyze the data set for all
the experimental levels, we see that this parameter is negative. This suggest that when higher
excited stretching states are involved, we could not expand in power series, as in the case of the
equation (4.10).

It is interesting to note, that in the case of all levels fit, the value of the stretching frequency
is closer to the value obtained by the variational techniques (a value of 1268.0), rather that with
the value obtained with the harmonic oscillator (a value close to 1244.0).

The anaharmonic stretching parameter z; act in the same way as w§2)Th, bias the bending
potential shape, because it is linked to wj(p) stretching frequency. The introduction of this
parameter is suggested by the existence of the fi;;; potential constant [179, Table XII], [180,
Table II] in a similar way with the parameter introduced for the CO, molecule.

Using the conversion formulas for the potential force constants (3.87) from the curvilinear to
the generalized system, as well as to the linearized coordinates (3.91), the force constants from
the Table 4.12 are obtained.

Table 4.12: Force constants in the generalised coordinate system, computed with the stretch - bender
force constants from Table.4.6

Force constants This work Ref. [179, 180]
Ki123(F122) [£22] upper state -0.563 -0.371, -0.359
lower state -0.586 -0.213,-0.203
Fgggg(h’ggzg) [%] upper state 0.251 0119, 0.131
lower state 0.240 0.061, 0.068
fi1(2 K1) [ﬁé] 15.16 15.395, 15.550
f22(2 K32) [223] upper state 0.546 0.573, 0.566
lower state 0.370 0.383, 0.378

Again, as for the CO; molecule, it must be emphasized that in the formula (3.91) the
theoretical dgth) are used and not dgoh‘]), because the equations are obtained in the frame of the
semi-rigid approach. The change is done with the formula (4.4). The theoretical value for the
gp parameter computed with (3.155) formula, and the values from the force constant field ( with
dgth)) are listed in Table 4.11, with our parameters. It can be seen that the agreement between
the values is enough good, the only mismatch are the constants for anharmonic interaction. But
this fact may be linked to the gp parameter used in the fit. The gp factor in the Table 4.11 needs
some comments. First of all, the mean value is nearly the same for the theoretical value and
for the fitted value. Meanwhile, the two components are not so close as we would, and it seems
that the values obtained in the fiting procedure are reversed. The difference is about 15 %. We
believe that in the fitting procedure, these parameters substitute themself to other anharmonic
parameters, which could explain the mismatch observed in Table 4.12. Another explanation
could be the algorithm for computing the theoretical value. From [§E.3], we see that gp is find
as a mean value (see eq.(E-156)), and we are not taken into account any perturbation like the
Renner-Teller effect on the rotational constants. This could explain the better match for CO,,
and in the same time for the mean value of COJ.

Rotational Constants and Spin-Orbit Effects B, for the COJ molecule

The bond lengths given previously refer to the v%“”ear) = —1 structure and was obtained using

the values of B = (B + C) for the unique v; = K + 1 levels, which exhibit a nearby B ~
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Bo — a¢(vy + 1) behaviour, as in Figure 4.9. For the rest of the levels, as pointed out by Frye
and Sears [112], the increase is not linear in the bending quantum number. This may be due to
the anharmonic bending potential constants, which are enough high, as it was find in the [112]
study. In our curvilinear coordinates one obtain the simplest and more realistic expresion for
the force field, as was pointed out in [154]. As an example, in this system the behaviour of the
rotational constant B (larger in the (010) X% level than in the (010) £~ level) arises naturally,
without upper term constants [153].

The observed and calculated rotational constants B, x are done in Table 4.7. Figure 4.9
showes the agreement between the observed and the calculated rotational constants graphically.
It can be seen a slight improuvement of the constants, but this is not sure to be linked to the
introduced stretching displacement, because the rotational constants for the states (100)2I1 are
not enough accurate computed.
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Figure 4.9: Observed and calculated rotational constants of the X2II electronic state in COY, versus

linear
v, .

In a multiplet electronic state the presence of the spin-orbit coupling represented by the
operator A*°L,S,, leads to shifts and splittings to vibronic levels with K > 0. As a first
approximation one may consider the spin-orbit operator as contributing an amount 4°°(L,)3 to
the vibronic energy, where the erratic behaviour of (L,) is responsible for the strong variation
from level to level. The discrepancies between the observed and the computed levels could
be mostly removed by the introduction of the parameter gx = 3.19cm™!, to account for the
variation of the electronic orbital angular momentum quantum number A with the bond angle,
as in (4.8).

The spin-orbit coupling constant can be determined by comparing the observed splitting to
the expectation values (L,). Given the molecular constants listed in Table 4.6, it is possible,
using the method described in [15], to calculate the complete pattern of the spin-orbit splittings
for all the levels, as is shown in the Table 4.13, for the K = 1 levels. The table shows a good

agreement between (L.) behaviour and the ( g%) values computed with Jungen and Merer
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Table 4.13: Effective spin-orbit splittings computed with the Stretch-Bender and Jungen and Merer
method respectively, compared with (L,) values, for K = 1 vibronic levels of the 1, state of C’Oé"

K =1 __[000;10) [020;10) [040;10) |060;10) [020;—12)

(fz)a 0.9912 0.0073 0.0228 0.0323 -0.0164

(453,)" 15977 145 390 524 264

b
(a5,) 15961 1018 947 1148 -36.11

Reference [15]
b This work

method. In our method, the Fermi interaction as well the adiabatic and non-adiabatic effects into
the interaction matrix perturb the non-unique levels. Unfortunately, there are no experimental
data for comparing other levels that the unique ones and for this reason an improvement of the
spin-orbit constant could not be done.

In order to compare our method with the three states model from [113] some properties of
the unique levels are listed in Table 4.14 and in Figure 4.10.

Table 4.14: Bending energies (cm™!)and the effective spin-orbit constants of the lowest unique levels in
the 21, state of CO;’, compared with different hamiltonians for the three-state model of [113]

Vibronic  Energy levels Spin-orbit constants
level
K a b ¢ a b @
il 515.363  515.52  515.70  -159.61 -157.92 -157.88
2 10256.547 1030.97 1031.47 -156.27 -155.03 -154.96
3 1532.238 1546.91 1547.83 -151.59 -151.63 -151.55

¢ This work
®  Reference [113, Table 4(a)]
¢ Reference [113, Table 4(b)]

The slope of the unique levels line, as seen in Figure 4.10, is lower than that one computed
in [113]. This follows the trend observed in [113] and this means that the levels computed
with the approximate formula [113, eq.(23)] are greater than those computed with the vibronic
matrix from [113]. We suppose that if the interaction matrix will be more complete, the energy
levels will have a lower energy, but this difference might arise simply due to a different choice of
parameters.

The spin-orbit constants are different from those of [113], but it seems that the difference
is due uniquelly from a different choice of A%, gx parameters. The Table 4.14 shows a good
agreement between our data and those obtained with the three states modes from [113], which
can be explained in the framework of the small oscillations approximation.

The formula (4.7) used, allowed the effective spin-orbit parameters to vary with the vibra-
tional states, as it was shown in the previous section. As previously discussed in [112], the
spin-rotation interaction has been neglected in the (000)*II, (010)2A, (020)2® states (see Table
4.7) since its contributions to the energy are not distinguished, and the model do not permit
explicitely this type of computation in this stage of the development. For the same reason,
the rotational dependence of the spin-orbit coupling was ignored in the (020) or (100)IT state.
From the Table 4.7 it can be seen that the error in the rotational constant are nearby of the
same order of magnitude as in the case of [153], which is normal because the same formalism
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Figure 4.10: Energy of the unique levels (K = 1 to 3). The values used for the three states model are
e =—0.188, wm =513 em™! and gk = 3.22 em~!. () this work; (V) numerical diagonalization of the
matrix in the three states model; (A) Ref.[113, eq.(23)].

was used, and taking into account of the stretching vibrations do not improve the match of the
levels.

Vibronic and Anharmonic Effects

The splittings upon slight bending of the I~ and IT* Born-Oppemheimer potential energy curves
of a linear triatomic molecule has two distinct origin. The electrostatic dipole field created by
the displaced nuclei mixes the II electronic state with the 3 states. The mixing leads to a
splitting of the initially degenerate It and I1~ components; it also causes the Coriolis coupling
matrix element (L), discussed previously, to vary with p because the II wavefunction acquire
non 2 character.

The displacement of the nuclei create a quadrupole electrostatic field which also contribute
to the splitting of the IIT and I~ component states, in the first order, without changing the
orbital character of the electronic wavefunction. If we consider the II electronic ground state
together with the first excitated T state we have a three model state, where the potential
V= (p) is affected by the quadrupolar interaction only, VT (p) is determined by the combined
effects of the quadrupolar and dipolar terms, and gx depends primarly on the magnitude of
the dipolar interaction [31, 96, 34, 108]. Gauyacq and Jungen [113] showed that the dipolar
interaction introduce an anharmonicity in the potantial V¥ (p), too. The resulting anharmonic
level shifts are expected to be comparable in size to those arising from the vibronic parameter
gr- The quantities involved are related to the potential curve parameters given in Table 4.6,

kT + k™
2
(k+ . k*) _ & + &9

(kt+k-)  (1+4e1)
AE = To(B*f) - To (X71,)

k=

I
|
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1 Wi \ 2
= =kf (—m) 4.12
922 sk % (4.12)
In the previous formulas, €; is the dipole contribution and the € is the quadrupole contribution
in the Renner parameter €.

Within the three state model, g2, and gx can be expressed in terms of w,, , AE, €1, €5 as
in [113, 153]:

w,,2n61 (261 + 62)

= l-a
o 0B (11e)? L%
2
Wy, €1
= e 4.13
K 9AE (1+¢1) (4.13)
where o = k’T_k . m, and k& and &’ represent the unperturbed quadratic force constants

in the IT and ¥ states, respectively. The parameters corresponding to the ground state XQHQ
of COF are: w,, = 513em™!, ¢ = —0.188, AE = 34600 cm ™" [113] and these parameters are
reprezentative for most of the 15-valence electron molecules. More precise paramaters are given
in [1563]: wy, =512em™! e = —0.196, AE = 34598 cm L.

With the data from Table 4.6 we find the parameters given in Table 4.11. By analysing this
table we see that the strong dipolar interaction £; which pushes the IIT potential energy curve
below the II™ curve for p # 0, is partly balanced by the quadrupolar interaction e, which acts
in the opposite sense.

The Renner-Teller parameter ¢ and the harmonic vibrational interval w,, are determined
from our parameters to be -0.193 and 511.76 ¢m™! respectively, in good agreement with the
literature.

Some comments are necessarily for the anharmonic terms kff. In the analysis of the data some
different algorithms are used. The generalized force field constants, obtained from conversion
formulas are done in Table 4.12. The constants from [112, 179, 180] and those of the present work
are easily to be converted. In the same time, the data from [153] are difficult to be compared,
because the stretching coordinates are not uniquelly defined. This work, which use symmetrized
stretching coordinates is a possibility, the choice of the nonsymmetrized stretching coordinates
from Duxbury et all [186] is another one, and the ”standard” one was used by Jensen [6, 7].
Thus each set of parameters can be valid in its framework, but not always the direct comparison
is possible. In the Larzilliere and Jungen [153] analysis with the three state model [113], the
parameter k; equal zero. But in the case of the wider model based on rectilinear coordinates
from Frye and Sears [112] as well as in the variational calculus from [179, 180], the parameter ky
do not vanish. We tried to fit the data with k; = 0, but we not succed to do this in a reasonable
measure. It means that the anharmonic parameters need to exist because they must adjust the
shape of the potential curves to the new interactions which arise when solving the interaction
matrix. Meanwhile, it is not an unique conclusion about this, due to the mathematical and
numerical algorithms, and this parameter simply can arise due to computational algorithms,
or can manifest itself as a cumulative processus, in place of other ”invisible” parameters. This
aspect was well underlined in the paper of Frye and Sears [112], when results from different
methods using various degree of approximation are done. The same type of analysis was done
in [113]. Further analysis maybe can succed in finding the right value.

Fermi Interactions

As it was underlined in the case of the C'Oy molecule, the Fermi interaction is introduced due to
our choice of instantaneous configuration and reference frame. Then we do not need explicitely
a fi22 quadratic interaction term.
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In the same time, COZ is now one of the best characterized examples of the complicated
coupling situation which occur in a linear triatomic molecule in an orbitally degenerate electronic
state, and provides a benchmark to assess the best models of vibronic interactions.

Even if in this moment multiple groups of Fermi levels are available, we illustrate our in-
teraction analysis on only two groups of two interacting sets of levels. This is seen in Figure
4.11, where the two-dimensional wavefunctions are done for the interacting levels in the case of
the ¥ = —Z spin. The same behaviour as in the CO, as well as in [186] is observed. Also, the
Renner-Teller coupling is very clear observed in this plot. The plot show the same behaviour
as the ones displayed in [180, fig. 4] As in the case of the neutral molecule, we see that the
wavefunction domain is in the limit of the small oscillation approximation, which of course will
not be the case when higher stretching modes are involved (as can be seen in [180, fig. 5]).

In order to see the degree of consistence of the harmonic oscillator framework for small
amplitude oscillations, the matrix elements of Fermi interaction between 0v40 and 1(vy — 2)'0
for the C’O;’ molecule are plotted in Figure 4.12. It can be seen from the plot that the linearity
against the function for a harmonic oscillator basis is preserved, as in the case of the CO,
molecule. Also, as in the case of C'O,, the linearity is preserved for large v, even if each
component of the matrix element is not linear. If compared with the C'H; molecule [186], it
seems that this can be a feature of a linear molecule, though this aspect must be investigated
further.

The vibronic energy levels for the interacting sets are represented in Figure 4.13, and we can
see that it has the same characteristics as in the case of the CO, molecule: the levels from the
stretching states do not cross each other, contrarily to the C'H, molecule. The same comments
as for the previous figure are valid. The Fermi interactions are smaller in COJ, because the
distance between levels are greater than in the neutral molecule. Also, in the ion, the levels with
a smaller stretching quantum number lie lower than the coupled levels, contrarily as in COs.

Finally, in order to compare the results from various parameters, the Hougen parameters W,
and W; must be computed, using equations similar with (4.5), from [37, 153, 154] in linearized
generalized internal coordinates. The values computed from our data are listed in Table 4.11,
together with the values previously obtained from [112, 153, 179]. Our values were computed
using the conversion formulas (3.91) with theoretical dgth) parameter. The parameter obtained
from the slope of Figure 4.12 is about 28.93. It is seen that the element obtained from the graph
has the same feature as the element find in the case of the CO, molecule.

In Table 4.15 the interaction matrix for the Fermi interacting levels is done. We see that
the magnitude of the Fermi matrix element is the same as those derived with the Hougen W,
and Wy parameters. After the multiplication with STU matrix (from Table 4.16), we see that
the behaviour of the matrices for the two spin projection is changed. For the ¥ = —%, the
element between [100; 10) and |020; —12) is greater than those for |[100; 10) and {020; 10). But in
the same time, the eigenvector matrix show the same behaviour for the two spin projection (see
Table 4.16). The composition of the complete ro-vibronic wavefunction for the analysed Fermi
polyades is the same (in the limit of numerical errors), as in the [180, Table VI], which prove
that our approach is consistent with the more elaborate variational techniques.

Some important remarks concerning the parameters from the Table 4.11 must be done. As
was pointed out in [179] in the framework of the same approach we can obtain multiple sets of
parameters which fit well the same experimental data. The choice between the different sets is
a difficult task, because the literature data are not consistent, as it can be seen in Table 4.11.

The inclusion of the gp parameter, which is characterized by the anharmonic constant f99,
in the bond length description, confirm the assertion from [153] that the semi-rigid bender
model used by Jungen and Merer [15] implies Fermi interaction constants of the correct order
of magnitude despite the fact that it does not explicitely allow for the stretching motion.
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Figure 4.11: Three-dimensional wavefunctions for the X = 1, & = —%, |020; —12) k2I1,;/5 vibronic
level of the ground state X2II of CO}. There are represented: (a) the primitive wavefunction; (b) the
Renner-Teller coupling and (c) the Fermi resonance. For the Renner-Teller coupling, the parentage is:
73.2 % [020;10) p%Ilg1 /5 and 23.4 % |020; —12) K*Tly12. For the Fermi resonance, the parentage is: 0.4
% 1020;10) p?Myq1 /2, 89.9 % [020; —12) £*Ty1 /5 and 7.7 % [100;10) Nlg1/5. In figure (c), it is a phase

shift of 180°, compared with Table 4.16.
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Figure 4.13: The calculated vibronic energy levels with K = 1 of the X2T1 electronic state, 2II3/9
vibrational state of COJ. The levels with smaller v; stretching number belongs to a smaller energy.
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Table 4.15: The Fermi interaction matrix for the interacting levels in the state X2II of COF molecule.
The initial Fermi interaction matrix, and the one obtained by multiplication with the STU matrix [37]
is given.

==

2| =

J Fermi (STU)+ | Fermi (STU)
[100;10) ]020;10) [020; —12) [100;10) [020;10) [020;—12)
1414.2 -65.5 -2.0  |100;10) 1414.2 -39.1 -47.5
-64.5 990.5 0.0 |020;10) -39.1 990.5 0.0
-2.0 0.0 1297.7 [020; —12) -47.5 0.0 1297.7
Y=
2
[ Fermi (STU)+ | Fermi (STU)
[100;10) [020; 10y [020; —12) [100;10) [020; 10y ]020; —12)
1253.5 -64.4 2.0 |100;10) 1253.5 56.4 22.0
-64.4 989.7 0.0 ]020;10) 56.4 989.7 0.0
-2.0 0.0 1295.3 |020; —12) 22.0 0.0 1295.3

Table 4.16: The Renner-Teller and the final eigenvectors for the interacting levels in the state X211 of
CO3F molecule.

»= —%
STU eigenvectors i Fermi eigenvectors
[100;10) ]020;10) ]020;—12) [100;10) |020;10) |020; —12)
-0.9964  -0.0465 0.0709 |100;10) -0.9523 0.0887 -0.2769
-0.0387  -0.4964 -0.8157 |020;10) 0.0758 0.9804 0.0596
0.0755  -0.8667 0.4839 ]020; —-12) 0.2799 0.0301 -0.9481

Y= -;—

STU eigenvectors Fermi eigenvectors
[100;10) ]020;10) |020;—12) [100;10) [020;10) [020;—12)
-0.9976 -0.009 -0.0684  [100;10) -0.7677  -0.1810 -0.6079
-0.0142 0.8702 0.4763 |020;10) -0.1436 0.9675 -0.1100

0.0554 0.4895 -0.8645 |020; —12) 0.6136 0.0054 -0.7771

4.3 Conclusion

As an example of the application of the Stretch-Bender model we have choosen to use test calcu-
lations of the vibronic energies inside a series of linear molecule which exhibit Fermi interaction,
as well as Renner-Teller effect.

The C'O; molecule was choosen because has a pure Fermi interaction and it is an ideal
benchmark for a model, like the hydrogen atom in the case of the atomic physics. More than
this, carbon dioxide play an important role in the Earth atmosphere and in the laser physics. Our
results are in good agreement with the previous results and define very sharp the applicability
limits in the case of the literature models. The energy levels and the behaviour of the molecule
are very well described with a small number of parameters.

The ion of the C'O; molecule belongs to the familly of the triatomic molecules possessing
15 valence electrons, including radicals and ions such as NCO, BO,, CO5 and CS;. All these
molecules have ?II ground states exhibiting an orbital as well as a spin degeneracy, and they
are characterized by a strong 2X% —2 I electron transition situated in the near UV domain.
CO7F is an important component in the astrophysics and ionosphere. It provides a benchmark
to test models of vibronic interactions in these cases. The 2II states of the COJ ion have
been used to demonstate the application of the Stretch-Bender method for the analysis of the
behaviour of strong coupled electronic and vibrational states. The model could explain some
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surprisingly features to fit energy levels of some methods [15], as well as to validate the use of
some ”semi-empirical” formulas [186], in the framework of a specific approach.

It defines the limits for the small amplitude approaches used by [112]. The gp factor,
introduced here for the first time, plays a key role in order to understand the indirect action of
some couplings as in the case of the Coriolis coupling, and elucidate the problem of conversion
the bond length parameters in [179].

The test calculations presented here were made using the Jungen and Merer [15] Fbasis,
which is adapted for all the molecules, especially for those with a linear equilibrium geometry
in both states.

In this work we have given a more satisfactory account of the vibrational effects combined
with the Fermi interaction, in an enough simple and in the same time more general model,
where the Fermi coupling arises naturally from the change of the molecule frame in a reference
configuration which follows the minimum in the potential energy surfaces.
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Appendix A

Coordinates

A.1 The Cartesian Coordinates of the Reference Configuration

in the Molecule Fixed Axis System

From Fig.3.1 we define the relations for the ¢ angle as:

A1e — A2z a3z — Qag
OSSN 2 2 2 2
\/(alx — ae)” + (a1y — azy) \/(asx —a25)” + (asy — azy)
sing = A1y — day - 43y — day

\/(alz' . (121-)2 + (aly . a2y)2 \/(a3:c . a2x)2 + (a3y - a2y)2

(A-1)

The angle 6 is § and p = 1+ 224 like in eq.(3.4), for a symmetric molecule (which have m; = mg).

We define the relation for the angle 9 as:

a1z — A2, az; — az;
cosf = — 5 = 5
e T

With the equations (A-1) and (A-2) we find:

a1z = as; — r¥sinf cos p a3y = agy — rPsinf cos p
a1y = azy + 0 sin 0 sin ¢ azy = agy + 70 sin f sin ¢
Ay, = dg, — % cosd as; = az; +r%cos b

The relation for the center of the mass are:

mia1; + Maday + maaz; = 0
miayy + Madyy + maasy = 0
miay, +maasz; + mzaz, = 0

(A-2)

(A-4)

If we introduce the relations (A-3) into the equation for the center of mass, we obtain the following

expressions:

ro

a;;, = ——sinfcosey
p

_ 2m1 1 0 _:

azy = —— - —r sinfcosyp
m p
ro

a3z = ——sinfcosyp

For the second axis the coordinates are,

0
oo .
ayy, = —sinfsing
p
2m1 1 0 . .
ayy = ———-—r sinfsing
mz p
70 a 3
azy = —sinfsing
P
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and for the third axis:

a1, = -r’cosh
a, = 0
as; = 71°cosé (A-7)

A.2 The Angular Momentum in the Reference Configuration

We consider that the angular momentum of the reference configuration vanish in the molecule-fixed
system:

da
- L SE A-
2 alp) x (m ) =0 (A-8)
We introduce the p coordinate in the above relation and the angular momentum expression become:
. dad . dd .
Ei a(p) X (m,- Z{) =~ Ei a(p) X m; (d—p> P (A-g)

The derivative of p to time is simplified and for this reason, the relation for the angular momentum of
the reference configuration become:

: day _
Zi:m,-a(p) X <%> =0 (A-10)
A.3 Displacements for Symmetric and Antisymmetric Stretch-
ing

The conditions for the symmetric molecule, when the v3 is not excited (Fig.3.1, (a)):

dgz . _diz
5 = 0
ds, = di,
dgy e diy (A-11)
The conditions for the center of mass are:
mzdgcv + 2mldiz =0 %1‘ = _2% : ix (A-12)
mzdﬂy + 2m1d§y =0 dgy &S —2% ~diy

The displacement S* must lie in the molecule plane, due to the Eckart conditions [40]:

d3 a ds a
1 — 1 _ 1 L 1 .
_ldi, =3t o tanp= _ldi,-. =g (A-13)

The other Eckart conditions are already fulfilled through symmetry. The Sayvetz condition of [5, eq.(7c)]
become:

8a1x 0a1y 6&1; 8(13:3 8(13 8(132
e gs, + T ‘ ds Y ds A-14
ml(ap dl:c+ 3P 1y+ ap dlz +m3 8/) 31‘+ 8[) 3y+ 6,0 3z ( )
8(12;,; s 6(12 s a(122 s
+my ( ap d2:l: + 5py d2y + 8p 2z =0

The previous condition means in essence that S* and %i‘;’— are "at right angles” which ensures the sepa-
rations of bending and stretching. If we use the equations (3.3) and (A-11)-(A-12), we find the relation:

(% cosf + rlsin6) dj, cosy + (% cosf + r/,sin 6) di, singp
= (A-15)

—(52"—0050+r:,sin9) di, cosp =10
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r—pcost9+r"sint9 1z cosp+di, sing) = 2o 5ing — 1! cos0) & A-16
) 1z 1 1z

2 2 s
and then the final displacement as function of the stretching coordinate are:
r S
e = —(sinﬂ—?icosﬁ) E-cosgp
r S8
_ . p .
y = (smﬁ—?;cos&) E -sin g
: g\ S
di, = —[cosf+ 2; sin ¢ 7z (A-17)

The factor % is for normalization. From the previous equation and equations (A-11), we find the
expressions for all the displacements due to the symmetric stretching coordinate. A geometrical approach
for the displacement coordinates is in Fig.A.1.

9= g The relations between displacement coordinates
is: ,
di;  cosf+2sinf

= —7FF
diz  sinf — 2 cos#

e Proof: for infinitesimal variations, d ($) — 0,
P1 =P (FD L AD and EB L DG)

r f1 =~ B (infinitesimal variations)

AD = %dp (length of arc)

d B r BD = r'dp (semirigid bender approx.)

ri AG=ADcosfy DG = ADsinp

Ay - BC = BD cos s + DG

1B B /B AC = AG ~ BDsin 8

AABC ~ ABEF (FB L AB and EB 1 BC)
¢ e e 4

q.e.d.

N

Figure A.1: Geometrical representation of the displacement coordinates in the approximation of the semirigid

bender approach (see eq.(A-17)).

The conditions for the symmetric molecule, when the v is not excited (Fig.3.1, (b)):

dz, = dj,
2w = 0
dyy, = 0
dgx a _dllz:r
dgy S (lly (A'IS)
The conditions for the center of mass are:
madg, +2mydj, =0 — d§, = —20df, (A-19)
The displacement in the molecular plane S° is obtained by taking into account the condition:
diy d1y
=-— A-20
di'x A1z ( )

The Sayvetz condition from [5, eq.(7c)] become:

6(11 8(11 3012 0(1.31» 6(13 3(132 )
L de —Yq¢ —ds 18 Y.d2 d3 A-21
ml(ap 1zt ap 1y+ dp 1z>+m3(ﬁp 3, + 8P 3y+ dp 3z ( )
8&3, a 3a2y o aazz e _
+m2(6ﬂ doy + dp d2y+ dp 2z =0
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The previous equation vanishes identically. Taking into account (A-18), and similar with eq.(A-17) we
assume that:

e = —(sinﬂ—?ic089> o - COS
1z - 7’p \/§ ©

r ge
= sin9—2—pcos€) — -sin
( Tp V2 v

o = - ( o+22 s 0) E (A-22)
= COS sin =
s Tp \/§

The factor Lz is for normalization. From the previous equation and equations (A-18), we find the
expressions for all the displacements due to the antisymmetric stretching coordinate. The relation between
symmetric and antisymmetric displacements, e , and d® and the total displacements d is:

d; = dt +d¢

a
ly

A.4 The Derivative of the Bending Angle to the Stretching Co-
ordinates

First we will analyze the derivative to the antisymmetric stretching coordinate. From Fig.A.2, we obtain
the relation (here we will use p instead of p for the instantaneous bending angle),

\/(1‘1 —29)" + (1 —9a)° \/(96‘3—9’«‘2)2+(y3—y2)2
+ arctan
zZ1 — 22 23 — k2

(A-23)

p = —arctan

P=pﬂ'_pz
)% .,
A
3

Figure A.2: Geometrical configuration need to obtain the relations between the p coordinate and the cartesian

ones.

From the previous equation and equations (3.10) we have:

(#),= (),
oz — dza bzo =0
_a_& _ _,, ERE 55 35a
oy oy o 5
Syn _ _ Oys Bya __ .
55a — T 35a ass =0 (A-24)
(ﬂ> “(#)y s e
21 o 0 8z _ 8z 8z _ _ 2m 3z
859 — 3S5a 859 — T my (350)

9p _
(#5),=0
Now we can compute the derivative:

<<9p> dp Oxy Op Oxzz Op Oy Op Oy
957) T or, T o

8z, 0S° ' Oz 0S° ' Oy, 0S° | Oy; 0859
Op Oz Op Oz
0z 85° T8z 850
Op 0p \ Oz dp  Op\ Own dp Op\ On
(a_‘a_) 55° +<a_y1‘%) gse " (a_+a_) a5°

= 0

(A-25)
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For the symmetric stretching coordinate, eq.(A-23) may be written as:

p° = 2arctan * (x?3§+(y?)2

1

p = 2arctan pE(x1)2+(y1)2

21

p=p"+ (%”—)0 . 50 (A-26)

We express the derivative of p as function of the symmetric coordinate:

9% _ Op 0m  0p O, Op 0

0Ss Oz, 0Ss ' Oy 0S5 ' Oz HS*
_ e w1 dm w1 Om
A4+ (i) |a el 42 055 a1 /2l 0S°

Vit %J (A-27)

23 o5*

If we introduce the p coordinate, the above derivative become:

27! 2r
e, 2 cos 6 (sin 0 — —£ cos 9) 2 g (cos 0 + —L sin 9) (A-28)
0S¢ V210 Tp V2r, "o
The derivative of p as function of S*, near 0 is:
dp 9 ) 4! )
= —1)sinfcos @ — £ cos? @ +sin® @
agv 1o \/ir,,(p ) Vo (r )
1
= 2 Ru(r,, A-29
\/57", 2( p ,0) ( )

For small values of p, Ra(r,,p) < 0 , which means that the derivative is positive.

A.5 The Change of the Bond Length from the Reference Con-
figuration as Function of the Stretching Coordinates in the
Stretch-Bender Model

The bond length for the atoms 1 and 2, expressed in Cartesian coordinates is:

riz = V(z1 — 22) + (11 — y2) + (21 — 22) (A-30)

By taking into account the equations (3.10), we are obtaining from the bond length the formula:

8

7’1227‘?2(/))\/1—1-2 (o R (00 + 2 Rs (,9) ) + O (500 (579 (A-31)
12 12

with Ry (v p), Rs (r°, p) from (3.16).
Similar with above, the bond length between the atoms 2 and 3 is given, in Cartesian coordinates,

by:

ra = V(22 — 23) + (y2 — y3) + (22 — 23) (A-32)
By taking into account the equations (3.10), we are obtaining from the bond length the formula:
ras = w1+ 2 (o R 0%, 0) = R (0,9)) + O((51)2  (590) (A-33)
V27l V213

If we are expanding in power series the square root, we are obtaining, by taking into account only the
terms of the first order:

12 (R 00, 0) + 5 Re () + O (52 (500 =

(A-34)
L (g B (10 0) 4 o Rs (7°,0) ) + O ()2, (5%)7) + ...
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The change of the bond length corresponding the atoms 1 and 2 is, in this approximation:

1 1
Ary =ryp— 77 ~ —=R; (r% p) S + —Rs (v°, p) $° A-35
1 12 12(p) /2 1 ( P) /2 5 ( P) ( )
In a similar manner we are obtaining the formula for the change of the bond length corresponding to the
atoms 2 and 3 and we will obtain the second equation of (3.13):

il 1
Arg = ra3 — rp5(p) = ok (r",p) 5 - N (", p) 5° (A-36)

A.6 The Derivative of the Stretching Coordinates in the Refer-
ence Frame
In order to evaluate the derivatives of the stretching coordinates in the reference frame: %—55 and % we
will consider the change of the bond length and its derivative, as function of the bending coordinate from
(3.1):
r(p) =1+ R(p) and r'(p) = R'(p)

We will consider the change of the bond length for the atoms (1,2) or (2,3), by using the formula (A-35)
and (A-36) from the appendix (§A.5).

In the case of the infinitesimal displacements we have, for the bending angle: p = po + dp where pg
1s the bending angle for a reference configuration and dp is the infinitesimal displacement.

For the reference bond length (from §A.5) we have: r%, = r(pg) and r;5 = r(p) with i =1,3.

If we are introducing the formula (3.1) into the relations (A-35 and A-36) we will obtain the relations

which characterize the changing of the bond length with the angle:

R (po+dp) — R (po) =~ ;%E[fh(Po)dgsﬁ-fk(P)dga]

. 1 = o
R (po+dp) = R (po) = 7 [R1(p0)d5® — Rs(p)dS°] (A-37)
Because we have: R (p+dp) — R (p) = R’ (p) dp, we can use this relation in (A-37) and we will obtain:
i _ _
R dp = — R dS’ + R dse®
(p) dp 7 [Ri(po) dS* + Rs(p) dS°]
1 _ _
R'(p)dp = —— [Ri(po)dS* — Ro(p) d5°] (A-38)
V2
By analyzing the relations (A-38) we can obtain the derivatives of the stretching coordinates (3.15):
25\ _ R'(po 85°) _
(a—p)o—ﬁm‘;— and (3p>0—0 (A—39)

A.7 The Conversion from the Displacements in the Reference
Frame to the Stretching Generalized Coordinates

The stretching generalized coordinates are defined in [6, page 7] as:

R' = rp—1 .

R® = ryp—1é, (A-40)
If we will introduce in eq. (3.13) the value of the bond length for the reference point in the semirigid
bender approach (3.1), we will obtain:

Ary = g = [rfy + Ria(p)]

Arg = 73— [r35 + Ras(p)] (A-41)
We will introduce in the previous relations, the formula for R' as in (A-40) and we will get the relations

(3.19):
Aris = Ari + Riz(p)
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with 2 =1,3 and Ar;» = R,

Let take a closer look on the previous formula. In fact, we will consider the generalized displacements
mn two different formulas and we prove that they are equivalent in our approximation.

Using eq. (3.13), (3.14), (A-39) and (A-37) - (A-38), we have:

1

Aryg = [R1 (7, p) S* + Rs (r° p) 5% +Ri2 (p)

N

1

5 [R1(r%,p) S* + RBs (1%,p) $°] + Rz (pe) + Ria (6) (0 = pe)

X

S-S Sl %

(3 (198" + s (,0) 5°) + VR () 1 e ()

{Rl [ss rvaRe @, pe)] + R (r°, p) 5“} +Raz (pe) (A-42)

1

[Ri (7% p) S° + Rs (r°,p) 5°] + Ria (pe)
In a similar way we found that
1
Argy = 7 [Ry(r° p) S — Rs (17 p) S5 +Raz (p)

= 25 (RG0S — B (1) 5] + Rea () (A-43)

In the previous formulas, we can see the way the instantaneous and the reference coordinates are con-
sidered together. We have to verify the limits of this approach, using eq. (3.11) and (3.12), in the
formula

Riz (p) = Riz (pe) + Riz (p) (p — pe)
We shall consider for the R (p) a quadratic dependence with p,
Riz (p) = di p?
Then, we have (with eq.(3.25)):

R 2
Ra() = di(p-Tele ) (A-44)
o Rolpeo0 o5 | (Ralpe=s0)? /s r2 -
= dip [1—\/5 e e~ G (A-45)
and
R
mﬂm+Rbm(wwa=¢ﬁ(hwﬁi%iﬁﬁ (A-46)

We have from the previous two equations,

Riz (p) lpe—o = [Riz (p) + Ris (p) (p = pe)]lp0 = O ((S°)?) (A-47)

We see that in our degree of approximation, these equations are equivalents.

A.8 Conversion Relations between the Stretching Coordinates
of the Semi-Rigid Bender Model and Generalized Valence
Stretching Coordinates

In order to get the conversion relations between the stretching coordinates of the semirigid bender model
and generalized valence stretching coordinates we will take into account the atom 2 , because it’s both of
stretching coordinates are orthogonal. We can consider for this calculus neither the atom 1, because for
it, both vibrations are added, nor the atom 3 because for it, the S* is added and the S¢ is subtracted.
We will consider the A matrix from [6] which is defined is such a way that there are negative values for
the displacement dy, (connected with positive values for the y coordinates of the atoms 1 and 3). In our
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reference system, the y values for the atoms 1 and 3 are negatives and the do, displacement is positive.
The displacements of the atom 2 corresponding to the symmetric stretching coordinate, with 4 matrix
and in our formalism are:

[m1 (ma + mg3)sin £ + mymg cos psin “;’] Jen
dZy = =R D = Sl

_ [m1m3 Cos psin ‘;‘ + m3 (m1 iy mQ) sin %] SJen}
D 3

’

2my (. p  2r p\ S°
M oin? 4 2 s P -4
o (sm 5 + - cos 2) 7 (A-48)

The matrix A is calculated for r A~ f(p) and for this reason the second term in the parenthesis, from the
right side of the equation (A-48) will vanish.
If we are considering m; = mgs we can obtain the formula for S° from the eq. ( A-48):

1 my [m2+m1 (l—l—cosp)] Jen Jen
a8 ) (5o + 5) (A-49)

We will do a similar calculus in order to obtain the relation for the antisymmetric coordinate S*. The
symmetric displacement d,, vanishes and this imply S7¢* = S{°*. The same relation is obtained by
using the antisymmetric displacement dy, which vanishes too.

The displacements of the atom 2 corresponding to the anti-symmetric stretching coordinate are:

S =

1
ds, = yil {{ml (m2 + m3) cosg — 1M1Mg COS p COS g] Sen
- [m1m3 COS p COS g — mg (myma) cos g] Sge"}
_ 2my p 2 . p\ S°
= + - (cos g T oosing |- 7 (A-50)

The same consideration for the matrix A, as above, will determine the second term in the parenthesis,
from the right side of the equation (A-48) will vanish.
If we are considering that m; = m3 we can obtain the formula for S® from the eq. ( A-50):

1-—
ge = ng [m2 + my ( cos p)] ] (S.l]en _ SsJen) (A-51)

=% 5

In both formula (A-49), (A-51) the definition for D is the same as in [7, 186]:
D = my (2my + ma) + m?sin?p = mip+ m?sin?p

We can obtain the formula for S7¢" and Sj°” by using the eq.(A-49,A-51):

1 D D
SJen = g . Sa
1 V2 [mg [ma+my (1+cosp)] i my [my 4+ my (1 — cos p)] :|
| D D
Jen _ _© I . -
= V2 [mz [ma + my (1 + cos p)] 2 my [my + my (1 — cos p)] S ] (A-52)

We will introduce the definition of D in the relations (A-51) and we will get the conversion relations
between the Cartesian vibrational coordinates S* and S and the coordinates Sy°™ and SJ", used by
[6, 7] to define the A matrix for a general triatomic molecule:

Slen = % ;nl—%{m2 [ma + my (1 —cos p)] - S* + ma [me + my (1+ cos p)] - 5%}
Syer % mig {mg [ma + my (1 —cos p)] - S° — mg [my + my (1 + cos p)] - 5%} (A-53)

If we introduce the relation for the coefficient p, we have:

m_ (p_l) (A-54)
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the above transformations relations (A-53) will be:

1 +1 -1 +1 -1
Jen _ _1 p__.p - 58 p— . - 5
L5t = \/5{[ 5 5 cosp] S +[ 2 + 5 cosp] S}
1 1 -1 1 p-1
(e R e v

In the case of the symmetric transformation and ' = 0, from eq.(3.16), R3 and R, functions have the
formula:

Ralpi=0 = (p+1)— (p—1)cosp]

Rylr=0 = SIlp+1)+ (p—1)cosp] (A-56)

M| = N =

We will introduce the above relations into the transformation equations (A-55) and we will get the final
relations for the Jensen’s coordinates:

1
SJen:_R_Ss R4S
1 \/5[ 3 + Ity ]
ngnzi[R3-ss—R4-sa] (A-57)

V2

A.9 Relations between the Stretching Coordinates and S; , S;
from [6]

We will obtain the dependence of S; and Sz coordinates in our formalism as function of the coordinates
57" and SJ°" from [6] by using the relations (A-49) and (A-51)

1 1
S, = 7 (S*+ 5% = 5D [(2m3 + 2mimy) S{°™ 4 2mym, cospSge”]
= % [(m1 + my) S7¢" + (my cos p) Sge"] (A-58)
Sy = % (8 = 5%) = T2 [(my cos p) 57" + (my + m2) 5] (A-59)

If we are considering the above relations in a matrix form we will have: S = C'S’*" where

& ( B (my4mg) T2 cos p ) (A-60)

Bz cosp T2 (my + ma)

D
The A matrix, obtained from (3.8) and defined in a similar manner with the A matrix from [7] is (in the
rigid-bender limit):

—sin @ 0 \
sin 6 0
—cosf 0
%sinﬁ L sin 0

Alig=| —Zising —Dising (A-61)

=0 %0050 —-% cos @
0 —sinf
0 sin 6

\ 0 cos }

As we know, from [5, 6], the relation between the displacements d; and the coordinates S7¢" is: d =
A S87¢". We has a similar relation d = A S. )

The relations above together with the (A-60) let us to obtain the connection between the two matrix: A
and A:

A=A C (A-62)
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A.10 Behavior of the Ri(r’ p) — R;(r° p) near p — 0

If we are considering the definitions of the functions from (3.16) and r(p) = 7o + d,-p?, we will have in
the second order expansions in p (cosz &~ 1 — % and sinz & z):

1 2, (p — 1 2
Rilpmyo 14 p2 [—Z+§—%] :1+Rg’% (A-63)

where R} = [p— 1-2(p— l)ﬂﬂ]

To

L p, 2(p-1) 2
~ 2 —__ T et ¥ — PP )
Rslpso~p+p [4 7 p+RE (A-64)
where Rf = [1 —p+2p— 1)%}
It can be seen that R} = —Rg, from the above relations.
1 p d, d.\2 o2
R ~14p% |-~ + = —4(p-1)— +1 ol - pP_ ]
slovo = 149" =2+ 7 —4(p ot Gp(m)} 1+ R~ (A-65)
2
where RS = [P—1—4(p— 1)47?_'_4‘” (%) ]
2 D d, d. 2 s
Raloso 2 p+p% |7 = G +4lp = D7 +16 =p+ R (A-66)
ro 4
2
where R) = [1 —p+4(p- 1)%4_4 (47?) ]
. 4d,
Ralpso 2 p [—(p— 2 To ] = —Rp (A-67)

where R) = [(p -1)- Qp%ﬂ]

A.11 Transformation from Curvilinear to Generalized Stretch-
ing Coordinates for p — 0

In order to obtain the inverse transformation, from the Jensen’s coordinates to the vibrational coordinates,
we will begin with the relations (A-49) and will consider the relation (A-54).The inverse transformation

relations will be:

1+ 211

S5 = + 2 ( :-COS:D) ; (SS)J&H (A-68)
p+ (&2) sin2p

where (Ss)Jen — \/_ (SJen +SJen) and (Sa)Jen — \/_ (SJen SJen)
In the case then p — 0 it is possible to approximate sin p & p and the relation (A-68) will be:

020 9)] [ ()

S & ( 1 S)Ten = i (8%)Ten (A-69)

P+ I+ 5( 2 )P

If we are expanding in power series up to the first order the denominator of the expression below, S* will
be approximated as:

S* [1 — (’%) pi’] - (§%)Ten (A-70)

Similarly, from (A-51) we can deduce the transformation relation for the antisymmetric coordinate.

[ — B cosp]

[p + (%l)gsin Qp]

Sa — . (Sa)Jen (A-?l)
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In the case then p — 0 and by expanding in power series the denominator until the first order, the relation
of the transformation become:

1 p—1
SO _[1+< ) 2]_SaJen A-72
S (B ) ] (A-72)
If we consider the relations for R; and Rs from (§A.10), and the formulas (3.13), (3.21) in the rigid
bender limit, the inverse conversion transformation become:

s il syJen
= (5
e _ il ayJen -
§ = (8% (A-T3)

There relations are similar with the relations (3.30) and with (A-70), (A-72).
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Appendix B

Kinetic Energy

B.1 Classical Change of Coordinates in the Kinetic Energy

The kinetic energy for a particle is in Cartesian coordinates:
1 . ) .
T= 3™ (22 + 9 +22) (B-1)

We are doing a change of coordinates: ¢, y,z = p, 0,
The kinetic energy in these coordinates is:

T = %ml‘ (B-2)

8.731 . 6$1 . 8(1,‘1 i 2 (9y1 . 8y1 5 61/1 5 2 0Z1 . (921 . 621 . )
[(E”*%‘”W”) * (%"“‘%“’*a_ﬂ MR =

If we arrange the terms in function of the new coordinates derivatives, we get:
1 1. .
T= 5m Zgi},uauﬁ (B-3)
a,p

1]

where u1 = p, uo = ¢, u3 = r and 9op are the metric tensor elements due to the coordinate change
[187, 211].

A=) (52)+ (5 (o) + (5on) G52 -

For a number n of particles, the kinetic energy is:

1 - 9 1 - ; y ;
T:Egmi‘U{:EEmi'($%+y%+z%) .

The kinetic energy become when we are doing the same change of coordinates:

1 & . . 1 .
i — §Zmi Zgg]ﬂ UgUg = §Zgaﬁuaup (B-6)
i=1 af af
where
Gap = Z mkﬂ[f}; (B-7)
k=1
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B.2 Change of the Classical Kinetic Energy from Coordinates
to Conjugate Momenta

If we consider the metric tensor g,p, the contravariant metric tensor elements are the following [211]:

-1
gaﬁ = (gaﬁ)

The metric tensor elements are orthogonal with the contravariant elements [211]:
297 9vp = Sap (B-8)
g
We define the momenta as function of the coordinates as [187]:

oT .
Pe = g = 2 da0 U (B-9)

The inverse relation, which defines the coordinate as function of the momenta is:

ng "Pa = Z‘L/ﬂ Up = Ty (B-10)
"

beta

The kinetic energy (see B-6) as function of the momenta has the formula:
2= gap (Zgw pv) (ng Pa) => 9" pyps (B-11)
af Y 6 6

B.3 Metric Tensor Elements in the Stretch-Bender Model

The calculus of the metric tensor elements needs the eq. (3.10) which represent the connection of the
Cartesian coordinates and the stretch-bender coordinates. Below we will use the shortcuts from eq. (3.4),
eq. (3.9), and the following relations:

r_ 8 _ 18 Orp _ 90rp _ g 3 _98b _ o1 )
=%, — 236 30—26,;—27' 69—23p—2b (B-12)

The molecule is AB; and for this reason, m; = mg.
We use the definition of metric tensor element given in (B-7) and (B-4), and the coordinates: u; = p,
Up = @, uzg = 5%, ug = S°

Obs. In all below calculus, the ¢ coordinate does not exist because cos? ¢ + sin? p = 1.
The metric tensor elements are the following:

& The metric tensor element for the bending coordinate is, from the previous observations,
(88N’ oz \* [0y \®  [8z1\?
w = () {ml [(Te) (%) + (%)
Bxg ? 3y2 2 822 ) 6$3 2 6y3 ) 8Z3 2
mQ[(W)J’(a—e B ) | T™ |\ ) T %) T\

With equation (3.10), the previous formula become,

+ (B-13)

s a / b 2
9op = %{ml [—bp—rsinﬂ— ]r)cosﬂ— = \_/%S cos 6 + 271)2(53 + 5%) cosf — —2(55 +S“)sin0]
(S* 4 5%)sin0 — 22 ($° + 59)sinf—
sinf — — - —
V2 V2

V2
2m1>2 [br, r 1 20’ b ]2
+ mag | —sinf + —cos @ + —=S5° cos — —5°% cos§ + — sin 6
( “1p p V2 V2 V2

2
+ m [—brcosﬂ+ rsinf + L? (s° +Sa)0059:|
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or T 1 20
- ——sinf — —cosf — —=(5°— S%) cos @ + —=(S°— S° g —
ml[ B sin - cos \/5( ) cos \/5( ) cos

my

2
+o2(59? <_> msy [—sinb’+2b’sin0-{—bcost9]2
ma

!
+ my [brcosﬂ— rsin g — %(Ss — 5% sind + 2—\/b§

After algebraic calculus, the final form of g,, is:

(S* —S%)sinf + 7

2
myr . 2 . mi7T 2 ’
= +bsin )" + 6 —bcosh)”| + — +5°—2b
Gpp 5 [(cosﬁ sin6)” + p (sin cos f) ] 7 S [+ ]

+% (5%)? {p [(1— 2b)cos@ + bsin 0]2 + [(1—2b')sind — bcos 9]2}

+% (5%)? {p [(1 —2b)siné — bcos 9]2 + [(1~2b)cosf + bsinﬁ]z}
& The metric tensor element for the azimuthal angle coordinate,
[ " sind — (S + 5% (sin0 bcos@)r
= my|——sinf — — —
Goe g V2

2 2
+ 4 [; sin 0 + —=5° (sin 6 — bcos 9)]

ma V2
r 1 2
+ my |——sinf — —($° - 85° sin@—bcos()]
[-Esing - (s 57 )

The final form of g, is:

2
(siné — bcos 9)] + m(S%)*(sin 6 — bcos 0)*

S

2 .
Jpp = — r:l [rsm9+ pS

V2

& The metric tensor element for the symmetric stretching coordinate has the formula
2

gss = my l(sinﬁ—b<:os€)2—+-l(cosﬂ—i-bsinﬁ)2 —i—2ﬁ(sin€—bcos0)2
2 2 mo
1, . 2 1 o e
+ m §(sm0—bcos0) +§(cosﬁ+bs1n0)
The final form of g, is:
gss = my [p(sin@— beos)? + (cosﬂ+bsin9)2}

& The metric tensor element for the antisymmetric coordinate is

2
(cos@ + bsin 6)2] +oli (cos 6 + bsin )?

1
Jaa = m [5 (sinf — bcos 9)2 -

1
2
1 . 2, 1

= my §(sm9—bcost9) 2(cosﬁ+bs,1n0)

The final form of g,, become:
Jaa =My [(sinﬂ — bcos8)” + p(cosd + bsin 9)2]

& The metric tensor element for the bending and azimuthal coordinate, from eq.(3.10)
- = @) &) (3]
Oz, daa Ay Ay
= {(5) (58)+ (%) (3]
m[(5) () + (3) ()]} =
o6 e B
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b (S*~ 5% sin 0]

(B-14)

b (5% = 5% cos 9] 2}

(B-15)

(B-16)

(B-17)

(B-18)

(B-19)

(B-20)

(B-21)

and (B-7) is

(B-22)



& The metric tensor element for the azimuthal angle and symmetric stretching coordinate vanishes,
Gps = 0 (B—23)

& In a similar manner, the metric tensor element for the azimuthal angle and antisymmetric stretching
coordinate vanish also,

Jpa = 0 (B-24)

& The metric tensor element for the bending and symmetric stretching coordinate is
_ o a1\ (21 , (9w (0w (0a1)) (0m
Gps = (ap) {”“ [( 26 ) (F) * (ao ) <ass t\a ) \oss /|
c'?xg 8:122 N L] 6yg 323 ( 622
KW) <aSs> * (a& ) (F) i (W) 57 )] "
my |(223) (923 4 () (93 , (923)) (02
* |\ a8 ) \ 350 A 0 ) \ 85

1 1
br . 7 (S* + 5°) . ) .
——sinf — —cos @ + ——= (—cosl + 20’ cos @ — bsinf) ) (sin@ — bcosd
[( 2 p i ) )
+ <—brcos€+rsin€ + (S%S—) (sinf — 2b'sin 6 — bcosﬂ)) (cosf + bsinﬁ)}
2m? [b )
+ 2\:;—:11[—pzsin0+%cos0+%(cosﬂ—?b'cos@—}—bsin@)] (sin® — bcosf)
1 br . r (S* -85 ) ) .
+ —m —sinf 4+ —cos§ + ————=(cos @ — 2’ cos @ + bsind) ) (sind — bcosd
(o] v ) )
. (S° —859) . /. .
+ brcosﬂ—rsmﬂ—i—T(—smﬁ—i-?b sinf + bcos®) | (cosf + bsinb)
The final form of g,, is:
Gps = %Ss {p[(1—2V")cos b + bsinf] (sind — bcos ) (B-26)

— [(1—2b')sinf — bcosb] (cos 6 + bsin 6)}
& The metric tensor element for the bending and antisymmetric stretching coordinate is similarly,
lol’} 6x1 61,'1 8y1 3y1 621 621

() I |(5) (Ge)+ (3) (52) + (5) (2] +

6.’!32 6.’L‘2 8y2 6y2 322 (922
(%) (552)+ (3) (3:) + () (32)]

Ozs) (Dzs  (Oys) (Oys ) , (0z) (0z
™ \o6 ) \ase 86 ) \ a5 26 ) \ 95°
-1 {ﬂ [(%sinﬁ + ]—T;cosﬂ—k " + 57 (cosf — 2b' cosf + bsin0)> (sinf — bcos §)

2 v2 V2
- <—br cosf + rsinf + (sin@ — 2b’sin 6 — b cos 9)) (cos @ + bsin 6’):'

9pa

(S* +57)
V2
2m

2

+ —18%[—sinf + 2b'sinf + bcosb] (cosf + bsin ) (B-27)
my

m1 br . r (5 =89 , . > .

4+ — ||——sinf — -cosf + ——=(—cosf +2b cosf —bsinf sinf — bcos @

[( P p V2 ( ) )

(brcosﬂ —7rsinf + £TS) (—sinf + 2b’sin 6 + bcosﬁ)) (cos(9+bsin9)]}
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The final form of g,, is:

9E = %S’“ {[(1 — 2") cos @ + bsin 0] (sin @ — b cos ) (B-28)
~ p[(1—2b)sinf — bcosh] (cosf + bsind)}

& The metric tensor element for antisymmetric stretching and symmetric stretching coordinate is

P %l—ml [(sin.6 — bcos0)” + (cos 6 + bsin 0)°]
+ % [— (sin® — bcosd)® — (cos 6 + bsin 0)} =0 (B-29)

The Jacobian of the transformation is:

9= Gy [gaa (gpp Jss — 953) - gssg;z;a] (B—30)

We have to introduce the above formula for the metric tensor elements and after algebraic treatment we
will obtain the Jacobian as:

mi . pd pS* 2 p[S° 2 )
g = ;—2 [sinﬁ + o (sinf — b cos 0)] + 3 <7) (sinf — bcos ) (B-31)

{[(sinﬂ — bcos ) + p(cosf + bsin 6)*

2
[(cos&+bsin0)2+p(sin9—bcos€)2—+— (1+b2—2b')]

2 a\ 2
+ % (ST> (1+8% - 2b')2 [p (sin — bcosB)® + (cos€+bsin6’)2]}

B.4 The Calculus of the Contravariant Metric Tensor Elements
in the Reference Frame

We are mainly interested in metric tensor elements values for the reference configuration (S* = 5¢ = 0),
because we use them in the expansion of the kinetic energy.

Obs. In all below calculus, we use the shortcut: ggﬂ = g% |se=5a=0.
Using the results of the (§B.2), the contravariant metric tensor elements are the following:

¢ The contravariant metric tensor element for the bending coordinate:

_l]pp . 9ssf9aa (B_32)
Jaa (gppgss . ggs) - gssgga

2p
9" = (B-33)

myr? [(cos 0+ bsinf)® + p(sinf — bcos 6)2-

Equation (B-33) is identical with g## from [186, Table I1I] and in the rigid bender limit with ﬁ from [5,
eq.(37)].

¢ The contravariant metric tensor element for azimuthal angle and the bending coordinate:
g7 =0 (B-34)
¢ The contravariant metric tensor element for the bending and symmetric stretching coordinate:

¢’ = — gmgt;a — = S° . F(S°, 5%, p) (B-35)
Jaa (gpsgss - gps) ~ 9ssGpa

g =0 (B-36)
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The contravariant metric tensor element for the bending and antisymmetric stretching coordinate:

9 = oatas = 5°-F(5°,5%p) (B-37)
Jaa (gpsgss - gps) — 9ss9pa

9" =0 (B-38)

The contravariant metric tensor element for the azimuthal angle coordinate:

1
o= L (B-39)

oo

0P _ p :
Jo~ = 2m;r?sin 26 (B-40)

Equation (B-40) is identical with ﬁ from [5, eq.(37)] and with A(p) from [186, Table III].
The contravariant metric tensor element for the azimuthal angle and the symmetric stretching coordinate:
g9 =0 (B-41)

The contravariant metric tensor element for the azimuthal angle and the antisymmetric stretching coor-
dinate:

g%t =0 (B-42)
The contravariant metric tensor element for the symmetric stretching coordinate:

o5 _ 9opJaa — !fﬁu (B—43)
Yaa (gppgss - ggsJ —gss!}?,a

1
giti= 1. l (B-44)

my [(cos 6 + bsin#)® + p (sin 6 — b cos 0)2}

Equation (B-44) is identical with g°* from [186, Table III], without a % factor due to a different choice of
S* coordinate.

The contravariant metric tensor element for the symmetric stretching and antisymmetric stretching co-
ordinate:

g = Jredon =5 8% (5°,5% p) (B-45)
Jaa (gppgss . gps) — 9ss9pa

ge=0 (B-46)
The contravariant metric tensor element for the antisymmetric stretching coordinate:

42
g% = GopYss _ s ; (B—47)
Yaa (gppgss —gps) — 9ssY9pa

1 1
9" =— (B-48)

m [(Siné’ — bcosB)® + p(cosf + bsin 9)2]

Equation (B-48) is identical with g°* from [186, Table III], without a % factor due to a different choice
of 5% coordinate.
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¢ The jacobian in the reference frame can be obtained directly from (B-31),

4,4 2
go = %sinZH[(cos€+bsint9)2+p(sin0—bcos0)2J :
P
[(sin 6 — beos8)® + p (cos 6 + bsin 9)2] (B-49)

Equation (B-49) is identical with 517 from [186], without a % factor due to a different choice of S* and S°
coordinate.

In the case of small angles (p — 0), the trigonometric functions can be expanded in power series up to
the second order and we will have from (B-31):

o = @ 0] D) e
{[+H @)+
« 2y feam (2) (- 2) o (52) [(- )]

N <S_) [(l_ 4_d>+ 1] +o(<55)3,55(5“)2)}

In the above formula we made the assumption that the bond length dependence with the angle is:

Sl

N2

and in the first order power series
) . (P 2¢ PN 4d\ p
/1)1_1’% [sm (2> (T) cos (5)] ~ <1 7 )3
. p 2r'\ . yp
b [ (5)+ (—) sin (5)] =1

B.5 The non Vanishing Terms of the Kinetic Hamiltonian in the
Stretch-Bender Model

The quantum kinetic energy, from [187] is, in the reference frame:

[”’*zpag“ﬁmg‘%]

ap

DO =

0

N
-

)

+ %g% > %P [Pa, [Pﬁ ,g‘%H + %Z [Pe,9%P] Ps + %Zg“ﬂPaPp}
p af ap §e=§a=0

N[ —

= { 91> [Pa, 9] [Pp,g‘ ]+%g‘%zg"ﬂ [Pa,y%] [Pp,g‘
aff af

= %g% {[P yg””][Pp,y'%J+[Ps,g“’][Pp,g'%] +[Ps,g”][Ps,y‘%]+[Pa,g“”]{Pp,g‘%]}
L A | RO [ Pt
| T e P A

1 1 2 aa
+ oy WP 971 B+ [P g Pk 4 5 {a” Py + 97 PY 4+ g™ P + g8 P (B-51)
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It is easily to see from (§B.4) that the derivative of the contravariant metric tensor elements in the
reference frame vanish:

[Pa;9%)gecsaco =0  [Pp,0%?)g_ga, =0 from eq.(B-35), (B-37), (B-45)

(9%) 5o 2gaz0 =0 (97°) 050 =0 from eq.(B-36), (B-38), (B-46)
[(Pa,9%)gecgac0 =0 [Pa,9)gegaco =0 because the 59 is as a square
[Pa )gps]sszsazo =0 [Ps ,gpa]ss=5a=0 =0 from eq.(B—35), (B-37) (B-52)
[Ps,9°%]ge—gazg =0 from eq.(B-86)
[Pp,9°P) guigay =0 (9°%)gecgaco =0 from eq.(B-32) - (B-48)
where: a=p,8%,59
g=5%,5°

With the formulas from (B-52), the kinetic energy (B-51) become:

11 1 1 _1
597D Pag™P g Py
of 0

1 l 1 . .
= 507P+ [P 0”1 Pt 397F [Poigt ™ [P H] | + Sa8” P
1 1
b AP L (B-53)
1 _1 1 _1 1. . 1 11 .. 1
+ o e [Pogt] [Pogd] 4 sote [P [Pogn ]+ sat e [P [P o]
+ l%[p 0] |P,, g% +l%[p WP, g%
29 31g P)g 29 aag p;g

B.6 The Order of Magnitude for Terms in the Kinetic Hamil-
tonian

e We consider [1] the incertitude relations, applied to the atomic scale:

Po~ AP~ & ~h
AP.Ry~h = p2 52 (B-54)
Eep ~ E‘; ~ me R2
™me m
Erot:EeITW—:EU ﬁe:Eka
e The vibrational constant is :
. 2 2 2
e e ()~ im ] % B~ BT = Bak? (B-55)
EU’\'thh\fnTe-?::—gM = Eel\/mﬁ
Proof: £ S~ E, = S ~ RO\.;/%Q (B-56)
k= %f = S~ Rok
¢ The potential terms can be obtained as following:
fSE~ B, = Jspr gpn - STH.S0 lnit.na=n ~ k"2 E, (B-57)
AP, S5° ~h A R
* 55~S,~Ro</?:Rok} B~Ab~g~s (B-58)
k*E
b /—‘gﬁ ~ P - (B-—59)
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0
pls ~ 1 o
Proof: p ]gﬂ } 'ugtﬂ ~ %‘"—21‘- ~ Ee—,hz_i ~ k2 % (B—GO)

0
° Tog ~ L. (B-61)
Proof: % ~ Lot = 125 = % (B-62)

0 Bv,0 k? B,
. Hap @5 Hys Se ~ =7 (B-63)

PTN%—) 82 ~ k1 810 2 3
Proof: «f _ (ajgg> ,ugﬁ (35,5) ,u?/d Sy~ %& > kugp ~ %‘L (B-64)
= arf = (557), 0
E

L Hgs ~ - (B'65)

hZ

Proof: pf, can not be computed with an algorithm similar with (B-59), because u8, ~ fraclM.

2
#93 ‘Pr'2 ~ EU — iu?s ~ %;’_ ~ 'kh_fu (B'66)

e The kinetic momentum for the Coriolis coupling;:

h
pi~ PS; ~ ok =h (B-67)
° (Jo) =h where: a==z,y,2 (B-68)
2(,A1%
Proof: (Ja) = [@IPEI)]* ~ B L g2 o gy g B-69
WO~ B B2 | TR ) (5-69)
k
. o)~ 3 (B-70)
8

Py~hgdo ~h L

Proof: JE~ = (B-71)

”29 Jf ~ By
B.7 The Pseudo-Potential in the Bending Kinetic Hamiltonian

and its Behavior for p — 0

We will consider the following expression, similar to the bending kinetic Hamiltonian, where the functions
have the meanings:

f(x) — contravariant metric tensor element g*®
g(x) —  the jacobian of the metric tensor
w(z) —  the wavefunction for the coordinate z
1 10 1.0 _1,1
——— —_— 4 2|
N e b B L
= f% -+ 9 1,-¢ Fro+g77 l)f-%f' +gTF frEy
= g o g 4!] g T4y 9 YTy P
1 10 1 _s , .1 1.1, _1 .1,
= Ryt m9 g fre— 9t T fe+gTi Ry (B-72)
Oz 4 2
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After doing all the terms reduction the relation become:

110 20 1,
frg o9t fogm T Ry
3g/2 ].g” 19', 1f12 1 ’ /
= [E(g_z)—f_Z?f_Z;f +Z(f) _if/ e+ fo" (B-73)
We are considering now:
_1 1 2 1,1y 110 (1 a5, 1.1 1,
-9 1 f amz(g f)——g 6—$<Zg 9f to97 f f)
3(9) _1g" . 14 ., 1(? 1.,
A A R A i 2 (B-74)
And therefore:
1 10 1,0 1.1
frg7 5 0 fomgT [y
_1 1 02 1 ?
i 2 (o )] o r 515)

-7 [ Ox?
We use this relation below, in the equations (B-33), (B-49) for the reference configuration, and with the

functions R;, defined in (3.16).
(B-76)

b= g} (10, p) sin 20R] (19, )

% p— 3{2&; 1

gPP = —
( ) ﬁr'ff;{r'“,p}

)
1
— g% (97")7 = 2m? sin $0R} (7% p)

|

We consider the derivatives ofg% (9°°)2 on p
0 1 1 » |[1lcosf 2 1 1 R
— [g7 (gPP)2 — s |2 1 i 4
4
1
82 s . 1 m? 8 | cosf R,
- 7 PPY2 - 1>~ R:? 2 9._4
Op? (g'* (e") ) 2 Op ':sin%H 4+ R%
4
mi . 1,11 [1+sin®6 1cos§ Ry, 4RJ R, — 3(R})?
— OR* = . ol G 3 B-
p SmTORIY [ snZ0 2smO R, T RZ (B-77)
We will analyze the last two terms from the second derivative of g% (9°7) %, near p — 0:
lcosf R} Ip+1
m EE B R ~ it v B a— z t-
Ssind Ry " 47gp T
1p—1
i (B-78)

4R{ Ry — 3(RY)?
4 R4R§ (7,) N —g—— ~const.
The previous relations (B-78) show that the dominant term is the first one in (B-79)and for this reason,

(B-79)

we can approximate:
1 1+sin%6 N

1
) ~ 16 sinZd

9=
N—_—
D
)
N
<
=
o~
L~
©
-1
—

(g‘% (g77)~
B.8 Taylor Series Expansion of the Contravariant Metric Tensor

Elements as Function of the Stretching Coordinates

We use for the contravariant metric tensor the symbol: = ¢~1 and for the elements:

-1
tap = 9" = (gap)
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The expansion in series of the metric tensor elements has the following expression:

Gap = 9% +Z affS" +> atf 5 S

rs

where

(), . o (Sa),
We note the sums from the expansion, by G, respectively Gs,:
Gy = [Z aﬁ‘ﬁSr} ~ S
[Z alf 57 55} ~ ST S~ (S7)?

GSS

We introduce the expansion in power series in the formula of 2 and we obtain:
po= (°+G, 4G,

= [(g")%E(g”)% +(59} (677 G (1) F (69)F +(6°)F (6°)7F Gue (6)7F (6°)

[B+ 60736, (0 + (02 6 (00)4] T (00

|

g°)
90) E—(g°)"% G, (¢°)% — (¢°)" 5 Gy (9°)
)"
=

ml'-'

12
wp—-

+ (@G ) )G () +0(5%)] (00
= (@) =) TG ()T = (99)TT Gas (6°) T+ (6°) TG (9%) 7 Gy (90)

Then, the matrix elements of y are the following;:

pap (p,ST) = pos— D > plsadl pls S
r &

[
> {— D uesall s+ > pdsal? pdea u?,p} 5 58
rs by

dyen

The values of ,ugﬂ from (§B.4) are:
Pop = Oap Mo

The final formula for the contravariant metric tensor elements is:

Hap (1,S) = Haabap— Y HhaatPuly ST
r

rs

~y

(B-80)

(B-81)

(B-82)

(B-83)

(B-84)

The above formula is similar with [6, eq.(4.24)], but here it is not a 2 factor to the quadratic terms, due

4

to a different choice of our stretching coordinates. In our formula was considered the second derivative

of the metric tensor elements, to have a consistent magnitude of terms in our expansion.

We must emphasis the expansion for the diagonal terms Hss. From (§B.4), eq.(B-43) and eq.(B-47),
a

taking into account the metric tensor formulas from (§B.3):

Gps x S° from eq.(B-26)
Gpa x S° from eq.(B-28)
gss ~F(5%,5%) from eq.(B-18)
Jaa AF(S?,5%) from eq.(B-20)
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the expansion up to quadratic terms is:

aq [l+ﬂ153 + 01 ((S5°)%, (5%)? ]
a1+ /15 + 02 ((5°)2,(59)?)]

ﬁ [14 815"+ 01 ()%, (5))] [1 - 615 + 02 ((5°)2,(5%)Y)]
ol

Hss =
aa

R

C(

1+02 (872, (%)) (B-6)

We can observe from (B-86) that there aren’t terms linear in S* or .

B.9 Expansion in Taylor Series of the Pseudo-Potential Term
1 1 1
from the Kinetic Energy: % (g0)7 % [Pp , 977 (g0)? [Pp , (go)_ZH, as
Function of the Stretching Coordinates

We consider the definition of y from (§B.8) and the terms 1 (g0)~% [Pp , g% (go)% [P,, , (go)_%” become,
with eq.(B-84):

(1) [Pomor ()72 [Py, (20)7]] (B-87)
= oo (W)* [P ()7 [P, 00 ¥]] + ) 7H [P, (50)¥] By sl
~ 1 (1B (O [P 6] - 0 [B ()[R (69 F]]

1 S
{52#% aff i, S” ~ Z{ D Hos O i+ D s oY S el uﬁp} §S }
rs

dyen
+ ()7 [P ()] 1P ey

)
W) [Poosigy 1) 72 [P0, 6] = 69 [P0, 60 F L [P () Y]]
{Z Hpp app/‘pp S" - Z [ /‘pp ary ”gp + Z /‘;Om af’ pdsalf /‘gp] 57 Ss}

Ts

Q

In equation (B-87) we have made the approximation:

(P, s Boplo & [Pp ’/‘pp] (B-88)
If we introduce the functions f7(p) and f5*(p):
1
f{(p) = _EZ”pp app)upp
20 = =D s allud, + 3 pSsaly Sl ul, (B-89)
&y éven

the eq.(B-87) is the same as (3.48).
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B.10 The Kinetic Energy Formula in the Case of the Stretch-
Bender Model
From (§B.4) and (§B.8) we have the following useful relations( with the notations from §B.8):
(gO) = Gss9aadpployp from eq.(B-49)

[Ps,9°"] = = (9°*)° [Py ,9s5] (¢°7)°  from (B-35), (B-26) and ¢** in (B-84)
[Pa,9%] = = (9°%)° [Pa , gap) (9°7)° from (B-37), (B-28) and ¢°* in (B-84)

at? = % (9pp)y A0 from (B-15)

aff = 3%z (9pp)o =0 because S is as a square in (B-15)

alf = E’T%'_)': (90p)¢ A0 from eq.(B-15) (B-90)
aff = F(E'_;?FFT) (9pp)og =0 because S® is as a square in (B-15)

aff = 5t5ey (9p0)o /0 from (B-15)

as? = zav (9s0) A0 from (B-26)

ag’ = 35z (9ap)y 0 from (B-28)

If we consider the formula (B-53) together with the expression of the contravariant tensor elements from
(§B.8), we obtain with (B-90),

1 —1 1 1
T = Tb°,+Tszr+§go"983 [Ps;gi ':Ps;g_z}Jo
11 a T 1 s a N 1

+ 39509 [Pa,[Pa.g “Ho—g[gos [P gselo + 96° [Pa s gaplo] (96°) 93 [Pp:904]

1 -1 1 1
+ 590" [Pgd [Poogi ]| (000 (=20 S 4 [matt + (afgi et + asrgftare)] ()2

+[—all + (ag® 95" al" + af’ g§” at?)] (%) + ab gfPal? S* S°) (B-91)
where
0 1o ooyp2 ] pp 1 -1 pp 3 i
Ty, = 5(90 )P, +§[Pp,g0 ]Pp+§90 [Pp)go (90) [P,,,go ”
1 1
Toer = §g85P32 + 5ggaPa? (B-92)

Obs. If we consider the minimum condition (S® = S¢ = 0), before the derivation, some terms will
vanish:

[Ps,ggp]:() [Pa)ggp]:()

B.11 The Behavior of the Pseudo-Potential Function f(p) from
the Bending Kinetic Energy near p — 0

The pseudo-potential for the bending kinetic energy, from eq.(3.50) and formula below eq.(3.51), page
72, is:

gy —1

o) = s+ () @ (B-93)

Il

ST

{%(90)_%985 [Ps 9% [Ps ,y‘%HO-F %(90)% 0 [Pa; [Pa,g_

1 B -1 $S aa
—’2'!]67’; (90)4 [Pp ) (90) 4] (90 [Ps 198/?]0 + 9 [Pa vgap]o)}
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The first line is the term fo (p), with the behavior described in eq.(3.46) and (§B.7). We are interested
in the last two rows of equation (B-93). From eq.(B-31), we have,

(%) 0o = (9 VEE = VEMP () ~ ()
SS

r
=0
8° 10 myry (g 2 2 myr L 2 p\2
(3552) p—0 = p (z) .%5 = 2 (2) ~ (5)
S$°=0
570
52 : 2 3 2 2 2 B-94
(508) poo = mm(8) £ = mm(g)? (g (B-99)
5°=0
S950
Jap ~ pS°r
Gsp =~ pS?

The pseudo-potential terms are:

c
|
[N

g 1g5° [Ps 96 [Ps ,957]] ~ (%;‘7)—2) 513 - %5170—65'(}? & (E]; m ~ const (B.95)
3 (90)7 g8° [Pa; [Pa’g_%Ho & (3(—651‘??) gl—o ~ (;)-_- ~ const
1 1 —1 0 0
iggp (90)‘1 [Pp ’ (!]0) 4] (ggs [Ps >gsp]0 i gga [Pa ygap]o) ~ z_z [35’3 (gs;;) + W(gap):l
(8)

[p+ p] ~ const (B-96)

(5)°

As it can be seen from the above relations, the terms don’t change proportional to (- ), near p — 0;
gep ) P

they are constants and for this reason we consider that they can be neglected.

[SHhY
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Appendix C

Potential energy

C.1 The Compuation of the p Dependence for the Bond Length

We consider the internal generalized coordinates for stretching (3.19):

1
Aryy = %(Rl SS+R5SG)+R([)) :T‘12—T’?2
1
Arygy = — (Rl S Rs Sa) +R (p) = roz — T'gs (C—l)

V2

The change from internal generalized coordinates to symmetric generalized coordinates for stretching
displacements is:

Aris = == (Ary + Ar, Ary = 2 (Ar1a+ Arss) = Ry S° + V2R
Af?—fgm —Ari 7oA —E(A - A23)—R15“ VR (©-2)
28= 75 s a T'a——ﬁ( r12 — Aryz) = Rs
The generalized potential has the expression, with the definition of the constants from [46]:
1
Vgen = §f11 (Arly + Ar3s) + fis Ari2 Araz + Fiaz (Ar1z + Args) (p — pe)? (C-3)
From the above expression, the generalized potential become in symmetric generalized coordinates:
1 1
Vgen = 5 (fi1 + fi3) ArZ + 3 (fi1 — fi3) A2+ V2F19A7, (p— Pe)2 (C-4)

The dependence of the bond length from the angle is:

za({iTVrsjls«*:Sa:O =0 — (fir+ fi3) Arslsezo + V2Fi22 (p— pe)* =0
(C-5)

av

s(ary|Se=se=0=0 = (f11— fi3) Ara|se=o = (f11 — f13) Rs $%|sa=0 = 0

If we consider the relations (C-2) and (C-5) we obtain:

Arglsszo = V2R (p—pe) = (fi1+ fi3) R (p) + Fiza (p—~pe)® =0 (C-6)
The dependence of the bond length from the angle become:

R (p) = —PLL £ O(pY) or Fipy = —Uudlel20) (C-7)

The eq. (C-7) shows that the dependence of the bond length to angle is connected to the Fjqs anhar-
monic potential factor. Then, the semirigid bender model assumed implicitly anharmonic potential force
constant, for the Fermi interaction.

Obs. In the case of a bent molecule, the term Fa;, with i = 1,3 is non-zero. Then, in the eq. (C-4) we
must add the term v2F15Ar, (p — p.). In this case, the equation (C-7) will have the form,

__Fialp—pe) _ P (P—Pe)2 4
R (o) = fir + fis fi1+ fi3 +0)
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C.2 Stretching Potential in Curvilinear Coordinates

If we introduce the relations (C-2) and (C-7) into the relation of the generalized potential, (C-4),its
expression become:

Vgen = % (fi1 + fia) - [R1 S*+ V2R (P)]2 + ! (fi1 — fis) RE (S°)?
_ \/—(fu + f13) R (p) [R gs _I_\/‘R( )] (p—pe)2
(p— pe)
= %(fu + f13) (Ry S°)* + %(fu = f13) (R5 5%)% — (fui1 + fis) R (p) (C-8)
The formula for the potential in curvilinear coordinates is:
VO = S (S g £ (807 = (fun+ Fis) R (p) (C-9)
where
fir = (fu+fis)- RI(S*)? and  ff = (fu - fis) - RE(S°%)? (C-10)

The third term from the eq. (C-9) will be introduced into the bending potential because it not depends
on the stretching coordinates. This imply that we can consider for the stretching potential only the first
two terms:

(5% (C-11)

T 1 s
Ve ~ §frr (55)2 + 5 rr

This relation represents the value of the potential relative to the ”zero” potential (which has as reference

point f(p)).

C.3 General Stretching Potential and Calculus of f(p) Depen-
dence of the Bond Length

We consider the expression of the potential until cubic order terms, with the potential force constants
from [46]:

V=) F; RR + Y Fj R RRF (C-12)
i<y i<j<k

In the previous equation, we have i, j, k = 1,3. The potential expansion in power series of S; and Ss, or
S* and S§°, respectively, for each value of p is [6, 17):

V=Volp +ZF JRY+>_ Fij(p) R'R+ > Fix(p) -R'R/RF (C-13)
i<y i<i<k

where V4 (p) is the bending potential. We will use some notations [46]:

_( ) = filp) 2Fii(p) = fii(p)
Fij(p) = fij(p)  6Fui(p) = fui(p) (C-14)
QFHJ( ) fHJ( ) uk(P) fwk( )

By using the above relations we will obtain the expression for the bending potential:
Vo(p) = Faz (pe — p)° + Fazz (pe — §)° + Fazzz (pe — p)* (C-15)

and after identifications of the power of the stretching coordinate in (C-12):

Fi(p) = Fia(pe —p) + Fiaz(pe — p)° + Finoz (pe — 5)°
Fij(p) = Fij+ Fij2(pe ‘P)‘*’-F'ij??(pe_15)2
Fij/\' (p) = Ful. +F1]k" Pe — ) (C-16)
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The semirigid bender conditions is, as in (§C.1):

[%Jo - [6(61[1/")]0 =0 (C-17)

If we consider the semirigid bender condition for the potential the following relation will be obtained:

+ZFU (P)R7s,; + Z Fiju(p) (RFR*) |5

6‘:1
1<] 1<j<k
= Fi(p) +2Fi(p)R’ + 3Fui(p)(R)? = 0 (C-18)
The variation of the bond length is:
Rilo = (Ar), ~ R(p) (C-19)

If we introduce the semirigid bender condition (C-19) into the relation (C-18), the expression for the
variation of the bond length become:

F”+\/ 11 _3FM1 -Fl
3F1H

Ri|, _L) (C-20)

Obs. The difference between the relation (C-20) and [14, eq.(20)] is the different level of approximation,
connected with the presence of F}; factor outside of square root, instead of f” factor. But the above
formula is the same with the corrected formula of [14, eq. (20)] as it is given in [74, eq.(21)-(23)].
In the case of a linear molecule the two formulas are equal.

C.4 Relations between the Internal Generalized Coordinates
and the Curvilinear Symmetrized Coordinates

e From (§A.10) for Ri(p) and Rs(p) auxiliary functions, and equation (3.14) and (3.21) for the
bending angle, the relation between generalized and curvilinear coordinates (3.19) become:

R0 =~ %{S [1+R;’ (5)2}+5a [p—R;’ (5)2]}+de

R0 =~ % {ss [1 + R (g)z} _ g [p—- R (g)z] } + dp? (C-21)
v=p=s1+225] (c-22)

Obs. The approximation of eq.(C-22) with eq.(3.12) may be justified for values near p, — 0,
as follows: in first approximation we neglect the p, value as being small, and we consider
only the p value,

(P —pe) lpemo > p (C-23)
This approximation is done only in the formula:
= 0s°® as°¢
5S¢ —85%) ~ ( ) — Pe) |p.—0 = ( ) C-24
( )~ 3, gy PP oo = (5 s (C-24)

From the eq. (C-21) we obtain:

Rllpso = [53 (1+ Aap®) + 5 (p — Aap?)] + dp?

Sl -

R?,0 =~ [5'3 (14 Aap?) = S (p— Aup?)] + dp? (C-25)

N
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where there are the following notations, with the dependance of the bond length with angle like in

(3.84):

Ro= (p-10-sd

d
4, = Rg:(P—l)_S;
1 d
A, = ZR{—?%A,,:AG—Q;Ap

1
Aa = ZR’;

(C-26)

e The potential constants are changing when the coordinates transformation occur and in order
to obtain their relations we consider the following derivatives, which are different from zero [46,

eq.(4)-(6)]:

ar'\ _ a*Rr! — _9A Ry _ OR®Y _ 1
(‘33")0_:55 (W)n_ 27% (‘9!’2 >0_2d (855)0—\/5
2°R? _ 94 aR*\ _ _ p °R® — oA °R2Y _
(5%), =2 (),=-%  (&555),=2% (58),-u

¢ With the previous relations, the potential constant are the following:

— The non vanishing derivatives:

b1:1 b3:l

s 72 s V2
The quadratic symmetric stretching potential constant:
Fos = Fuubiby+ faablbl +2 fi3b! b3
1
= |5 (fir + f33) + fi3 = fu1 + fis
2 f11=fs3

— The non vanishing derivatives:

bl = L b}l:—L bf:L b = £

V) V2 V2 e T /2
The mixed quadratic stretching constant vanish, as it should be:
Jas = fuibyby+ f33b2b3 + fia bl b3 + f21 6351

= g(fn ~ fa3) + g (—fis+ fa1) =0

— The non vanishing derivatives:

— 1 — —
=X =2 2=

The mixed quadratic symmetric stretch-bending constant vanish, as it should be:
1

72 (Fr2 + f32) lfra=for = V2 f1a = 0

fos = fr2b) b2+ 2f5 by b? + fa b3 b2 =

— The non vanishing derivatives:
ba=p b)=-p
The quadratic antisymmetric stretching constant:
fas = fuibabo+ fas b3 6]+ 2f13 b0 b
2

P P2 _ 2
7(f11+f33)—27f13 = (fu—-hfis)p
f11=fas
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(C-28)

(C-29)

(C-30)

(C-31)

(C-32)

(C-33)

(C-34)

(C-35)



— The non vanishing derivatives:

2 _
b, =1 (C-36)
The quadratic bending constant:
Soo = foa U202 = foy (C-37)
— The non vanishing derivatives:
bh=d5 bi=-% b =1 (C-38)
The mixed quadratic antisymmetric stretch-bending constant vanish, as it should be:
fap = Fi2ba b3 + fa2 4365 = % (fiz— fa2) =0 (C-39)

— The non vanishing derivatives:

bi:% bf::L b,l,p::.?d

V2
A (C-40)
bgp:2d b%:l b/213:7§7
The anharmonic cubic potential constant:
foop = fr22b; b?, b2 + faza b3 b2 b2 + f11 (b b,l,,, + Qb}, b,l,s) + fas (b2 b?,,, + 263 53,)
+f1a (b b3, + 261 b3,) + fa1 (36, +265b).) + foo (b2 02, + 262 02,)
1 1 2d 2d A
—=+ fazo —=+ 2f11 —= + 2f13 —= + 2for 2| 4,.. -
fi22 7 fa22 7 i 75 fi3 7 J2 Jar f}ff;ﬁjg
A
= V2fi2s +2V2(f11 + f13) d+\/§f227p (C-41)

ﬁ[fmz +2d (fi1 + f13)])+\/§f22%

~0 from eq.(3.56)

The effective anharmonic cubic potential constant, with (3.56) can be computed in the case we
use d*" defined in (3.56). When d is computed in with other methods (rotational constants),
we must add to the previous formula:

-1
Qﬁw d (f11 + fi3)
9D
and the formula will be,

Fspp:%fspp:fw%);*‘\/i(m;—;l)d (f11 + fi3) (C-42)

— The non vanishing derivatives:

bf, =1 b},p =2d bﬁp =2d (C-43)
The quartic bending constant,
Sooop = Fa222 02020202 + 2f195 (b}, b2 b2 - 6)
+ [f11 (b1, 83, -3) + fas (83,63, - 3) + 2f15 (b}, 03, - 3)]
= fanoo + 24d fi22 + 24d° (fi1 + f13) (C-44)

The effective quartic bending constant:

1
Foopp = ﬁfpppp = Faggs + 2dFy20 + d* (f11 + fia) (C-45)
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C.5 Connection between Curvilinear Symmetrized Coordinates
and Internal Generalized Coordinates

o We consider the following relations for the coordinates transformation (from eq.(3.82) and (3.83)):

1

1 1 . )
R'[pno =~ S°+ 7RI P* S +pSt = TR{p* S| +dp® + O((5°)%07)

S

2
1
v, [S° + Aap®S® + pS® — Aup®S°] + dp?

S

1

R3|,0 =~ [S° + Aap®S® — pS® + Aap®S°] + dp? (C-46)

&

2
We will consider the difference and the summation, of the previous equations,
R'-R® = V2[p—A.p?s° (C-47)
R'+R® = V2[144.0%]5° +2dp*
The relation for the bending angle is (we have the notation: v = p):

p=r—1 ]:7[1—ﬁ53] (C-48)

Ver

If we introduce p relation into the eq.(C-47) we obtain:

€
V2
1

V2

R'-R% =~ (p—A,4°)S°

(R'+R%) =~ (14497 S +V2d~* (1 - \/5% 55)
= (14 4,4) 8 +V2dy? (C-49)

By using the above relations we get the curvilinear coordinates as function of internal generalized
coordinates:

1 RI—R3 1 A

St = = ~ R!' - R3 <1+—" 2) C-50
ar—tden ~ VEp ) P (G-50)

1 (R'-R%)—2dy* 1

\/5 1+As72 - \/i

The relation of p when we introduce the relations (C-50) become:

s° (R'+R®) (1 - A.9%) — V2dy? + O(v*)

p = 7{1—%[%(RIJFRS)@—A”?)—@M]} (C-51)

A d d
¥ [1 - 2—:(R1 + RS)] + ;A,, v+ O(’RY) ~ v [1 . %(Rl + R3)] + A, 43

12

¢ The relations for the potential constants transformations when we pass from the curvilinear sym-
metrized coordinates to the generalized coordinates can be obtained by considering first the fol-
lowing derivatives, which are different from zero [46, eq.(4)-(6)]:

(%),=1 (woth), = (mobthe) =~ %
(22) =04, (%), = (#%5),= & -
(), == Gm), =75 (o), == (akom), = F 20

Using the previous derivatives, the potential constants are the following:
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— The non vanishing derivatives:
b= M=o (C-53)

The stretching quadratic potential constant:

= Fu b+ foa b0 = ot nfn = 3 (oo L22) (6-54)
— The non vanishing derivatives:
by =1 (C-55)
The bending quadratic constant:
fa2 = fop 0505 = [y (C-56)

— The non vanishing derivatives:

s — 1 a _ 1
= bg = ~ 7% (C-57)
The stretching antisymmetric quadratic constant:
_ 518 ara _ 1 faa
f33—fss b3b3+faab3b3— 5 fss+?‘ (C-58)
— The non vanishing derivatives:
s _ 1 s _ _1
I;(lz _ fi 22 _ ﬁ_l_ (C-59)
1=V 8T T Vap
The mixed stretching quadratic constant:
S 1S ajlra 1 faa
f13 = fos b1 05 + faa b7 b5 = 5 fss’p_z (C-60)

~ The non vanishing derivatives:

s — 1 pa_ _1_ 5. = —
b= b= 75, b, = —2v/2d (C61)
by =1 by, = — o
The anharmonic cubic term:
Fioe = fopp b1 b9 65 + fus (b1 B35 + 263 b35) + fop (b7 by + 205 b1,)
1 A
. ﬁfspp —2d fss — Tpfpp (C-62)
The effective cubic potential constant:
1 A
Fias = %Fspp —dfss — 2_:fpp (C-63)
— The non vanishing derivatives:
b5 =1 bby, =624, bj,=-2v2d (C-64)

The quartic potential constant:
faze2 = fpppp bg bg bg bg + fspp (b§2 bg bg '6) + [fss (b32 b§2 ’ 3) + fpp (bg bggz 4)] (0‘65)
d 2
= fooop +6(—2V2d)fpp + 4(6;Ap)fpp +3 (2\/§d) Foo
d
= fopor — 12\/§dpr + 24d2fpp + 24;Apfpp

The effective quartic constant:

1 d
Faa9y = ézfnzz = Foppp — V2dF;,, + d* fos + ;Ap fop (C-66)
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C.6 Relations between the Linearized Internal Generalized Co-
ordinates and the Curvilinear Symmetrized Coordinates

o From the relations between the generalized and linearized coordinates [3, eq.(6)-(8)] and 4, eq.(8)]
we can find (here we have the notation ¢ = R! and ¢’ = R?):

1 1 P
1 ~ Rl 1___ 2 ——R3 2__ 2
qo g7 gR Y g
¢~ R(1-142) - iRiy2 T (C-67)
. 8 8 8

If we introduce the relations (3.82) the previous relations become,
1 1

002'%

1 s 2 T o

—_5 ¢
82" 7 T8 4{ p
1 A Sa r d
s |1 A, -1 _ A . Tl1-g%) 2
75 (147 (4= -]+ G- a5 (1-5),
8

= %Ss{l—k[A A+1]p2 %p Aap?) — g(

In a similar way we obtain for ¢g:

1 1
S¢ (1+Aap2)_mssp2+75a (p—Aap2)+dp2

PO (S°), Pt ptS°) (C-68)

1

3 1 s 2 2 2
g ~ —=S5°(1+ Aqp —S5%p ——S“ p— A, +d
0 75 ) - sf 75 #') +dp
1 r
_ S 2z =2 P S 2 O 2 S 2’ 4 C-69
N R LW R s (P°(5°)%, p%) (C-69)

12

1 1 A 1 r d
— 5°<1 2 A — - =22V _—_ge —Adp)—=(1-8=)p2
V2 { e [ 4 4 J} V2 v #) 8 r)?
1 1 1 r d
= —5°<1 A — = (A Dp?t — —=5%(p— Az p?) — = [1—8=] p2
\/5 { + l: 2 ( pt ):l P } \/§ (p P ) 8 ( T) P
From the relations derived by Pliva [3, 4], we find for the bending coordinate:
R!' 4+ R? l A, 1 d 1
1 _ 1 S 312 3 cs
7(* or ) 57 = ”{ o [fr ﬁr”*” [ 24}“7(”5)

p [1 + ﬁ (4,+1) SS] - % (1 - 24%) P (C-70)

e The potential constants are changing when the coordinates transformation occur and in order
to obtain their relations we consider the following derivatives, which are different from zero [46,

eq.(4)-(6)]:

1

Yo

1

= —V24, (C-71)

35\ _ 1 8%q9 r d

55:) = 73 (apz =—5(1-87) ;

aq3 L aaqa

40 e C —
(65“) - V2 (35aap2 0—\/§Aa

With the previous relations, using the relations between potential constants from [46, eq.(4)-(6)]
we find:
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The non vanishing derivatives:

=2 B=d5 (C-72)
The quadratic symmetric stretching potential constant:
1
fss = Fhbibl+ f3ab303 + 256,03 = 3 (FlL + f35) + fis
Fh=f3s
= fii+f3s (C-73)
The non vanishing derivatives:
=% W=-%% (C-74)
The quadratic antisymmetric stretching constant:
2
p
fo = SRR BB+ 2500 = [ (7 + ) - A0
Fhi=15s
= p’ (f:?l - f:?s) (C-75)
The non vanishing derivatives:
b;27 =1 (C-76)
The quadratic bending constant:
fpp = fgz b,2; b,2> = fgz (0‘77)
The non vanishing derivatives:
b= 75 =7 b=50-87)
(C-78)
_ _r d _ _ Ay+1
B,=-p1-88) B=1 8=
The anharmonic cubic potential constant:
Fioo = Flaabsbp by + f 030505 + [y (b3 b7, + 203 b%.,) + f3s (6385, + 263 85.,)
175 (bg B3, 4+ 26563 ) + 75, (B2b), + 20305, ) + foy (262, + 26283, )]
d A, +1
= \/§f122+\/§[_1 <1—8;‘>] (ff1+f{)3)+\/§ pr fgz (C-79)
The effective anharmonic cubic potential constant:
1
B = §fspp (C-80)
1 r d A, +1
= ﬁ[f&z—Z(l—s;) (f +ffs)] \/— ~L=—f3
r d A, +1
= V2FD, - Vsl (1 - ) (fir+ fis) + L \/— 2
The non vanishing derivatives:
B=1 B, =-i(1-28) B,=-5(1-8) ,=-5(1-89) (31
The quartic bending constant,
foppe = Fioas b,2> bf) b,2) bi +2/79 (b,lzp b,2> bi 6) (C-82)

+ 2/ (b}m bplm 3) + 215 (b;lap bﬁp +3) + 2f3 (bi bipp 4)]
0 d 3 2 d\* 0 0
= Joppp—3r (18- f122+8 1—8; (ff1 + fis) — 1—24 2
The effective quartic bending constant:
Foppp = 24fpppp = F2°22 ( >
€
24

Fiyy
: d d
+ g4 (1 - 8= ) (F11 + f1a) - (1 = 24;) f2o (C-83)
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C.7 Connection between Curvilinear Symmetrized Coordinates
and Linearized Internal Generalized Coordinates

e We consider the equation (C-50) or (3.86), and the relations between the generalized and linearized
coordinates [3, eq.(6)-(8)] and [4, eq.(8)] and we find:

SS

Sa

12

12

12

Il

1

1

1
7 (R'+ R (1 - A, 7%) = V2dvy* + O(73,434°)

w2

1 T i
o5 (b +ad+ ) Q1= 408 |1- 5 (@ +4d)

~ 0

2
V2d? [1 -5 (o + 00)] + 075,75 4%)

1 r d
7 (00 +43) (1— Ay + mvﬁ —V2d2 + \/5; (96 +93) 7% + O+, v2q?)
1y 3 ﬂ 2 r ﬂ 2
/2 (‘IO +q0) [1 (As 2r> Y+ —4\/5 1 8r Yo (C-84)
2
i A 1 A, i
— (R!' - R? (1+—”2):— o)1+ 22 - = (g +
\/§p( ) 7 % (a6 —43) p o - g +d)
~ 0
1oy 3 ( Aq 2)
—— (gt - 1+ 22 C-85
\/ip (‘Io 90) P Yo ( )

5 [1 - ﬂ R'+ R3)] + éA,,73
A, d
[1 — 5 (0 +45) - 1270] [1 = (‘]0 +a5+ 470)] +— A7

Yo [1—%@6—#(18)] [112+‘%<1—8 )] V3 (C-86)

e The relations for the potential constants transformations when we pass from the curvilinear sym-
metrized coordinates to the generalized coordinates can be obtained by considering first the fol-
lowing derivatives, which are different from zero [46, eq.(4)-(6)]:

(
(

a(qs)

) _ 8%p _ 5?2 . Ay+1

3_7’1')0 = (3“/03(%)) - <3703€<J8)> T e

8° _ A d 1 88° _ { as® _ 1

55),= 0% 0-89)-1 (3%5),= (&)= % -
82s°\ _ r d 935* _ [ _o%se _ d

573 )0 = 55 (1-87) <—a<qa>avg)o = (o vg)o =-v2(4, - 27)

a8s“

)o=- (#5),= 5 (atia), = (o) =
o \9( fp 8(g5)073 /o~ \8(aQ)ov3 /o — P2

With the previous relations, using the relations between potential constants from [46, eq.(4)-(6)]

we find:

— The non vanishing derivatives:
s — 1 a _ _1
by = 7 b¢ = v (C-88)
The quadratic stretching potential constant:
s 18 apra faa
= Lt fu bt = g (ot L2 (-89)
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The non vanishing derivatives:
by=dy by =—A (C-90)

The quadratic stretching potential constant:

£ = foa b33+ faa b3B2 = & (fss f“—“) (c01)

The non vanishing derivatives:
s — 1 ps _ 1 pga_ 1 pa_ _ 1
=y W= M= B=-T5 (G82)

The quadratic mixed stretching constant:

f{)SIfssb‘ibg'Ffaab‘lzbg—_(fss_%> (C-93)
The non vanishing derivatives:

b1 (C-94)

The quadratic bending constant:

faa = Fop ¥565 = fop (C-95)

The non vanishing derivatives:

s — 1 a _ _1

=5 MN=7 % = 55 (1-8%) (C-96)
P 14 Ap+1

by =1 biy = T

The anharmonic cubic potential constant:

flao = Fopp b 0505 + fos (b3 b3y + 263 b35) + faa (b3 b3 + 265 b35) (C-97)
1 r d A, +1
+  Jop (bg’bgz+2bgb§2):‘Epr'FfssZ (1—8;> for
The effective anharmonic cubic potential constant:
1 i T d A,+1
Fiop = §f1022 = EFSpp + 3 (1 - 8;) Jss — pQ_r foo (C-98)
The non vanishing derivatives:
by=1 bhyy= ‘%Ap (1- 8%) 22 = grﬁ (1- 8%) (C-99)
The quartic bending constant,
Foaas = Fopop U5 058505 + fopp (63505 5 - 6) + [fos (835055 - 3) + fop (65 0525 - 4)]
3 d 3
fpppp+ﬁr<1_8_> fsmv"' <1_8 ) fss
- [2 + 34, (1 — 8- )] foo (C-100)
The effective quartic bending constant:
1 r d
F20222 = ﬂfpppp = Fpppp + 7 ( 8;) spp
r? d\* 11
+ 61 (1 — 8;) fss — [—2 gAp <1 — 8- )] foo (C-101)
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Appendix D

Solving the Eigenvalue Problem

D.1 Obtainment of Coupled Equations and Anharmonic Terms
in K and / Basis Formalism

We consider the wavefunction in Born-Oppenheimer approximation:

i ) 1 i s i
Pih(v,0,p,5°) = o Ko w@ v — 0, 0) xs (5% 0) ¥k (p) (D-1)
where the electronic wavefunction is, with i = +, —:
(£, _ _ 1 iA(v—ep) —iA(v—o) )
Yo, (v —,p) = N/ [e +e ] (D-2)

The Schrodinger equation is:
[Ho(o) + Ho(S") + Bia(v, i) + VO (0, 5°) = B] ¥ (0, 5°) = 0 (D-3)

where the kinetic energy for rotation along the linear Oz axis, as well as the symmetric stretching energy
are,

gv¥ h? [ %, 0 ]2
HZ ) = —_— z — Lz = —— g¥¥ e —
Tat(l/) w5 p) 2 (N ) 2 g9 690 6(’/ _ (p)
s ﬁ2 kX 0 62 h2 $s 82
Hy(S%) = —=5g7(pr) 9IS TT (p) 552 (D-4)

and the potential energy from eq.(3.64) and(3.72) is,

. 5 hAY R , 5 oV 05 1 s
VOG5 = vip© - (52) Blel sy (Z0)(95) ool (1.0 SR, 9] 57(0-)

s

Fep5(p)

e We neglect the dependence of p as function of S* and in this case the equation in S° represents

the equation of the harmonic oscillator which has p as parameter.
e We consider: r, = r,|gs=0 = r°.

o We consider during the calculus only the electronic coordinate (v — ¢), defined in Fig.2.3.

If we introduce the Born-Oppenheimer wavefunction into the Schrodinger equation we get:

Op T

1 gy .
Nir K w8 (w — 0, p) x5 (%5 p) Yo,k (p) = 0 (D-6)

We consider two wavefunctions, corresponding to the two states:+ and — and we take a linear combination
of them to have the B.O wavefunction:

Vv, 0,p,5)=%F o (1,0,0,5) + V5 0 (v, 0,p,5°) (D-7)

. Vi R ) 1
Hlp) + Hiali ) + V) = (G2) BB 50ty (4 1) - 5]
0
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We will integrate over the electronic coordinate (v — ) and we get:

(o) + V404 1 9) (v ) - (32) 2By pyi0 (5) 5

h? N 1 ) S
+ 5070 (K + A% = B| et (5% ) vk
2

h .
= mﬂ‘”(ﬂ) K AT X7 (S p) Yy k (P) (D-8)

e KA is used in order to characterize the passage from the @b:l to ¢, and in the inverse one, too.

e When we integrate over ¢ all the elements with K; /=K, vanish because none of the matrix

elements depend on ¢ and
1 2

—iK19 iKaop _
] [ [ d(p =4
" o K, K>

If we take into account the previous points we get:

[1106) + V) + st o) (v+3) - (%—VP) Blot) 5ot yt0 (5) 55
2

h g s
+ 59 (p) (K* +A%) - E] X3 (%5 p) Uk (p)
= K¢ (p) K Ax7(S*:p) %5 (p) (D-9)
Because (S°; p) function depend parametricaly on p, the derivative part of Hy(p) will act on the

stretching function too, and we have:

2
x+(S%;p) [Hb(p) + V*(p) + hw (p) (vs + %) + %g“""(p) (K% + AQ)] by k()

Vo Ra 0S*
¥ (p) ), T fers(0) {3, pl XF(5%5p)
h? d? 0 0
. gPP + (S5 p) — B2 gPP — (G5 )y (s,
5 97 () ¥k (p) 57 %o (S%;p) 97 (p) 7 vy (S°5p) 95 (5% p)
= K g% (p) K Ax7 (5% 0) ¥y x(p) (D-10)
We integrate over x}(S5%; p) and we obtain:

2
85 5 [Hb(ﬂ) + VT (p) + hwi(p) (vs + %) + h—g“’“"(p) (K*+ A2)} bik(p)

2
oo\ R 05°
+ —(Z28) 2gs s )58 } o157 Ixe
x| (52). st 2,00 (50) 5] et
HOS gy
h? 9? 0 0
_Z aep + =y _B24PP () ot S
5 97 (P by () (xs Iap21xs) h*g”*(p) 3p¢b,x(ﬂ) (Xs Iaplxs)
—_———— N—_———
HO(p)8, 1+ HP?6, 1an LESURNAY:
FHOU(P)d, 5144
= &, B0 (p) K A7 i (p) ' (D-11)
If we consider the wavefunction in the I basis (eq. (3.94) and (3.95)),with { defined in eq.(3.96), we have:
1 - .
) = 2 [0 50 Ykl + (W) po Ykl
- 1 - .
vavile) = o5 |40 50 Vik(e) ~ (02)5.0 Yik(s)] (D-12)

The wavefunction is taken as a linear combination of the previous wavefunctions:

l/) = 1/)+(V5901p1 SS) + IP_ (V) ©, P SS) = 1//30(1/, 29D Ss) (D'13)
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We rebuild wavefunctions in order to solve the Schrodinger equation in [ basis and get:

{#0)+ 3170+ 70 + 307 (8 + A9 L [(0) 5 o + (05 ]

= RAL) g0+ WD) pol +5 (77 = V7) [(68) 5.0~ (43)5 o]
= [(wel)B_O (w;)B_o] (D-14)

where the following notations were used:

V) = V(o) + hwf (p) (vs + %) - <8g;+>0 Rz(::’p) S+ (65‘5) (8;:) p
V) = viip () (vt ) - (Gr) Bleds . (22)(5) s @9

If we introduce the wavefunctions (D-12) in (D-14), with { = K — A and ' = K + A, (D-15) we get:
(o) + 307 (£ = 0+ L1700+ 7= ()] + 51 [6F )+ ()] (v +3)
A o () ()] -]
% e e xs(5°; p) Uiy ()
{ro-v-wl skt -] () - (G- 5 ) Relmd)

: 5)- (% %) o
+ [feff (65) (fers)™ ( )] s }
]

X g-e eil'e g=ihvy s(S%p)pulp) = 0 (D-16)

If we integrate over v and ¢ as in the previous equations,the terms will be separated:
1 . 1,- —_
xe(%6) { (o) + 39°% (K = A + 5 [7%() + 7=(0)]

+ - l) l:av+ aVn—J Ra(rp, p) oo
h [ws (,0) +w; (P)] <U3 + ) ap -+ ap ) S

[(f:ff)+ (%_T) + (f25)” (885[')3)] S p— E} bt (p)

0 3 4 N :
"”(p)ﬁx(ﬂ)a—;ﬂxs(S ;p)—ﬁ29""(p)%¢§“(5 ;p)a—pxs(S  p)

[N

m,;:,

2
(Y Bl [ (3) - () (2] 0 =

If we integrate as in the case of eq.(D-11) over x,(S*; p) functions, we find:

+  x:(5%p) ¥y (p) % {[V+(p) -V (p)] + h[wf(p) —w; (p)] ('Us + l) (D-17)

Sur { o)+ 507 (1 = )+ L1V (9) + 77 ()

+ %h [wi (p) +w; (p)] (vs + %) - E} ¥54(p)
+ o {3 [6;‘5 + ] el g (i) (%) + e (5
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X (X [S%|xs)
N ——’
Hlnés,s’d:l

n? pp + o 2.pp 9 + o
= 597 ¥ (p) (sl s bs) =R (p) 55 Ve(p) Oearl 5o lxs)
p p p
N — N —
Hoo(p)és,s"l'H?z‘ss,s’:tZ H;)?és-s,iz
+H (p)b, orgy

+ il 3 { Ve - V(o) + AL
ot () i () (3]

X (xs'|S°Ixs) = 0
N’

HO, 1y

DO | =
+
Py
“+
S
e

!
m€|
>
Pt
TN
=
+

| =
N
H_/
o
—

[0 ¢]
g

Obs. The equations (D-18) in the I basis can be obtained from eq.(D-11) in the K basis, with a transfor-
mation of type:

H =stHX S (D-19)

where S is the transformation matrix defined in (D-12).

D.2 Calculus of Adiabatic and non-Adiabatic Integrals

The wavefunction for the stretchig motion is the harmonic oscillator function, which depend parameteicaly
on the bending angle, and hence has the form:

Xn = VB Ha(€)e 5 (D-20)

where 1/ is the square root of the inverse of volume element. H,, are Hermite polynomials and we have
the following relations between the Hermite polynomials [50, 47]:

H,’L = V2nH,_4
n+1 n
EH, = THn+l+\/;Hn—1 (D‘Ql)

where ¢ is the dimensionless coordinate used in the Hermite polynomials [212],
. 8 _ 005 _ a0
§=ar o =5 F=%6%

(D-22)

and o= ,/E

The volume element (the o factor arise because the wavefunction is normalized to dz and the Hermite
polynomials are normalized to d¢) is considered in a more general manner, as dV = (¢°*)"'adz and
then the normalization p dependent factor and its derivatives are:

e g

We consider the first and second order derivatives of the wavefunction relative to the parameter p:

(D-23)

Oxn _ 10 o n+1 o n
9 Eﬂ Xn — p 3 ) Xn41+ —& ) Xn-1
N Y a’ N CECED)] o
= §<E—a—>xn—% (n+1)(n+2) xns2 + 5=V/n(n = 1) Xn-3
82Xn - o 1 ﬂ’ o o \/— o
2 %k(g—;)kn—% (”+1)("+2)Xn+2+20[ n(n—1)xn-2
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o 2 ,8” ﬂl 2 o o 2 o ,Hl
S— — — 2 — — — — — — — b —
= [ (2a> (2n +2n+2)+2ﬁ (M) 2a+3(2a> 2(2a> Qﬁ}x,,
o' 2 o f o
4 (‘2—a> _Q%ﬁ - %‘} ‘Xn+2
2
O,." al ’B/ aN
(z) _2%%‘%] Ko=2

o' \?
+ \/(n+1)(n+2)(n+3](n+4)( )Xm

2a

+ (n+1)(n+2)

vn(n—1)

|

/

b VAT D0 () s (D-24)

In the case when o = f (no metric tensor element involved in the volume element — no first order partial
derivatives to be removed in the stretching vibration hamiltonian [5, 57]), the previous formula will be
simplified:

Xl = = () VT D0ss + (12 ) VAT~ Do

0°Xn
0p?

o'\ 2 9
lp=a = —<%) (2n® 4+ 2n +2) xn

2(5) - (5)] v

& B o
n(n —1) [2 (—23) - E] Xn—2

!

+ \/(n+1)(n+2)(n+3)(n+4) (20(_01) Xn+4

+

+ VA D=9 (5 ) xees (D-25)

D.3 The Symmetry of Matrix Elements

We consider the matrix elements concerning the adiabatic and non-adiabatic terms from eq.(D-11)-third
line, or (D-18)-fifth line. We analyse the symmetric position elements of the matrix,

L0 9 . 02
Hyp oo = 2/% a_pSDb’(lea_pl)(U’)dp'i'/Sob Sob’<Xv’|W|Xu')dp

. 0 0 . 52
Hytpt o 22/%: 5%<xu1la—plxu)dp+/sobf (Pb(Xv’la_plev)dp (D-26)

We make the following shortcuts:

0
fvu’ - (le‘a_p'b(v')
62
Jvpu' = (X'ula_pgl)(v') (D-27)

In order to obtain the properties of f, ,» and g, .+ functions, we start by considering the orthonormaliza-
tion of the stretching wavefunctions y,:

/XU Xv’dp = va’ (D-28)

We will do the derivative of the relation (D-28) and will get the properties of f, ,+ function:

0
0 = P [/XuXu’dp] :/XLXv’dp+/XUXL’dp
P

= fvv’ + fv’v (D-29)
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Then, from the previous equation we get,
fvv’ = _fu’v (D-?)O)

In order to obtain the properties for the g,,/ function we will do the derivative two times of the relation
for orthonormalization of the wavefunctions:

62
0= o2 [/ Xo X“'d"]

/X:;/XU‘dp+2/X:) erdp+/xu Xyedp

= Gou + Juiv + 2/)\':; X:;’dp (D‘31)

We will consider the derivative of f, ,+ function:
fow = % /xu Xy dp
= / Xo Xordp + guur (D-32)
If we take into account the relations (D-31)-(D-32) we obtain the propriety for the Ju,v function:
Guw' = oty = 2f o (D-33)
In our case (see matrix elements from equation (D-25)) the relation between f, .+ and g, .+ functions is:

Gov' — Gurv = 2[00 for v=10v £2

v = UI , = f! ]
Guv' — Guty =0 for {v =v' +4 v Jour (D-34)
For the matrix elements from (D-26), if we apply the integration by parts and the normalization of the

basis functions, we get
* a *
Hyw o = 2 [ ¢y % Po fovr dp+ [ @4 @or guur dp

. 0 . 0 . 0
= 2/% Erhad Jour dp—/fwfsobra—p sobdp—/fuufsobg;sow dp

.0 , 9
/ \f\; <<Pb g, P ¥ g, s%) dp (D-35)

antisym.™ ~~ -
antisym,

In the case when we consider the derivative operators aap",, multiplied by a function g#*(p) = g(p), the
symmetry change and we have:

5]

Hypwtr — Hypr oy = 2/9(/)) s fwfdp+/y(p) ©o @b Juv' dp
8

- 2/9(;0) o 5,0 Jorvdp— /g(p) ©b Pb! Gurv dp

=2 [— /g’(P) fvv’(p) b P! dﬂ_ /g(p) f‘l’}’l}’ ©b Pb! dp+/g(p) ©b Py f;v‘ dpjl

=2 [ Do (0) 00 (D-36)

Obs. In the case when the volume element is dV = g,,,—l(p)dp, the previous equation become symmetric,
because the metric tensor element vanish.
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Appendix E

Numerical Calculus Considerations

E.1 Relations between Bond Length Parameters and Rotational
Constants

The rotational constants can be expressed as [210],

B(v) = (B), ~ <i> (E-1)

In the previous equation, (- --) means integration over the vibrational basis, and r, is the projection of
the bond length on the linear axis of the molecule (Oz axis in this case, as in Fig.2.3 or in Fig.3.1).
In the equilibrium case, from the above formula we find the equilibrium rotational constant

1 1 1)\’
Be ~ P B = 0 D) 2 &. ~ (,’,.—0) (E-2)
(r9) (r)" cos? &
In the semirigid bender approach, the bond length can vary as in eq.(3.1), with a formula:
r(p) = r® + dp? (E-3)

The rotational constant for a vibrational level v, B(v) became with eq.(E-3) and (E-1), for small angles,

e = BS<<%1>2>U:Be<<l+,%pi>%os2§>”:B“(H%p?)j[l—<%>QJ>
) Be<1_<1-1§—g><5>2>f36<1+(1‘%{) ),
<o [0 -a e (-] e

In the previous equation, g, is a weight factor (see (2.42)), corresponding to the harmonic oscillator
gs-fold degenerate and &, kyy are in erm™!. If we define the vibration-rotation coupling term as

v

e W 1
g = — 2 (1—8—;) (E-5)
2kay r
eq.(E-4) become the well known formula (3.148)-(3.149),
- _ 9s )
B(v) = B. — v v+ 2) (E-6)
For v = —2, we have from eq.(E-6) and (E-2),
g2y _
5(-%) =5

and we can find the r° value. By a least square method we can find a, value, and because o, = f(d),
from eq.(E-5), the dependence of the bond length with angle can be found.
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If we consider the expression from [150, eq.(3)], the rotational constants for an AB> molecule are:

B, = I _ 1 )
dremir?(p) 1+cosp
h(%mg—f-ml) 1

C, =

: E-
dremyri(p) mg+m1(1+cosp)> (E-7)

We use the following notation for "zero” rotational constant:

h CgPP

B, = = E-8
°7 8memir: T 2myrd (E-8)
In the case of the bi-dimensional oscillator we have:
9 1
(P*) = —(v2+1) (E-9)
p
where o is the dimensional constant for the oscillator:
t=a,p’ a,= g%% = Bayg (E-10)
We are using the following approximations :
22
cosr ~ 1-— 5+ O(z*h
tan’z ~ 224 0O(z?) (E-11)
In this case we find for the bond length in the semirigid bender approach, from [147), as in (E-3):
2 d
r(p) = ro+d; tanz(g) +dop? ~ro+dy (g) +dyp? = 1o (1 + r—p2> (E-12)
0

In the case of small angles we expand in power series the rotational constants (E-7):

By

1

5 -

2 < 1 2 >
[1+ &2+ 0(p%)] 27 +O0Y

o < (1+21ri02) | (1—1”—)> iR G‘ %) (r*) (B-13)

4

C. =B < 1 mey + 2my > < 1 m >
v = D¢ 7" = 2 N
<1+rl/’2> mz + mi (1 + cos p) (1_'_%}02) i (2__p2_> + O(p%)

0

d 2
- gy ) () (5 9)

= Bt (-2 5.()

2m 7y

The mean value of the rotational constant has the formula:

= 1 1 1 2d my 2d
_ = 1 - 2 1 i 2
B, 5 (By+Cy) QBe[ +<4 ro)(p)-l— +<2m ro)(P )]
_ Be /(1 my 4d N B fm4+2my 4d 9 .
= B=+7<4+%—r0)(P>—Be+ ) 4m r (P )losc.bzdzm
B, fm+2m; 4d\ 1
- =) — = B, — 1 E-14
Be + 9 < e TO) o, (7)2 + 1) e Ole(vz + ) ( )
where:
g = (m+2m1 B 4_d) Cgpp . ?u (E-15)
4 2
m 70 HTo Wo
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The reduced mass for the bending displacement in the case of a symmetrical molecule is:
. _ 2
p=75r with p=1+2 (E-16)

We can find the bond length in the linear configuration from (E-8):

_ [ Caro 13
"=\ 2my B, [Al (F-17)

By taking into account the formula (E-15) we obtain for the bond length variation with the bending
angle:

|_C 1 /m+2m | el € 1 /=1 @els) .
d= gep_, _ — gep 2 i E1
2miB. 4 ( am T 4pB§> 2mi B, 4\ 4p ¥ 4pB? [A] (E-18)

If we introduce the rigid bender condition d = 0 we get the limit condition:

m+2m B, _ —B.(2p — 1)—{9—9 (E-19)
m W w2

Qe |l'im = —pB;

E.2 Relation between Bond Length Variation with the Bending
Angle in the Semirigid Bender Formalism of [14] and [147]

For the "standard” semirigid bender model, the bond length variation with the angle is done in [14,
eq.(20)]:

rig =% — 42 (5, _ )+[i_ﬁ]( —p)? (E-20)
BT T T e e T i 2] P TP

The previous equation correspond to a potential defined as:

vEL = %Z FaRI+DfijRiR; + é D fu R+ %Z fiiRiRI + Y fipRiR;Ry  (B-21)
i i>j i i>j i>j>k
In our formalism, [147, eq.(5)], the bond length variation is as in (E-12):
rio = 8 + dj tan? (’23)2 +dyp? ~ vl +dp?  with d=4% +d, (E-22)
If we write in another form (E-20) we will have:
r(p) =~ 7o+ Dip — 2Dapep + Dyp? (E-23)

with the values 7, Dy, Dy defined as:

2 X
7o =18 — Dipe + Dop? Dy = ‘f'ﬁ D, = (ﬁ:“"—l - ‘2}%) (E-24)

If (E-22) must be equivalent with (E-23), we have (because in (E-22) there isn’t linear terms):
Dy — 2Dsp. =0 (E-25)

With (E-24) in the previous condition we get:

fiii
This condition is fulfill for the linear molecules where f;2 = fiiz = p. = 0. In the general case, if the
two formula (E-20) and (E-22) are equivalents, the condition (E-26) must be fulfilled in the limits of

experimental errors. We will test the previous condition for the water molecule [39]. In this case the
potential has the formula:

2
fiz = (Q - fm) Pe (E-26)

QVPL = Z K(q,- qJ') R; Rj + Z ]&’(q,' q; qk) R; Rj Ry (E-27)
i, i2j2k
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The potential constants from [39] (if we consider eq.(E-21) and (E-27)) are:

K (qz)PL = 8.4526 fii = 8.4526
K(g¢')P¥ = ~0.1004 f;; = —0.1004
K(gv)PE =0.22415  fi5 = 0.22415 (B-28)
K(¢®7)PL = 04649  fip = 0.4649
K(gvH)PE = —0.5226  figy = —0.5226
I((q3)PL = —19.749 fii'i = —6.583
Equilibrium angle is done by:
pe =T — e = 3.14159 — 1.8378 = 1.16217 (E-29)
Therefore:
2
(J;” - fm) pe = 0.5978 (E-30)
The error is:
2%1
= l:f12 - < fn?) :' % 100 ~ 91% (E—?)l)
fzzz f12 + (""‘z f112> Pe

This error indicate that either the two formalisms are not equivalents, or the power expansion in eq.(E-22)
can not be done for a bent molecule.

E.3 Theoretical Formula for gp Parameter

E.3.1 The Hamiltonian Terms in Normal Coordinates

General Formulas

The relation between the curvilinear stretching and the normal stretching co-ordinates (6] is:

S=L-Q (E-32)
The L matrix is defined as:
U (GF)L=A (E-33)
From the previous equation we find that the L matrix is diagonal, L;; = Ly di;. In the case of a
symmetrical molecule, the L matrix can be determined from the normalization condition [6, eq.(3.26)]:

LIT =¢G (E-34)

From the previous equation and from the equation for G matrix [6, eq.(3.20)], we found that:

_ mo+2my sin2? £ mao+2m, cos? £ N
Ly =y /222ty oy fradimcetd (E-35)

In the case of the linear molecule (p = 0) we get:

L= 7z and Lo =,/matlm - Vimm =& (E-36)

If we use the relations between normal and dimensionless normal coordinates from [45, eq.(9) and (9a)]:

Qn = thC-\/i-J—th = gn =/ E -V Qn

(E-37)
2\/2%"\/51% = pr= %\)—%
we find the zeroth Hy Hamiltonian from [45] in the normal coordinates:
1
=52 [Pl +wiQf] (B-38)

h
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The perturbational terms from the Hamiltonian [5, eq.(62)], which are interesting for the rotational
constants are the following (in the normal coordinates):

asgnpw  with ag = pi, Lis Jy

ayqn with af = % (piy + /L;y) Ly J? (E-39)
asqng;  with as = Koz Ly

asthIQﬁ with a5, = %#},p(ﬂgp)_l Ly

In the following section we use the notations from [45]. The terms corresponding to first order of pertur-
bation,

H = i[HS, — S,Hy) (E-40)

together with the corresponding contact term S,, and the diagonal contribution from the second order
of perturbation term:

Hrp = % [SpHﬁl) - Hv(-l)SP} (E-41)
are computed for the terms from (E-39).
e The term a;¢; require a contact term which has the expression [45, Table 2J:
a
S = _Il Ph (E-42)
If we put H}l) = ai1qs, as in [45], we obtain for S; the formula:

ai _
s 15 E:43
51 hw? L ( )

The diagonal term do not depend on ¢ or pj, coordinates.

o The term asgnps require a contact term which has the general expression (from [45, Table 2]):
a
Sa= —A—4 (Ba qnan + Ca papn/] (E-44)
4

If we apply the algorithm as described before (E-43), we obtain for S, the formula:

Se= it gy o + o) (5-15)
The diagonal term Hy;4,4 is (similar with [45, Table 3], and using the commutation rules from [45,
Table 1]):
aj 2 (2 _ 2
Hyqa = Tl —wi) (4% — air) (E-46)

where we have considered that: (pfl),-,- e w,%(qz)“-

o The term asgn g2 require a contact term which has the expression:

a
Ss = —A—5 [Bs qipa + Cs (pran + anpn) qn + Ds Paph] (E-47)
5
As previously discussed, we obtain for Ss the formula:

a5

55:

L (4w? —w? ) [(2“42; - Wizu) quh' +w,2,, (Phgn + qnpn) qu + Qp,%ph:] (E-48)
R h b

)

The cross term between S5 and H{l , namely Ho 5 , and the other one Hy 5 are:

Hou5 = —asat gy Hasn=-32 -4} (E-49)

5 2
2u.)h 2wy

We see that the two terms have the same form, as it must be.
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o The term as,gn:p} require a contact term which has the expression:

Q54

SSa:_A

[Bsa Pipw + Csa (pran + qupn) ah + Dsa ¢2pn] (E-50)
Sa

The term is obtained from (E-47) swapping the operators g5 = pj. As previously discussed, we
obtain for S5, the formula:

Qas5q
T3 2 3 2
hwh’ (4(“).’: — Wiy

SSa =

) [(2wh —wi/) phpw — wi wh (Dran + anpn) gw + 2igipn]  (B-51)

The cross term between Ss, and Hl(l), namely H5.1 5, , and the other one Hy 5., are:

i i
— 35ad; 2 2 — 2185, 2 2
H2;5a,1 = - 2(_:2’ Wp - 4p H2;1,5a =Tl Whi = Qi (E-52)

We sce that the two terms have the same form, as it must be,

Constants Used in the Computation

The transformation between the normal ”bending” coordinate and the bending curvilinear one is [210]:

Qo (1d,) "% p cosx (E-53)

Qay = (ng)_stinx

where Q% = Q2%, + Q%y. If we use the z coordinate from Laguerre polynomials, the relation become:

1
Q=—=z (E-54)
aQ,

o
where: ag, = (a';""> is the dimensional constant, and we have for the square of the coordinate:

(@)= — (v2+1) (E-55)
aQ,
From (E-53) we find for the angular momentum:
oln —a
P, = -— (ﬂgp) ?psiny Pg,. + (,ugp) ? p cosx Pg,, (E-56)
P, = (,ugp)_i cos x Po,. + (Mgp)—a sin x Pg,,

The transformation relation between the curvilinear bending coordinate and the dimensionless Laguerre
polynomials coordinate is (from (E-53)-(E-54)):

pa= al—p:c with o, =% (E-57)
and the equation between the two dimensional constants is:

@Qs = Hpy @p (E-58)

In the previous equation we use the constants from [5, eq.(64)-(67)] for the rotational terms involving
('l)g + l)

2 1 X ’
a= fff =\ 5= <WT2) (E-59)
Hop Fop  Hop Hop

where the force constant for the curvilinear coordinate is defined as:

@ a®
foo=— = — (E-60)
1 1D,

Using the equation (E-8) for B, the constant a become:

wn
e —h E-61
8p B, (E-61)
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with @, and B, in em!. From (E-61) it is easy to see that the value

2 2
<%> =64p° <%) <1073 , (E-62)

and in the first approximation the terms proportional with the previous constant can be neglected. In
the following sections we use the constants from [5]:

wy = my (ma + ma) rf2 uz = ma (my +my) ’"gs U3 = mlmgr?2r23 (E-63)

If we consider the p dependence of the bond length, the previous equation become, in the case of a
symmetrical molecule:

up=uf (1+280%) us=1uf (1+289%) w=ufy (14 9F%p?) (E-64)
The equation between the instantaneous bending coordinate and the curvilinear coordinate can be ob-

tained from (5, eq.(49)-(51)], or from [6, eq.(3.14),Table 1], if we use the power expansion for the trigono-
metric functions up to the third order:

uys (ui + u13) uy3 (i +u13) (1 us uls )
i 1+ = i + Si
p p{ Z[’“zz (wius —ufs)  riz(wius —uis) \ 6 2(wi+ws)  (wyus— uly)’ g

=p {1 + ) [GF + Ghypp?] 51} (E-65)

If we use eq.(E-60) and(E-65), we find the anharmonic constants depending only of the harmonic force
field in the true valence coordinates:

KHsrm = £GP = o ungf’ = 2a’y (E-66)
]\ggzrgn "= f22Gly = a luppG122 e “2‘127712

and the constants ni, ng are defined as in [5, Table VII]

The Diagonal Terms for the Rotational Constants Involving (v, + 1)

We will do the calculus of the most important contact terms from the Hamiltonian defined in [5, eq.(62)]:

e First order terms:

il
(n[HWn) = (nl5 (432 J2 + gy J7) p*In) = (um + u22) (n]|J2p%|n)
1 2 1
ol (2% + pga) (I2)p%) = 7 2z + ) J(J+1) — (v, +1)
p
= B J(J+ 1) (v + 1) (E-67)
where
h3
B(()l) 4 (:LLJ,‘:L' + luyy) (E'68)

e Terms in the second order of perturbation:

— The term a4qppp is computed using (E-56) and the contact transformation S, defined above:

l o 1 — 1

5P ) Si (Jy P+ Pody) = p7 . Jy Si P (E-69)
= g, Lis (15,)7 % Jy [—sin xPg,q + cos xPo,y] Qi

(Pt us,) Sip ' Ppde = i, PpSiJs

-1
2

= b, Lii (13,)” % Jo [cos xPo,s +5in X Po,y] Qi (E-70)
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We have the constants:

(21) = —pyz L;; (lupp) ¥ J sin x (14(1 ) = llyz Li; (,ugp)—f Jy Cos x (E-71)
a(pl) —u”L (pr) : Jr cos x af{’") _#T,p Li; (ugp) ? Jpsiny
With ,uLZ = ,u;p, we have the diagonal term:
e ] el
(n|Hz44n) = w? — wl) wy (QF - Q3)
= BP.JU+ 1)(v2 +1) (E-72)
where:
(2) _ h3a B 2

= . L;; E-73
0 4 (w% _ w12) (uyz “) ( )
The terms: ag,qh:q,%, and asaqh:pfl, are computed using the contact transformation S5 and Ss,
defined above. The terms are computed in connection with a/ gy and the contact transfor-

mation Sy.

K{g™ Sir® = K™ - Lu Qi - (p,) @3 (E-74)
as = K357 LiipS, (E-75)
With (E-56) and p!, = p5,, we find the constant as, as:
% {(o0 = P*10p) P Pop™ Pyt (pzz — p~%prz) P2} = %'“}w (15,) " LiuQi P}
v = 0 e

where the coordinates are: ¢n = Q; , gn = Q2 , pn = Ps. The term aiqp can be obtained
as:

1
& = 5 (1hy + ply) Lis J2 (E-77)
with the coordinate ¢ = Q;. We obtain the form of B(()s) from:
(n|H2a5+ Has1 + Hojt 5o + Hosan|n) = B(()S) J(J+ 1) (v2+1) (E-78)
where we have:
A 1 -2
3 m
B(() ) - _E w_ [(#zx + l"yy) L ] l: {lgg + 5“‘;; (ng) ruflm] (E_79)
7
Taking into account that:
Jharm uiz(uy + u13) 9 o U13(u1 + u1a) 2 2
= fog—m—— 2/ — —_— = = 9a E-80
122 f2 T,z(u1U3 _ u%3) pp T{Q(u1u3 _ u%g) 771 ( )
the final form of B(()S) is;
(3) Ka 1 1 i 1,
BO = —%_2 [(ﬂx:c + tuyy) L”] m + Z#M‘ L“ (E_Sl)

— —
"y

In the case of B( ) we have the same relations, but instead of K 1’%’"’ we put Kqg9, and we

do not have the term asaqh:ph The final form of B(4)
(a_ B 1 .
By’ = iy @ [(ay + ﬂyy) Lii] [K122 Lii] (B-82)
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E.3.2 Expansion in Power Series of the Elements of Metric Tensor

The calculus of the elements obtained from the metric tensor expansion, [5, eq.(61)] is done for the volume
element [5, eq.(57)]:

dV = dQ1 dQs pdp sin 6 db dy dx (E-83)
u 1s the inverse for:
T = [Tag = Q7% (¢P)'7] pmGGrotirn) (6-84)

If we consider only the first order terms in the stretching coordinates ;, u will be the inverse only of
the tensor Io3. We consider the series expansion:

p=WIPW)™ = > w0 IO ()t wt s (E-85)
i=1,3
with
Wap = [L+8ap (p71 = 1)] bap (E-86)

It is convenient, as in [5], to introduce the following coefficients in the power series expansion of the
elements of p:

pap = p* (pop + B2 00+ HEE P Z Pog Si+ G Sip? + )+ (E-87)

where
n=0— flzge, fbyy N=—2— U, n=2- fiy
n=—=12pys oy N=12 pgp, poo

From (E-85) and (E-86) we have:

pap = Waa (I)2f Was + Y Wil (I°)73(JD)ys (I°)5 Wap S:

i=1,3
= WaaWps |15+ D (e (79)35 (1955 Si (E-88)
1=1,3

To find the tensor elements of p,p defined above, we must compute the values for the inverse of the
tensor Iog, defined in [5, eq.(37)]. We will use the angle dependence of the bond length as in (E-22),
and the constants defined in (E-64). The bond lengths in the linear configuration are assumed equal,
r12 = Te3 = 7p, which is true for a symmetrical molecule. We have the following expansions in power
series for the £(p) and related quantities, in the first order in p:
. ug + ufs
TEE
0 0
_ 0“1 ‘2“13 , (E-89)
uy +ug + ujg
uy — uj
ui + ug + uf

™
!
™
¢

p—2 =~ p-

2
Uy + U3 COS p ~ U1+ U3 (1 B P?_)
u1 + ug + 2uzcos p u + uz + 2uy3 (1 - %2)

elp) =

uf + ufs 2 uis(u —ug)
uf + U + s 2(u} +u§ + uls)
In the above equations we have taken into account the terms in the second order expansion for p, and in
the case of a symmetrical molecule we have:

wtugy o~ u0tul, with i=1,3 (E-91)

= 9] 0 0
uytuztuis u;tuztul,

(E-90)

Also, in the case of the symmetric molecule we get:
e=£ p—c=£2 p-2=0 &(p)lym =13 (E-92)

With all these computational considerations, we get for the elements (Igﬁ)
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m
10y-1 22 2
o ( )1‘1‘ ui + u3 + 2uq3 COSs p ;u:cx  Hooh
where
N L
Hez u? + U-g + 2“?3
u22 = Ll uldy — 2 [(ul +uls) di + (u§ + uls) d)
i (u + ug + 2uf;)? To

In the case of the symmetric molecule the previous equation become:

1
0 -
()uxx)lsm. - 2?71ng
1 p—1 d
22
= — £ _3g
(Hxx)|s|m 4m1 ,,,g [ P 7,0:'

ith 212 =21 m _ m - 2p iscrimi is:
with 78 = BEo=, m; = Ppand 2t = 527 The discriminant is:

A = ]gy]zoz - (I;z?z)z
1
= — [ul COS2(p—6) + uzcos? e + 2u;3 cosecos(p—a)]
m
*  [ursin®(p — ) + ugsin® € + 2ujzsin esin(p — £)]

il
=i [u1sin 2(p — €) — ugsin 2¢ + 2u3sin(p — 2¢))?
m
1 . . }
== {wi1ugsin® p — uZ, [sin 2esin 2(p — €) + sin?(p — 2¢)]}

After using the equation (E-64) we get:

. 2 A
A:p_[AO__QPQJ

m?2 3
where:
4(ug + ufz)(ud + uds) — (uf — ul)?
An = 100 — (4022143 13l 13 1 3
0 U Uz (u13) (u?+u§+2u?3)2
di+d
Ay = ulu 3[1—6 iy 3]
7o

= (4

)2 8(uf + us)(uf + uls) ) [(ud + Uls 24 (ud + uf3)?] + (ud — ug)
2 (uf + u§ + 2uy3)*

- 6

dy + dg [4(u§ + uls) (uf + uls) + (uf — ul;)?]
7o (ud + u§ + 2ufy)?

In the case of the symmetric molecule we get:

_ 2 4
Aolsym = mimamrg

12d
Aglsym = mfmgmrg (1 - ?—0-)

o We consider (I°),!:

]0

sz

A

oN—1 __
(1 )yy =
with:

=1
22 m
1 5 1 , 1 1 ]
“m {u1 [(p —e) - 3= 5)4} +us (E‘ - 554) — 2us3 <€ - 553) [(P —e) =3
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[u1sin®(p — ) + uzsin® e — 2uigsinesin(p — e)]

(E-93)

(E-94)

(E-95)

(F-96)

(E-97)

(E-98)

(E-99)



After expanding all terms in power series in second order, we obtain:

g 1
19 = 2 ([ Ag — = Ayp? E-102
A (5102
with:
_ ud(ud +ufs)? + ug(uf + ufs)? — 2us(uf + uis)(ug + uls)
Ag = 13~ 13 (E-103)
(u} + ug + 2uis)?
4, = W02+ uda)t + u(uf + ula)! — uis(ud + ufs) (u3 + uly) [(ud + uls)® + (uf + uly)’]

(u + ud + 2uls)*
6 diud(uf +ul3)® + dsug(ug + uis)® ~ (di + da)(uf + uls)(ug + uds)uls
7o (u + ug + 2uls)?

In the case of the symmetric molecule we have:

1

AOlsym = §m1m2r§
1 ) d

A2|sym = gMmimary 1—24— (E-104)
8 o

The final form of (%) is:

% = m u
Ao (1- B2p?)
Ag Ay 4 2 o 0 Ao (A2 Ay ,
~ = =z I (P
Ao ( sa,” ) ' T 34, 2o ™3, \ Ay T 4,
= pgy +uip’ (E-105)
In the case of the symmetric molecule we obtain:
A 1
0 _ 10 —
(ﬂyy)lsym - on 2?'?!.11‘3
A Ay A 1 8d
22 — o f=2 2y - (2 -
Wyglioum = M3R (Ao Ao) 8my 12 (1 r0> (E-106)

In the same way we consider (/°);}, which has the form:

IO
()5 =4 (E-107)
with the tensor element:
1
Igy = = [u1 cos®(p — €) + uz cos? € + 2uy3 cos ¢ cos(p — £)]
1
= — (By — Byp? E-
with:
By = ul+ud+2u,
B, — Uil +uds)® + ug(uf + uds)? + uls [(ul + uls)® + (uf + uls)’]
. (4 + uf + 2ufy)?
2
- [uldy + udds + uls(d1 + d3)] (E-109)

In the case of the symmetric molecule we have:
Bolsym = 2m mrg

N d
Bleym = -mpmrg <1 - 8_) (E-llO)
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The final form of (1°);} is:
By — Byp?
£ (Ao — 32907

m Bo BQ 2 1A2 2 1 0 22
—_— (1 - = 1 —u T = — 5% E-111
A < 57 +35.° P2 [z + 137 (E-111)

(%) =

12

where:

ﬂgz = Mm—
By (1A, B
pro= m=> (——“——2> (E-112)

In the case of the symmetric molecule we get;

2p
0 _
(/‘lzz)lsym - ml,,,,g

1 24d
W2, = P Q——J (E-113)

6 myrd o

We compute (I°),! and we start with:

4

(1)) = _]192 (E-114)
yz A

with:

1 . . .
I), = o [u1 sin2(p — €) — ugsin 2¢ + 2uy3sin(p — 2¢)] (E-115)

After the calculus we obtain:

C
P =" (Co + —2p2> (E-116)

vz 2m 3

o 12(u} +uls) — uf(u§ + uy) + 2uds(uf — uf)
ud + uf + 2uf,
4 [ud(uf + ufs)® — ud(uf + uls)®] — ufs(ud — ug)3
(uf + ug + 2uf;)3
2 [ugda(ug + ufs) — uldy (ud + uly)] — uls(ds + da)(ud — ul)

6 E-117
* ro(uf + ud + 2ul;) ( ")
In the case of the symmetric molecule we get:
CO|sym = 0
Colsym = 0 (E-118)
The final form of (1°); 1 is:
()5 = p7" (ng. + 122p%) (E-119)
In the case of the symmetric molecule we have:
Co
0 _ .
(luyz)!sym . 771_2 AO . 0
a9 mCo CQ A')
22 = a2 =0 E-120
I (6120
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o We have to calculate (1°)7} as:

m

%71 = E-121
()0 u1 (1 —€’)? 4+ uz(e’)? — 2uyse’ (1 — €') cos p ( )
After calculus we obtain:
(I°);5 = ppp + 1oop” (E-122)
where:
0 m(u) 4 ud + 2uf;)
C T R
2
‘LL22 = (u? + ug + 2‘”’?3) [U?S(U? + u?s)(ug + U?B) e 3(”?3)2(/“? —= ug)z (E-123)
i ujug — (ufs)? (uf + ug + 2ul;)? (uf + ud + 2uf;)?

n [di(u) + ul3) + da(ug + ul)] [udud — (uf3)?] — (d1 + da)uda(ul + uls)(u3 + uls)
rg(u? + Ug + 2U130)2

In the case of the symmetric molecule we obtain:

2p

0 _
(Bop)lym = — (E-124)
22 P 2d
= — -1y - — —
(55 ym Sr? (r—1) o (P=3)

04

We will calculate the J (2 elements from [5, Tab.VI], expanding in power series with respect to the p

angle, and we will drop the terms after the second order. Because &'|;ym = % for a symmetrical molecule,
we have:

7681 = 1753) (E-125)
)

The nonvanishing derivatives Jé’ﬂ of the a8 component of the moment of inertia tensor I,z for a sym-
metrical molecule, taken with respect to the symmetry coordinate S; are:

(p— 1)2p2] 1
p o (1 + %Pz)

2d 2d 2
* [u? (1 + Ep2> + “(1)3 (1 + Ep2> <1 — %)]

Kim = 231

d -1
~ 2myrg {1 + [— - (p_)} p2} (E-126)
To 4
[ J
2 2
i ~ T ans? (P2Y ~ g0 L.p
JzSy)lsym . Jl(w) E0S (7) = Jx(a:) [1— 5(—2‘)]
2p—1
- 2m1r0{1+ [i— P :IpQ} (E-127)
7o 8
L
. 2 . 2
IWlom = s () 2 19(2)?
1, d -1 1
= §p‘m11‘0 {1 + [E_ p_4_] p2} = §m1r0p2 +O(p%) (E-128)
. . o1 1 da p-1
i ~ i 2 .o Lo 2 ey 2
° J,E,,)|sym ~ Jx(x)(a’) ~ Jx(x)4 = 2m1r0{1+ [7’0 = ]p } (E-129)



(1) = _ g3 _ = _(p—1)22 Ty ] 1 .
o Jyo lsym = =Jg7 lsym = o [l i p°| [w1sin p — uy3cos psin p oy (E-130)
After calculus we obtain:
9 d (p - 1)
T gym = p 0l p 2 | Ly 22 E-131
gz lsym = p , i 7P ( )

p—1 [1_ (p—1)°

] 1
N — — E-132
— M,p}m iy cos ] o (E-132)

L4 J;Ei)lsym = _J;(;i)lsym =

After calculus we obtain:

d (p—1
I |sym = % {1 +p? [E + (Z—p)]} (E-133)

Now, we can compute the p tensor elements (E-87), with the equation (E-88):

®
(ool = ()20 = 3 [(1)5098001°)32] S
i=13 s
= ()2 = [R5 (51 + 55)
= Hop + 1320+ p3o (S1+ Ss) + pi2 (S1 + S5) p? (E-134)

where the expansion coefficients for the bending coordinate are done in (E-95) and for the stretching
coordinates there are:

1
1 ey —_—
(HEI)lsym . lerg
1 3d  (p—1)(p-2)
122
— o E-1
W) = g |2 21 (B-135)
[ J
Byl = ()5 = IO 7 O3] (51 + S3)
= Hgy + Hygp” 4ty (St + Ss) + 2 (S1 + S3)p? (E-136)
where the coefficients for the p coordinate are from (E-106), and for the stretching coordinates we
have:
1
1  m— ——
(Hyy)loym = omyr
1 3d  2p—5 '
V2 = — E-137
Fn = gy |+ 227 (B-137)
[ ]
(BN = ()= 30 (U000 5
i=1,3 L.
= 77 [l + HE20% + L (St + Sa) + pi22(S1 + Sa)p?] (B-138)

where the terms for the bending coordinate are defined in (E-113), and for the stretching we get:

2

2p*
1 —_ T
(:u'zz)lsym - 77’1.17'8
) 2p° [3d 2p—5
122 . E-139
P, = | 2 (8-139)
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Bydim = ey = = 3 [ TP U] S
i=1,3 |J§1z)=_J§::)
= p7" [y (S1 — S3) = w2 (S1 = Sa)p?] (E-140)

where for the bending coordinate the coefficients vanish as in (E-120), and for the stretching
coordinate we have:

1
1 _
(#yz)lsym - _ml,rg
1 Tp—4 3d
122
_ _38d E-141
(y Jevm miry [ 12p ro] ( )

(po)ioym = pz{u‘));;a [(I“);M?(f");)]sf}

3
= P2 [pS, + 122 + pl (St + Ss) + u22(Sy + S3)p?] (E-142)

where for bending we have (E-124), and the remaining coefficients are:

2p?
1 —
(ﬂpp)lsym - _ml'rg
2p? [3(p—1) d
122 _ A — -
W = i [M Ly (143

(sz‘)lsym - (ﬂ:vp)lsym :p{— Z [(IO);pljl(,;)(Io);:rrl] Sz‘}

i=1,3
= p[#po(S1 ~ S3) + 22 (S1 — S3)p°] (E-144)

where the coeflicients are:
1

1 = -
(:up:c)|sym = mlrg
1 [(p-Dp—-2) d
122 _ _ B i
(Bpz )oym = myrd 4p 27‘0(5 P) (E=LED)

As in [5] we have the relations between coefficients;

Moo = por = po2 =0 e =y, i, = Hi,
and (E-146)
0 [} o _—_,0 1 1
ux:c . /‘Lyy /j’zz - upp /J'xa: = )uyy
Hpo = =Moo Hy. = —Hy, Hpeo = —Ho2" 3% = —p3s”

E.3.3 Calculus of the gp Factor from the Rotational Constant Expressed in
the Two Formalisms of [5] and [147]

In the equations [5, eq.(64)-(67)] concerning the terms from rotational constants involving (vy + 1) de-
pendence, in the first approximation, only the first terms of each equation for B() are considered. This
is marked by the subscript ”” for the terms B(¢) — B((;). This is due to the fact that the other terms

in these equations are multiplied with (%)2, which is a small factor, as shown in (E-62). In the demon-
stration below we will use the constants and factors previously defined in (E-59), (E-60), (E-61), (E-8),

(E-35),(E-36). The terms B.") are multiplied by (v2 + 1), against B® from [5], which include (va +1).
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In the "semirigid bender” formalism of [14], the bond length dependence of the bending angle is
defined for a linear molecule as:

: K
dBL = _ iz __ Kia E-147
W 2 fii fii ( )

In our formalism the same dependence is defined by the equation (E-12), as in [147]. The formula (E-15)
for the a, factor in the rotational constant can be rewritten as:

B 2p—1  4d°n/ B 2p—1  4dS¢h7
B = _aSM — B ap <~_e) < P _ ) = Bep <Te) ( P _ aay ) (E-148)
wa 4p ro Wy P T

where B is defined in (E-8) and df*’ in (E-12). The factor gp is defined as,

gp = %‘c;; where dPL = %L— (E-149)
1
and can be found from the equation:
BChJ = B(()l) +Béz) +B(()3) +B(g4) (E—150)

The quantities on the right of the previous equation represent respectively [5]:

o B(()l) : first order contribution from terms quadratic in Js and Jy, corresponding to a£%™™ in the
traditional formalism. The equation for this term, in the case of a symmetrical molecule is, from
(5, eq.(64)] and(E-68), with (E-95), (E-106):

B3 1 B 2p—1 4dBL
B _ 22 22y _ p : 2 E-151
0 4a he (“:c:v + /‘Lyy) eP A P . (E-15 )

° B(()Q) : second order contribution from terms linear in J, and Jy, corresponding to a§°". In the
case of a symmetrical molecule, using [5, eq.(65)] and(E-73), with (E-141) is:

3 3 2 2
(2)  _ hai 2 _ oL ,,Z_hai 12 L, Lss
S — 4 he (w3 —wi)™ [y La]” = 4 he (1) wi — w? +w§ - w?
B\ 2w2 1 P
= B = il =5 [l= .~ = = E-152
(2) 5 e e e

° (B((,S) + B(()4)) : second order contribution from products of a term quadratic in J, and J, and a

term independent of J, and Jy, corresponding to a§™", respectively. Before analyzing the B(()s)

term, we must find the corresponding quantities from [5, Table VII], using (E-65), (E-66), (E-80):

mo= 0= %ﬂﬁpGi’ = Béfn:ré)
mo= n3 = —%uﬁpGi’n = % (E-153)
mo= = 77%‘*‘%“/13;0 = “5md
R R Te = A
To

In the case of a symmetric molecule, from [5, eq.(66)] and(E-81), using (E-66), (E-80), (E-153) and
(E-135), (E-137), we find for B((,S):

R3a 1 ; 3 i ha —L2 —L2
3 i 5 — 2
B = 3= gore ke 4 )LR) = — 52 [(uks + ek, )nd] [ o w]
B\ 205 [ 1
= —B.p (:—) = [73 %J (E_154)
wa P wp w3
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In the case of the stretching potential constants, using (3.28), (3.38), (3.41), (3.42) and (E-35),
(E-36), the formula similar with (E-60), for the stretching coordinates in the formalism of [5, 6], is:

fii= %;— where the effective stretching mass is:  mg, = (Li;)™? (E-155)

With the previous relation and with (E-147) we have the important relation in the case of the
”semirigid bender” approach:

> [wiKin(L —| > dft = —2dBL = —%df’“ (E-156)

i=1,3 i=1,3

lsym

The above equation is not quite the equation which define the angle dependence of the bond length,
as in [14, eq.(20)], but a mean value, closer to our definition of this dependence, as it is in (3.56)
and(3.220). The factor d”% is function of both stretching frequencies, and it is equal with the
formula of [14] only in the limit case, for small angles, when, from (E-155),

> = \p

With [5, eq.(67)] and (E-82), using (E-135), (E-137) and (E-156) we calculate B(()4) as

Ezl €1

B = SRt L [ iy Kiant3) = = [k ) K] [B 1
B . 4a t he "7 yy /o ras 4ahe V77 yy/H122 w? w3
_ B, . 1 p] _ B.\ 4dPt
= Bep (——&2> - 32Be(roK122) [&—% + ag] = —B.p (02) g (E-157)

Obs. There is a very important observation to be done: we can not use in the same time the df’ term

from B( ) and the B (*) This is due to the fact that in the case of the ”semirigid bender”, the term
Kigo vanlsh and is replaced by the d?% factor, as pointed out in the equations (3.56), (3. 57) and in
(§C.2). Therefore, we can use the two similar approaches:

¢ ”Rigid bender” approach: we use all the terms B(()l) (4) , but B (1)-Figid 1 os the formula:
Bél)—Rigid — B.p <%> 2p—1
w2 p

which is issued if we have dPL = 0 in (E-151). The previous formula is identical with (E-19).
) (

e ”Semirigid bender” approach: we use only B(()1 ) , because in that case K;oy = 0.

We see from (E-151) and (E-157) that the terms mutual exclusive are equals, and therefore the results
will be identical.

From the equation (E-150) with the above formulas for the B¢/ and B®) ¢ = T,4, we find the final
formula concerning the gp factor:

o 203 [ 1 P ] 202 [ 1 ]}
B = 1+—{—— _ R A ) PR
44PL p? |@i-&f &2 - ol p |w? &3
= g 0 2“’2{ 1[ Lo P ]+[—+—]} (E-158)
4dBL p plof—-w?  &f-&2 o ol

It must be emphasized that the factor d®* does not vanish, due to (E-147), because always K9, A0 in
the true valence coordinate system. The equation (E-156), in the case of a symmetric molecule, can be
put into another form, more useful, with (E-8) and (E-168):

9., ~ 1
Z [wi-_“f\'igg(L“)z] = 4B.ro(roK122) I: — + ~p2j| (E-159)
i=1,3 “s

With the above equation and with (E-156), the final equation (E-158) can be put into another form,
depending only on spectroscopic and potential constants,

~9

ws 1 1 p )

=1+ — 1- ( — + = E-160

b 16})33(—7‘0]\'7123) P (-Lz + __&q) wg R w% ws; — L«J§ ( )
il w3

215



E.4 Phase of the STU Matrix from Jungen and Merer [15] Used
in the Stretch-Bender Model

The waves functions in Jungen approach [33, 15], in connection with (3.174), are:

|1/)Ch.]> — IwRenner)(wRennerl,(/)ChJ) — ’wRenner)(Sl)
<¢Cth - <wChJI,¢)Renner><,¢Renner| = (Sl)+<,l/)Renner|

We define the matrix:
(Snm = (=1)"""6pm (E-162)

where n,m = 1, N. The wavefunction vector |"""€") is formed by wavefunctions @igy, defined in (3.95),

where v = 0, N, and the counting into the matrix begin from 1. We consider the matrix change as:

(E-161)

SehI (¢Cth cos 6 N)ChJ> - (Sl)+(wRennerl cos ¢ leennerMSl) _ (Sl)+S(SI)

sin 6 sin @
TChJ — (wChJ,—“bChJ,-f-) — (Sl)+<wRenner,—IwRenner,ﬁ-)(sI) — (Sl)+T(SI) (E—163)

The matrix S and TC" | as well as US*/ are defined in [15]. The U matrix is linked to the USH"7
matrix as below:

U=(S)(U) and UM = (S)* U (E-164)

From the previous relations (E-163), (E-164) let us to obtain the total matrix:

(STU)ChJ — SChJ TC’hJ UChJ
(SY* S(SY(SHFT(S) (SHH U = (s)* (ST V) (E-165)
SChi TChJ UcChJ

E.5 Constant Values Used in Numerical Calculus

The constant which enter in the dimensionless factor from Hermite polynomials variable is [212]:

ple wls™!]
o = ———— o
hlerg - s]
B p[amu] - 1 amu [g] 2med [em—1)
- hlerg - s ELW
— lamu [g] ¢ [ 2]
- “Toom | ——= e E-1
Vi lamu] & [em=1] - 2x o] (E-166)
c
where
C1 = 17.222085 - 105 cm ™! (E-167)
The constant C, from eq.(3.191) is
Co=0C-107°
due to the multiplication with 1A = 10~ 8¢m.
The dimensional factor from the adiabatic and non-adiabatic integrals (3.192) is:
15’
Z AgPP -1 -2
57 (97 [g7" - em™?))
- h? :
= g% [(amu)=t A~ [erg - <] (E-168)

-

2herg - 5] clem-s=1]- lamulg] - 10-16

-

Cgpp

where Cgor = 16.85771 cmn ™!
The adiabatic and non-adiabatic integrals from (3.192) have to be multiplied by the constant Cger -
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Appendix F

Extension of the Formalism for
non-Symmetric Molecules

F.1 Displacements for the Stretching Coordinates

The total mass of the molecule, m is: m = m; 4+ my + m3. The conditions for the displacement involving
only r15 bond, are (see Fig.F.1, (a)):

d3z = 0 q3y — 0 q3; = 0 (F—l)

;
;oA X, Y axis,

Molecular plane ;D) E C@ . Molecular plane.

<)
Z—q)— 3

Reference plane —=

Figure F.1: The definition of the molecule-fixed stretch-bender coordinate system and the displacement
coordinates used for a triatomic molecule with an a symmetrical equilibrum configuration.a) Bond r;»
stretching; b) Bond ra3 stretching; ¢) Azimuthal angle ¢. The displacements in figure are much greater

than in reality.

The coordinates of the first atom relative to the second atom are defined as,

) = 2l —rpsin(p—¢)cose
v, = yy+riasin(p—e)sing
2} = 29— ripcos(p—e) (F-2)

Similar, the coordinates of the third atom relative to the second atom are,

) = zJ—riasinecose
Ys = Y5+ riasinesing
25 = 24 riacose (F-3)

The condition for the center of mass is:

mizd + mazd + mazy = 0
migl +mayy +may; = 0
myz¥ + mez) + mzzd = 0 (F-4)
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From previous equations we find the coordinates for the O axis,

©) = [myriasin(p — €) + marez sin €] C(::'o
2} = [~(ma+ma)riasin(p — €) + mgragsine] cc:lgo
2§ = [mirigsin(p — ) — (my + my)rossine] m (F-5)
Analogous as in [5, eq.(2)], we find for the second axis,
Yo = —[mr, sin(p — €) + maragsine] sngo
y? = [(m2+ ma)rigsin(p — €) — marazsine] Si:f (F-6)
Y = [—mirs sin(p — €) + (m1 + my)rozsing] %
and for the third axis:
2y = % [mirizcos(p — &) — marazcos €]
2 = % [—(ma + mg)riz cos(p — €) — myras cos €] (F-7)
zg = % [miriz2cos(p — €) + (my + ma)raz cose]

From the conditions for the center of mass [5, eq.(7a)] results for the displacements the following relations:
Ne = —%fgmx qly = —%(Jzy Tz = _%(]22 (F—S)
Taking the direction of & versor along the Oz axis, the displacement in the molecular plane is:

0 0

q1y _ yl - y2
- .0 0
q1z Iy — Tg

= —tangp (F-9)

Before using the Sayvetz condition from HBJ [5, eq.(7c)], we must compute the derivatives of the coor-
dinates with the bending angle:

0 0
%—?—%—? = —r12cosgo[r—2 —+—(1—6)COS(ID—6):I
dy? _ dy3 : I12
LR 1- - F-1
2 " r128in @ - sin(p —¢) + (1 — &') cos(p — ¢) (F-10)
929 929 s .
ol S A 1z —e)—(1— s
Tl 712 — cos(p—¢€) — (1 —¢'}sin(p — €)
The condition {5, eq.(7c)] together with (F-8) and (F-10) give:

oz? Oz oy} 048 929 929

I _ e 9 _ % TN, =0 F-11
m1<5p 3p>q1 +m1(5p 6p)qw+ml(8p ) ! (F-11)

The solutions are the following:
Szcosp [sin(p — €) St s(p—¢)
c = - s —g)—-—— ¢ -

Q1 3Cos |sin(p S os(p

G ol R T ( )
1y = Sssingp [sin(p —¢) T8 71, cos(p—¢

1 7y .
q1. = Ss|cos(p—¢g)+ —= sin(p —¢€) (F-12)
1—¢ r19

The relations (F-12) are consequence of the Sayvetz condition. If we consider the equations (F-2) together
with (F-12), as well as the (F-3) with (F-12), we get:

=204 q, xy= + oz T3 = gpg
v =y + gy y =Yy + @y Y3 =13 (F-13)
5=3 + 01 2+ g =2

[N
I

KJ
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When we introduce the relations (F-12) explicitly, the relations (F-13) are given by the equations:

(ms + m3) . ms . . 1 7,
—_ N2 3 ) - =2 S —&) — 12 _
T { T2 sin(p — ¢) —rygsine + S5 sin(p — €) 1 — & Baa cos(p —€)| pcosy
my ) ms . my | . 1 rip
= M - — Sy — —€)— —= .
Ty { T2 sin(p — €) + - Tssine + g [sm(p £) 1—¢ 1 cos(p —¢)| pcosp
m . (my -+ my) -
g3 = T sin(p — €) = ——"re3sine| cos
: ) . n 1 d "
Y1 — {Mrl2$ln(p._6) _ @_r2381n6+51 [Sln(p—g) — 'rl—z COS(p—E)] }Slnﬂo
m m 1—-¢ T12
my . ms . my . 1 TJIZ 2
= - — — — 51— - - o -
Yo { —=T12 sin(p —¢€) + 23 sin¢ + Ly [SIH(P €) T—¢ o cos(p—¢)| psing
_— [—%rlzsin(p _gy o It me) e 6] sin ¢ (F-14)
T m i szl
72 = —¥rlgcos(p —€) — ?31’23 cose — 5y [cos(p —&)+ T ﬁ sin(p — e)}
1 1a .
z2 = ﬂl~7‘12 cos(p —€) — @T'zs cose + 51 i [COS(P —&)+ L sin(p — E)]
m m mo 1—¢ r2
23 = ﬂrlz cos(p—¢) + Mrzs cosée
m m

The calculus for the stretching of the bond 2-3 is similar to that of the stretching for the bond 1-2, just
discussed previously (see Fig.F.1, (b)).

iz =0 qiy =0 ¢1;=0 (F-15)
From the conditions for the center of mass [5, eq.(7a)] results for the displacements:

g3z = —%Q% g3y = —%Qw g3z = —%922 (F-16)
Taking the direction of k versor along the Oz axis, the displacement in the molecular plane is:

0 0
g3 Y3~ Y
=B 22— tang (F-17)

3z I3 — T,y

As above, before using the Sayvetz condition from HBJ [5, eq.(7c)], we must compute the derivatives of
the coordinates with the bending angle:

0z§  0zY I:rlgs . , ]
—— — &7 = ~—Tr23Cosyp |——=8INE+E COSE
Op dp BEE r23
Oy _ 0y - [7"23 : : ] -
=2 — 22 =  py3sin —==8In¢€ + € CO8€ F-18
Op Jp Sy 723 ( )
0 0 !
Oz3 0z _ —793 [rﬂ cose — ¢’ sin 6:|
dp Op r23
(F-19)
The condition [5, eq.(7c)] together with (F-16) and (F-18) give the Sayvetz condition in our case:
ozl 929 oy 0Yd 82 823
2872 g, B2 B T2 ) g, =0 F-20
m3 ( 5 O g3z +m3 5~ Bp g3y +m3 3 Bp q3 ( )

The solutions due to Sayvetz condition are the following:

. 1 rhg
—Szcosp |sine — — —= cose
6/

g3z =
r23
33
= S3sine |sine — — —== cos¢
93y 3 ¥ |: ¢/ o3 :|
1 T’f)s .
qg3: = Sj|cose+ - —==sine¢ (F-21)
£ To3
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If we consider the equations similar to (F-2) together with (F-21), as well as the (F-16) with (F-21), we
get:

v =2 zo=al+qu 23=23+ s

V=Y Y=Y ey Us =95+ gay (F-22)
n=2 2=2+q. z3=25+gs,

When we introduce the relations (F-21) explicitly, the relations (F-22) become

(ma + m3) i ma .
T1 = —|————"ruzsin(p—€) — —rygsine| cos
m
!
mq . mg . mz | . 1r
ry = —r198in(p — €) + —rogsine + S3— |sine — — 23 cose cos
m m mo gl T93
my . (m1 4+ my) : : 1 rhg
T3 = —7Ti9 sln(p — 5‘) — =723 SIn € — 53 sine — o cos e cos p
m & Ta3
(m2+m3) . my .
Y1 ———738In(p —€) — —rgzsine| sin F-23
— (p—e) = — @ (F-23)
!
my . msg ) msz | . 1r .
Yo = — < ——ri28in(p — &) + —rygsine + S5—> [sine — — —23 cose sin @
m m mo gl 723
my . my + mg . . 1 r )
ys = ———rypsin(p— &) + £—)1’23 sing + S3 |sine — — 22 cose sin
m m g ra3
(my + ma) m3
z] = ——————%r13co8(p —€) — —r9z3cose
m m
!
my msg ms 1r .
Z2 = —ripcos(p—€) — —ryzcose — S3—= [cose + = 23 sine
m m mo € To3
my my + my 1 7rhs |
z3 = ——ripcos(p—e)+ (——lf’z3 cose + S3 |cose + = -2 sine
m € T23

(F-24)

F.2 The Derivative of the Bending Angle to the Stretching Co-
ordinates

The derivative of the angle p as function of the stretching coordinate, using equations (F-13) and (F-8),
1s:

(_(91) = (Op 89:1_'_8/)‘81’2 dp 3x3+8p Oy
0 81}1 85'1 81‘2 (951

85, dzs 8S, T By 85
dp dya  0Op 5Z2)
+ ayz 851 * (9z2 0SI 0
[ - me] (G L[ _mie) (o)
6.1‘1 my (9.1‘2 0 351 0 (9y1 mo 3y2 0 351 0
dp  my Op 0z
——-—"] (= F-2
u [621 mo 622]0 (851)0 ( 5)

As we see in Fig.(A.2) and from eq.(A-23), the angle p can be written as:

\/(181 - 562)2 +(y1 — y2)2 ety \/(»’83 - $2)2 + (y3 — y2)2

=) (s =) =

p = —arctan

We consider first the derivatives of the angle p to the Cartesian coordinates, from the previous equation
and eq.(F-5)-(F-7):

<507pl>0 = —Lcos(p—a) cos ¢

T12
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( dp > 1 1
- = —cos(p—c¢€)cosp+ —cose cosp
Ozs / 12 32
(0—p> = icos (p—¢) sing

31/1 0 Ti2
<8~p) - L cos (p —¢) sin — cos € sin

Oy2 0 T12 : 4 32 &

dp ) 1 .

— = —sin(p—c¢
(22 = o

dp ) 1 . L.

— = ——sin(p—¢€)+ —sine F-27
(622 0 12 (p ) 723 ( )

We consider now the derivatives of the Cartesian coordinates as function of the stretching coordinate
from eq.(F-14):

(52). = —eosefainto-a- gio K2 cosio el

85, (1—¢') ri2

(%%)0 = singp [sin(p—e) ~a j 7 :% cos(p—e)]
<—§;—1]>0 = —cos(p—ce)+ (l—le’) % sin (p — ¢) (F-28)
If we introduce the relations ((F-27)-(F-28)) in (F-25) we obtain:
(%)0 - (F-29)
B R ) | (A
+ :C—OS(:;_ &) _ :—Z <_Coi(1’;_ I c:;;)] [sin(p —¢) - ﬁ cos(p — e)] sin
e e | R E——. )
After algebraic calculus, the above expression become:
<;_;)o a % (1 * %) (1—16’)% ot = %""S”] (F-30)

In order to obtain the derivative of the angle p as function of the coordinate Sz we will do a similar
calculus as above. First of all we will analyze from eq.(F-25), (F-14), (F-22), the following corespondence
for the signs of the derivatives as function of Cartesian coordinates:

ap o dp 8z dza

LR CER 85, 383

aﬂ dp 0ya dys -
3ys ™ B and 25, © 35, (F-31)
dp & = ap 8z4 o — Bz3

dza i EER PR

After algebraic calculus we get the final form of the derivative of the p angle as function of the Sj
coordinate:

1 17 l . 1 17
0

F.3 The Change of the Bond Length from the Reference Con-
figuration as Function of the Stretching Coordinates

The bond length between atoms 1 and 2 is:
ri2 = V(21 — 22)% + (31 — 12)% + (21 — 22)? (F-33)
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If we introduce the relations (F-14) the bond length become:

o

i {[_rgg sin(p— ¢) — i (1 1 %) [sin(p—e) _ L () cos(p—s)” cettliz

!
9 1-¢" ri,

) my , L (%) -
+ [r?Q sin(p —€) +.5 <1 + m—2> [sm(p —€) — = 7'1?22 cos(p—¢)|| sin®¢
+ |—rlycos(p—e) =S [ 1+ e cos(p—¢) + 1 () sin(p —¢€) s (F-34)
2SN ' ma i 1—¢ rd, g

For small S; we can neglect the squares of the S and in this case the previous relation become, when
expanding in power series:

ri2 =~ {(r}y)?sin®(p — €) cos? o + rZ,sin®(p — ¢) sin® (F-35)
. my . 1 (r]y) 2
2r9,8 - 1+ — —-€)— -
+  27{,51sin(p 6)( + 2) [sm(p €) T=e 19, cos(p — )| cos®
: L . 1 (rdy) -2
29,9 —o) 1+ —e)— — 1) =
+ 2r7,Sisin(p 6)( + 2) [sm(p €) = o, cos(p —¢€)| sin” ¢

2 2 0 m 1 () :
+ rigcos®(p—e) +2rySicos(p—e) [ 1+ cos(p —e) + ~—5—sin(p —¢)
my 1—-¢" ri,

m S m
- \/er + 270,58, (1 + m—l) ~ 7, [1 + (ro—l) <1 5 m—:)}
12

The bond length between atoms 2 and 3 is:

ras = V(23 — 22)° + (3 — 92)? + (23 — 22)° (F-36)
If we introduce the relations (F-23) the bond length become:
ro3 = { [—rgs sine — Sl% (Sin(p —£) — 7 _1 o (:%2), cos(p — 6)) ] 2 cos?
+ [r83 sine + 51:—; (sin(p —£) — Tls’ (:%22)/ cos(p — 5))] QSinz 0
+ [7’830056—51:—; <cos(p—6)+l_1—sl% sin(,o—s)):lg}2 (F-37)

For small S; we can neglect the squares of the S; and in this case after expanding in power series, the
previous relation become:

2 . : 1 %)
Tog {(7’83)‘ + 27*835'12i [sme (sm(p —€) — (7’102) cos(p — 5))
2

T—¢ ri,y
( (p—e) + — ) ( ))J}%
— cose | cos(p—¢ sin(p— ¢
1—¢ rf,
251 my 1 () .
0 12
— i 1 — _—
1“3\/ ros Mo [Cosp+ 1—¢ 1 o
S1m 1 (r%) .
. 0 1 12
= Tog [1 e —T—’EE <C08p+ TE'WSIHP (F-38)

In a similar manner we can obtain the bond length as function of the stretching coordinate Ss:

m 179, .
o o~ 7'5)2 — S3m3 [cosp—I— :r—gs smp]
2 & Tas
n
roy ~ 10y + S <1 + ;13) (F-39)
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With eq.((F-35),(F-38),(F-39)), the variation of the displacement as function of the S; and Ss coordinates
can be expressed as:

m
b = b= (142 5,
S _ m ™
Aryt = . [cosp-l— (1_6,)Esmp:| Si (F-40)
Sa m3 ]'TIQB :
Ar® = ——|cosp+ ——=sinp| Ss
mo e 7923
ArS = <1+Z—z> Ss (F-41)

F.4 The Derivative of the Stretching Coordinates in the Refer-
ence Frame

If we express from eq.(3.1), the change of the bond length as function of the bond angle function R;2,
with ¢ = 1, 3, we have:

Ary = 73— r{5(po) = riy + Raz(po + dp) — [rfs + Raz(po))
Arg = 1a3—7y3(p0) = 53+ Ras(po + dp) — [rs3 + Ra3(po)] (F-42)
If we use the equations (F-40),(F-41), the change is:
Ary = Riz(po + dp) — Ria(po) = Ris(po)dp
1 /
= <1 + T—n—l) ds; — b [cosp+ —Irﬁ sinp] dSs
my mg € T3
Ars = Ras(po +dp) — Ras(po) = Ras(po)dp
my 1 7y . ma
= —-—— —= d 1+ —]d F-4
. [cosp+ A=), sinp|dS; + {1+ oo S3 (F-43)
Adding and substracting each other the two equations from (F-43), and dividing with dp we have,
m mi [ s . |1 0S5
R - R, = 1+ — — —= —_—
12(p0) 23(po) {( +m2> +m2 _COSP+(1_6/) ,,IQSH } dp
[ 1rhs . 0S
— {<1+ E) + = cosp + _7@5111/)]} a3
ma my | €' Tra3 9p
mq my [ 1 ’I”12 . 1 851
' ] — 14+ )= 212 huont’ S
Ria(po) + Raslpo) { ( + mz) p— -cosp + =) s sin p- 3
ms3 m3 [ 1 7"23 o 853
l+— ) - — ——= —_— F-44
+ {< +m2> = _cosp+6lrz3smp 3 ( )
To find the derivatives from the previous system, we calculate the discriminant A of the system:
my  my 1 7y . ms M3 17rhs .
= — 4+ — —= 1+ —-— — == F-4
A {1+m2+m2 [cosp+(1_5,) - sin p +m2 o~ cosp—i—g/ - sinp| » (F-45)
m my 1 7, . mz  m3 1 rhy .
P — == e "] 1 - —_— | o)
+ {1+ e [cosp+ T=2) s sin p + — + - cosp+ o sin p
From (F-44), the partial derivatives are found with Cramer rule:
(951 1 mg3 ms 1 T"23 .
5 = X {[R'12 — R4s] [1 - e (cosp+ ?asmp
ms M3 1 rh, .
+  [Rig+ R3] [1 + = + pgy <cosp+ ?ﬁ smp)]}
053 1 , , my  omy il e .
= = 14 L4 12
5 A{[R12+R23] +m2+m2 COSP+1_6,r1251nP
m;  m 1 ., .
- [Riy— R3] [1+m_g_m_2 (cosp+ 1_6,£smp>]} (F-46)
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F.5 Metric Tensor Elements in the Stretch-Bender Model for
Asymmetric Molecules

The derivatives of the Cartesian coordinates to time, from eq. (F-14), when only the stretching coordinate
S1 1s taken into account, and S; = 0 is put after derivation, are the following:

[ )

Ty

5:=0
53:

53:0

vl S1=0
S53=53=0

31

T3

5,=0
Sa:

33:0

51=0
Sa:

53=O

y3| S1=0
53=53=0

I3

S3=

S1=

0
S3=0

~ T2 100, (1~ ) cos(p — ) + (r5,)'sin(p — )]

5 £ [s rgscose + (r95) sine)] } cos g p

msz o . . .
rwsm(p —€)+ o Tagsine| sing

1 () .
sin(p “ {0 cos(p —¢€)| cosp S) (F-47)
12

{w [7“(1)2 (1 - 5/) cos(p — 5) + (T?Q)ISin(p _ E)]

L [6 r3scose + (rh3) sine)] }singap'

+m3 ms 0 . .
———— 0 sin(p —¢) — - Tagsine| cosp
1 TO i ) . .
[sm 1= (7"1(1)22) cos(p — 6)] sin ¢ Sy (F-48)
{20 118, (1 ) singp - &) = (1) cos(p - )] (1-49)
ms 1 () :
— [¢" rhssine — (rd3)’ cose) }p - [cos( —€)+ T sin(p —¢)| S
my ;
[T b (1= ) cos(p— ) + () sin(p — )]
w [¢' 5 cos e + (1) sin¢)] } cosp p
[m—lr?Q sin(p — ) — mrgs sine] sin g ¢ (F-50)
m m
—o [ (1= ) cos(p = &) + (11, sin(p — €)]
m
T g [¢ 93 cose + (rDs)' sing)] } sing p
m
[mr?g sin(p —¢) — mrg?,sins] Cos p Y (F-51)
m m
m ,
{2 =0 (1= &)singp — ) + (1) cos(p - o))
L T ] [—¢' rogsine + (r)3) cose)] } p (F-52)
m
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i my E
dol sz = {7 (1% (1—€)cos(p =€) + (rEy)'sin(p — ¢)]
5325320
+ ?ni [¢' r93 cose + (rds) sine)] } COS pp
o [Pi8,in(o— ) + TErcine] sin g
[ - T sin{p — ) + ——Tagsine|sing
ml 1 () 3
+ o [sm(p —€)— T—e 0, cos(p —e€)| cosp Sy (F-53)
‘ = [_Miro g _ _ 0N i o
Y2 s,=0 = -~ [r12 (1 = €') cos(p — €) + (r{,)' sin(p — ¢)]
53=83=0
- % [¢' P93 cos e + (r33) sin€)] } sin @p
0 (o €) = 2o Bcine] cos pi
+ [ 12 sin(p — ) - T23SinE| cospp
m 1 () : :
—_ m_2 I:Sln(p — E) — 1—_'?—@ COS(p - 6) sin <p51 (F—54)
. my .
i sz = {TH[-rl (1= sin(p — &) + (%)’ cos(p — €] (F-55)
53:5“3:0 m
™My oo 0y L GO '
= [~ r9ssine + (r93)’ cose] } ,o+m—2 cos(p —€) + oo 0, sin(p —¢)| S
The kinetic energy when only the S stretching coordinate is considered, is:
2T = my (23 + 9 + 27) +my (23 + 93 + 23) +ma (€3 + 32 + £3) (F-56)
We make some abbreviations, similar with [5, eq.(5)]:
up = (r)y)? my (Mg + m3)
us = (rys)”ms(my+my)
ugy = 1y rdsmyms (F-57)

If we introduce the previous derivatives and abbreviations into the formula for the kinetic energy, we get
for the bending angle, rotation around the linear axis and S; stretching coordinates:

L (())] ur + (€)? 1+ﬁ<(:881)/>2} b

(1-¢)? T19

1 0 y7 1 0 \/ 1 0 \/ ] 0 \/ . i
— Quiz(1—¢e |1~ (7’102) _(7"203) cos p + __(7"203) + (7’102) sin p p2
]. El 1 — EI 7.1

/] !
— €& Tip € To3 T23 2

2T = —1—{(1—5’)2

m

1 . . . . .
+ — [uisin®(p — €) + uasin® & — 2uy3sin(p — €) sin g] o*
m

+ m <1+Z—;) 14— 2<(r%2)')2] R, (F-58)

(1—e)? T12
where, as in [14, eq.(23)]:

Uy + U3 Cos p + uissin p [((—:%21) - ((—rrg[?)—’)]
El - 12 23 (F_59)
Uy + ug + 2uy3cos p

and

0 7/ 1‘0 '
v+ wiacosp +uipsing | (G5) — (G4

(F-60)

1-¢ =
uy + ug + 2ujscosp
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We consider the classical momenta associated to coordinates:

aorT _ 1 MO g 2
s a_p_’“{ ['*( I <(12))J+<1ie/>
. L0 [ ()
- e K" =) ( o )( 0, ))”

1 (r33)’ L (1a)" (1-¢)?
¥ (E" s ¥ 1—¢" 2}, s p m

oT . . ' .
P = 5 = ¢ [ursin®(p — ) + ugsin®e — 2uy3 sin(p — €) sin¢| -
_ 6T _ 3 ml 1 (r?Q)/) 2
o= %1 =S1my ( Tlg) [1+ 1=y ( 0, (F-61)

We can express the kinetic energy as function of momenta and we obtain:

2T = g™ p, + 9%* pyy + 95 p2, (F-62)
with the contravariant metric tensor elements for the coordinates (51, p,9):
1 (7,,0 )/ 2 ¢! 2 1 (ro )/ 2
pp 1 12 1 23
’ { [ s (5) |+ (752) | e )]
e 1 (7’?2)’ (r2s)’
- 2uz——— || 1—
) [( <1 ~e A T o
1 0 y/
+ (_I(T’203) + 7'12 SIHPJ} m ~
. g 1o, (1-¢) r9, (1-¢)
Obs: 9°°1(r0,y1=(r2,y=0 = [5, €q.(37)]
g = : m
uysin®(p — €) + ugsin® € — 2ujasin(p — ¢)sine
1
gl = (F-63)

m (14 22) [14 o (58]

The derivatives of the Cartesian coordinates from eq. (F-23), when only the stretching coordinate S5 is
taken into account, and S5 = 0 is put after derivation, are the following:

T 12 (1 —€')cos(p — €) + (r),) sin(p — e)]

51=.§1:0 ==

{_M[
S3=0

+ I8 [¢ 195 cose + (r93) sine)] } cos p
m

i ':_m'rgzsin(p — 5) + m—_:?“gs SinEJ sint,ogb (F'64)
m 7

91|51:51:0 - 712(1—51)(305(/’*5)"'(7’(1)2)15111(/7—5)]

. {mQ + m3 [ 0
S3=0
- % [¢' r95cos e + (rd3)' sine)] } singp
[Mvgq sin(p —¢) — %1’33 sin 6] COS P P (F-65)
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21 51=$1=0
S53=0

L2 51=5.'1 =0
S3=0

Y2 |51=§1 =0
53=0

Z2 Sl=$1=0
S53=0

3 1:$1=0
53=0

y3|51=$1 =0
S53=0

23 51=.S.‘1 =0
S3=0

-+

{28 [, (1= ) singe — ) = (18 con(p - )

- [6 rogsine — (r9;)’ cose) }p

(F-66)

{ml (1~ €) cos(p —€) + (r),) sin(p — €)] (F-67)
+ % [¢' P95 cose + (r33)' sine)] } cos pp

U o Ea i — ms 0 ] ms _ () -
[m riosin(p — ) + ™ r2351n6 singp @ + — [sme - 7‘83 cose| cosp S

— 2 [r8y (1= &) cos(p = €) + (15,)' sin(p )] (F-68)
- % [¢' 33 cos € + (r93)' sine€)] } sin pp

mi g ma o . . mg [ 1 (r3s)’ 2
[?Tu sin(p —¢) + Hrmsme] cos p ¢ — m sine — - cose| sinp S

ma .
{ZH [-rha (1= &)sin(p — &) + (19,) cos(p — €)] (F-69)

. . 1 (rS3) . :
ms [—€' r9ssine + (rhs) cos €] } p— % [cose + ;(:'QT:Q sin 6] S3
2 23

ml [T
{ (1 —¢')cos(p — €) + (rl,)" sin(p — €)] (F-70)
- B [€' P35 cos e + (rds) sine)] }cos wp

m

™0 sin(p—e) — TLE™200 el singg — [sine — L 20 -
[ T2 sin(p — €) T3 s1n5] sin g ¢ [sme 7 v cose| cosp Ss

_% [rs (1 —€')cos(p— €) + (r),) sin(p — &)] (F-71)
+ %@ [¢' Pdgcos € + (rs)’ sine)] }sin wp

Mmoo mt+my o . - 1 (r5) c—
[ 12 sin(p — €) + - Tagsin 5] Cos Y ¢ + [sme 7 —7'83 cosée| sin g S3
L 0 N oo 0 y/
{Z2 =82 (1= &)sinp — &) + (1) cos(p - &)] (F-72)
0 .
kel [—¢' rizsine + (r33) cose)] }p + [cose + = L (ras)' 23) sin 6] S3
pe 33

As in the case of the Sy vibration, using the above formulas, the kinetic energy when only the S3 stretching
coordinate is considered is:

1

7{(1—5’)2

27 =

L

u; + (E’)Z

et ()
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+

/ 0
93 1—-¢ rf

1 () 1 (ry) 1 (r35)’ L ()" 2
— 2u3(1 —¢')e’ [(1 “T=o 9, 70 cos p + 70 sin p

2(/) —€) 4 uzsin?e — Quys sin(p — €) sin E] $*

+ omg <1 + ::—j) [1 + # (”%3)’)2] s2 (F-73)

T23

In the case of the asymmetric molecule, if the two stretching coordinates are considered together, the
following observations can be made:

e in Zy,%, % enter only Sl and consequently the square of the derivatives do not have Sl 33
e in 23,ys, z3 enter only S5 and consequently the square of the derivatives do not have S; Ss

e in 9,9, %o enter 5'1 and 5'3 and consequently the square of the derivatives contain 5"1 5'3
e in kinetic energy formula enter 5’153 and the term in 315’3 18:

Zmymg 8 1 (rdy) : 1 (rds)’
o {[sm(p—s)—m o —cos(p—e)| x [sineg — — cos €

F-74
T12 & T ( )
Uy 1 (r3s)" .
- [cos(p —-€)+ 1_—‘?@ sin(p —¢€)| [cose + o w0, sin €
2mymy 1 (D) 1(r3s) . 1 (ris)’ (r33)’
= - [cosp-i— Te’ﬁsmp_'_s_’ 7“83 smp — (1_6,)6, 7’?2 i cos p

The covariant metric tensor elements corresponding to both stretching coordinates are:

mymg 1 (7’?2)' (7'83)' 1 (7’83)/ 1 (7’?2)' .
= - 1— —
95155 mo { [ (1—¢)e 7’(1)2 7'33 e &l 7‘83 i (1-¢) 7’(1)2 —

_ mi(mi 4 may) 1+ 1 () ?
9515 = ma (1—e)? \ rf,

ma(msz +m 1 rds) \*
s #[”W((O))J

723

(F-75)

F.6 The non Vanishing Terms of the Kinetic Hamiltonian
The kinetic energy, with Podolsky formula [187] is:
2T = % Y Paprapp™% Pypid (F-76)

where pia5 = g®F is the inverse of the metric tensor element 9ap, and p is the inverse of the Jacobian.
We consider the derivatives in ”zero” point (no stretching vibrations, $; = S5 = 0):

= f(p)
Hap {,&ﬂsl,ss,so)

(F-77)
. { = f(p)
Ef(51,53,)
In this case we obtain for the intermediate terms from (F-76):
[P_thaﬂ =0 aaﬁ:gysoéSl:SS
[P »[Pw,g“ﬁﬂ =0 (¢ TT¥ (F-78)
" (2, 4" =0 n — real number
9= 92,7 =0 ghT =g =0

With approximations from (F-78), the energy from (F-76) become:

ry 1 1 Y
2T = pg Lpg0” o * Popg +98% Po+g3" PY + g3° P3 + 295 Py Py (F-79)
= — 7 N——— o -
Heena=[0, 14] Hyor Hoy,
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The change of coordinates defined in (3.209), by a unitary transformation, in order to diagonalize the
stretching part of the kinetic Hamiltonian, can be done with a matrix of type:

_ ( i [GoslG ) (F-80)

cos¢ —sin(
The metric tensor for the stretching part change as:
) _ f’i) <%) (5) i

From eq.(F-81), the tensor elements are:

911 = 9Ju sin” ¢ + gas cos® ¢ + g13sin 2¢

9% = g11005°C + gassin® ( — grasin 2 (F-82)
1 .

9i3 = (911 —g33)sin2( +g13cos2(

To diagonalize the stretching metric tensor, we must have g;3 = 0, and we find the equation (3.210).

F.7 Stretching Potential in Curvilinear Coordinates

We consider the equation similar with (3.13) for the symmetric molecule:

Ary = rip—ria(p) = R(il) 51+ Rgl) Ss
A'r’g = 7T93 — 1‘23(,0) = Rgs) 5'1 — Rés) 5'3 (F'83)
where there are defined the auxiliary functions similar with (3.16):
- 1/
R%l) = wsin(—cosg"% cosp+ — (@) sinp]
my mag | £ 23
(3 _ ma+my omy | 1 ™o
R = m—gcos(—smCm—2 -cosp+1~6, (E sin p
(1) my 4+ my . oma | 1 [/rhs\ .
Rg = ————cos{+sin{— |cosp+ = | === |sinp
ma ma | € 723
- 1 ,
R?) L Tl ¢ + cos Cﬂ cos p + (m) sin ,0] (F-84)
my ma | 1-¢ T12

The equation (F-83) can be written in the reference configuration (similar with (3.18)),

Ariy = Ari+Ri(p)
Arzy = Arz+Ra(p) (F-85)

Also, the generalized potential with the Fermi term can be express as (see eq.(3.55)):
1 1
VI = §f11A7’fg + §f33A7"§3 + fisAr19Arys + FiagAriz p° + FagaArasp® (F-86)

To find the dependence of the bond length from.the angle, the minimum conditions for the bond length
must be considered:

gy gen - gy gen _
( 9Am ) Gotag L G ( 9A732 ) Symgemo = 0 (F-87)
If we make the derivative of the V9™ as function of Aris and Args, we get:
6‘/961’1 5 )
= [fu1Ario+ fisAres+ Fiazp?] s _s _o = fuR1+ fisRs + Fiazp® =0

6AT’12 0 1 3

oy oen ) )

AT = [fasAras+ fisAriz+ Faoop ]51_:53:0 = f33R3 + f13R1 + Fao2p” =0 (F-88)

32/ 1
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The previous relations can be written in a system of equations, as:

f11R1 + f13R3 = —F122p2
fa3Rs + f1aR1 = — Fag2p” (F-89)

We can obtain the variation of the bond length with angle, R; and Raj:

_ Js3F122— fiaF320
fi1fss — fis
J11F320 — f13F12
B = o - F-90
’ Ji1fss — [Ty a ( )
With the previous formulas (F-83), (F-83) and (F-90) introduced in (F-86), the potential for the minimum
condition is:

Rlz

2

1 ~ ~ 2 1 - -
ver = Shu [RO0 ) S+ RO ) S+ R+ s [B ) $1 = RO, 0) S + Ra]
)

+ fia [B(,0) 51+ RO (r, ) G + Ry [R“’”(r p) S = R (r,p) S + Ro]

+ Fioo [R§1)(r, p) 51+ Rél)(r, p) Ss + Rl] p° + Fsa9 [R%S)('r, p) 51 — Rg Y(r, p) S5 + "Rs] P’

= %fn [Rgl)(r,p)gl+R§1)(r,p)§s] + £ [RO (. 0) S+ B, p) 55| R
+ O(R?

=+ %fss i D, ) 1 — )(7" P)SB] + fa3 [R Dr,p) 51 - S(T’,P)SS]R
+ O(R3)

+ o [BO(r0) S+ B 0) S5) [REO(r,0) B - RO, ) 3]

+ o [0 0) S+ RO, 0) S5 Ro+ fis [RO(r,0) 81— B (1, 9) Sa] R
+ O(R1R3)

+ i [RO(r,0) 5 + RO, p) 53] #* + O(R1p?)

+ Fsz {Rg (r,p) 81 — és)(r,p)gs] P’ + O(Rsp?)

= l{fn [R % } + f33 [R-s rp)r-i—2f13R§1)(r,p)R(is)(r,p)}S‘l2

+ 5 { [B0)] 4 1o [RO0 ) 20RO 0} 53

+ {0 RO ) - 1RO, )R<-3>(r )

+ fis [BO RO 0) = RO ) RO (7, 9)]} 815 (F-91)

We get the curvilinear potential form from the previous equation, as;
cur il x 1 & & Q@
Ve = S F5i(0) 5E 4 5 0sale) S5+ Fisle) $1a (F-92)

with the force constants defined like in eq.(3.66):

fii)) = S [RO(rp)| +fss[ R®(r, p>]2+2f13R§”(r,p)R£3)(r,p)

(
1
- 2
f3(p) = fu [BO 0| + fas [BP (1) = 2015RO () RP (r, p)
fist) = B p) B (r, p) — 1338 (r, p) RP (7, p)
+ fis (Rgs)(r, P)RI(r,p) — B (r, p) R (1, p)} (F-93)




F.8 Comparison between ABC and ABs; Molecule Formalism

In the case of the symmetric molecule the symmetric and antisymmetric coordinates are defined as in
(3.22), for small amplitude:

$=L(5+S) $%°=1(5-Ss) (F-94)

If the molecule is symmetric, in these conditions the following simplifications are to be considered in the
formulas:

Tig = T3 =71 EI = % (see [5, 14])
mi; = mg cos( =sin{ = \/Li because (= % (F-95)
1+m:1+m:ﬂ my . my . p=1

mz My 2 ma ma 2

In the equation for the auxiliary functions (F-84), we make the simplifications from (F-95) and the
equation (F-83) is recomputed. The displacements from (3.217) become (3.13), as shown in the next
formula:

N @ _ ' s __ Qa
Aryy = p;—l(S \-/ES ) _p2 ! [cosp+ Trsinp] %
5? . S .
= 3 [((p+1) = (p~1)(cosp+ bsinp)] + Wi [(p+1) + (p—1) (cos p + bsinp)]
= \/iiss I(COSQ 0 + psin®6) - (p— 1)bsinﬂcos6]’
Ri(p)
+ —\/1—55“ [(sin? 6 + pcos? ) + (p — 1)bsinf cos 9]} (F-96)
Rs(p)
. s _ ga — / s __ Qa
Aty & p2 1(S \/55 ) _p2 1 [cosp+27rsinp] %
S* : Se :
= 57510+ 1) = (o= 1) (cos p bsin )] = 5= [(p+ 1) + (p— 1) cosp+ bsin)]
= %Ssl(cosz 0 + psin? §) ? (p— 1)bsinf cos H]J
Ry (p)
- %.S’“h[(sin2 0+ pcos® ) + (p— 1)bsinf cos 0]} (F-97)
Rs‘EP)

The derivatives of bending angle to the stretching coordinates, using the usual formulas are:
(). - ()(2)-(2)(%)
95t ), — \951) \os® 955) \05°

%) (2 (), (2) ()
<35“)o N (551) (35“) - (853 85e (F-98)

If we use the derivatives of the implicit functions (F-94) we have:

(%) L (Qia) =L
857) = 2 \855) = 3
(F-99)
(85) = L (28)=_1
857/ = 2 \8s5e) = T3
From (F-98) we get the derivatives of the bend angle as function of the stretching coordinates:
%), = ()., (%)) = (55)
95 0 ; aS] sim 953 sim B 95
Op dp ) ( dp ) ]
= — - = =0 F-100
<aSa ) 0 [(351 sim 953 sim ( )
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The discriminant (F-45) corresponding to the eq.(3.200) is, with b defined in eq.(3.9) and with eq.(F-95):

2 2
Ariazrga=r = 2 l:(l_l_ ﬂ) - (ﬂ) (c05p+bsinp)2] (F-101)
my=ma e e

€ :E

= U414 (p— 1) (cosp+bsing)][(p+1) - (p— 1) (cos p + bsin )]

= 2Ri(p,7°) Rs(p,7°) (F-102)

With this value, the derivatives of the stretching symmetric coordinates to the bending angle, with (F-46),
are (similar with (3.199)):

(%) = #1G5)+(G)]

Op B \/5 Op dp

_ 1 / / o . T+ mg mi + ms

e \/EA{( 12+R23)[(2+ o )+( e )COSP

Losmpm iy mg i (F-103)
mo 1—¢" ris g o3

I m3—m (M3 - _sinp @.@_—ml @
+ (R, 23)[ P ( ™ >COSP mo (e' rg3 1—¢ r1z>]}
&) - #l3)-(3)]
dop ) — V2 I\ 8p op
L _— m +m LBkl
- ot (e (o ) (.
_ sinp<@.@+ my ﬂ)] (F-104)

mo e 793 1—¢ 19
3 / /
Ryt RYg) M2, (ma=m sinp (my rh  m ri
+ (Riz+ Ry) [ mo * my e mo e 7z 1—¢' 71y
In the case of the symmetric molecule R}, = R4 and the previous derivatives become the equations
(3.15):
653) 4 [( ml) mi 2m1 r’ . R
= —R'|[{1+— )+ —cosp+ ——sinp| = V2——
<ap sym \/§A ma m2 ’ ma T g Rl(p)
6 a
( ) ) = 0 (F—105)
0P / sym

The auxiliary functions defined in (F-84) can be used in order to obtain the derivatives of the bending
angle as function of the new stretching coordinates. In the below formula (identical with (3.217)), we use
the transformation defined in (3.209), with the transformation matrix (F-80), applied in eq.(F-83):

: ~ ~
Ary = (142 Sy — 8 cosp+l T2s sinp| S5 = RWS, + RV S,
msa my €' \ro3 1 5
/
Ary = 1+ @) Sz — LN [cosp+ ! (m> sin p] S = R@Sl — RE3)53 (F-106)
ma ma 1—¢ T12 1 5

In the case of the symmetric molecule from (F-94) and by taking into account all the previous simplifi-
cations, the new coordinates are:

S1=8 S3=9° : (F-107)
The auxiliary functions from (F-84) becomes those for the symmetric molecules, defined in (3.16),
1y _ 3) _ 1 my mi . ]
Ry’ = R} _E[<1+m—2>—m—2(cosp+bsmp)_
1

[(psin® 6 + cos? f) — (p— 1)bsin 6 cos 8] = —Ri(r, p)

V2
R(sl) e Rés) = L [(1 + m) ] (cos p+ bsin p) (F-108)
ma ]

2 . . 1
pcos®  +sin*8) + (p— 1)bsinfcos§] = —Rs T, p
V2
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The metric tensor defined in formula (3.204) has the following elements for the symmetric molecule:

N2
g?llsim:mlp_;_l [1+ (25‘) ] m1%1(1+b2)
911 =933 (F-109)

N\ 2
93slsim = m1 232 [1 + (QTL) ] mi 2L (1 + b?)

1 27!
9?3 —mlp [ . :|cosp+2< r)smp}

1

[(cos? 6 — sin 20) + 2bsin p — b? (cos? § — sin 6%)] (F-110)

_ P
= —-mq

The tensor elements defined in (3.216) for the changed stretching coordinates, become for a symmetric
molecule:

g(i)i = -;—gg)l + %ggs + g% =m [(p sin? @ + cos?§) — 2b(p — 1) sin O cos 0 + b* (pcos® § + sin? 0)]
= miRy(r, p)

ggé = %g?l + %ggs — ¢l =m [(p cos? 0 + sin? 0) + 2b(p — 1) sin f cos 6 + b* (psin2 6 — cos? ())]
= myR4(r,p) (F-111)

The contravariant metric tensor elements of (F-111) are:

- 1 1 my; R 1
i _ 2 13 _ i
Jo = 290 +2g° + 9 m2 R3Rqy ™1 R
a5 o | 1 mi R 1
33 11 33 13 1 3
1 133 _ 13 _ — F-112
go 590" + 59" ~ % m?RaRs ~ mi Ry ( )

In the case of the symmetric molecule, the potential force constants are equal, and then eq.(3.220) become

(3.56):

fir = fa3 __ Fin(fu-fi)e® _ __F 2 _
Frog = Fag9 Rllsim =—= f121_f12;a = —fuffmp == R3|sim (F_ll?))

From (F-108), we find the identity between formulas (3.222) and (3.66) for a symmetric molecule,
fii = 2 (fu + fs3) R? + fisR? = (f11 + fis) R}

RM = p® = 71-31
=< fz3 =3 (/1 + fas) RZ — f1sRE = (f11 — f13) RE (F-114)

1 1 2

R = R = LRy
? s = fiz = (fu1 — faa) Tafe 4 fia (B — e} — ¢
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Nom et Prénom: PALIVAN Horatiu Mircea Nicolae

Titre: Une Nouvelle Approche au Traitement Théorique des Vibrations d’une Molécule Tri-
atomique et de leurs Couplages. Application 3 CO, et COZF

Résumé: Dans cette étude nous avons formulé une approche au traitement de la vibration-rotation
d’une molécule triatomique symétrique, qui permet de prendre en compte le mouvement de déformation
de grande amplitude de la molécule ainsi que son couplage avec le mouvement d’élongation. Le but de la
présente étude n’est pas de concurrencer les approches variationelles, trés générales, qui sont disponibles
depuis quelques années, mais de proposer une alternative qui est plus légere dans la mise en oeuvre tout
en s’appliquant & des nombreux cas réels. L’ Hamiltonien est basé sur un systéme de référence qui suit
le minimum d’énergie potentielle lorsque la molécule se plie. Cette nouvelle approche utilise la methode
de Jungen et Merer pour tenir compte du couplage Renner-Teller, dans le but d’obtenir les niveaux
énergétiques d’une molécule symétrique linéaire dans un état électronique dégénéré. Un parametre, gp,
introduit ici pour la premiére fois, permet d’obtenir le lien entre le systeme de référence variable et les
moments d’inertie qui interviennent dans la rotation moléculaire. L’extension du formalisme pour des
molecules asymétriques a été également formulé. Le modele a été appliqué aux molécules linéaires COs
et COY.

La molécule CO, est un exemple de couplage Fermi pur. On montre que la variation de la longueur
de liaison avec ’angle de déformation contribue & la variation de la constante de rotation avec I’état
vibrationnel, et elle est également responsable des perturbations Fermi. Il n’est donc pas nécessaire
d’introduire un parametre d’interaction Fermi spécifique. Les niveaux d’énergie observés de CO» sont bien
reproduits par un ensemble restreint de paramétres d’énergie potentielle. Nous avons utilisé seulement 6
parameters, tandis que les meilleures valeurs dans la litérature, ont été obtenus en utilisant 12 parametres
(Pariseau et al, J. Chem. Phys., 42, 2335 (1965)). La molécule de COY est un exemple plus complexe ol
I’effet Renner-Teller existe et se superpose aux perturbations Fermi. Dans ce cas également, la nouvelle
approche réussit & représenter la structure énergétique des niveaux perturbés en termes de deux surfaces
d’énergie potentielle de forme simple.

Title: Symmetric Stretch-Bender: a New Approach to Vibration Coupled Modes for Symmetric
Triatomic Molecules

Abstract: In this work we have derived a vibration-rotation Hamiltonian for a triatomic symmetric
molecule, the Stretch-Bender model, which allows for large amplitude bending motion and its coupling to
the stretching motion. The Hamiltonian is based on the use of a specific stretch-bender reference frame,
chosen so that as the molecule bends the reference geometry follows the minimum in the potential energy
surface. This new Stretch-Bender Hamiltonian has been combined with the Jungen and Merer method
of solving the Renner-Teller coupling problem in order to find the energies for a symmetrical molecule
possessing a degenerate electronic state when linear. A key role in the understanding of the combined
stretching - bending motions is played by the gp term, introduced here for the first time, which relates
the end-over-end rotational motion to the angle-dependent reference geometry. The Fermi coupling arises
naturally from the change of the configuration during vibrational motion. The extension of the approach
to asymmetric molecules is outlined. The model has been applied to the CO3 and CO3 molecules.

The CO, molecule is the prototype example for a pure Fermi interaction. It is shown that the variation of
the bond lengths with bending angle is responsible for the vibrational variation of the rotational constants
as well as of the Fermi perturbations and therefore no specific Fermi interaction parameter is necessary.
The energy levels of the molecule are very well reproduced by a minimal set of potential parameters.
The COF molecule is an example where orbital angular momentum coupling occurs combined with the
Fermi perturbations, but the Stretch - Bender model again succeeds in representing the perturbed level
structure in terms of a simple potential surface.
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