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Zusammenfassung Olivier Allard

Neuste Fortschritte im Zuge der Entwicklung eines optischen Frequenzstan-
dards mit der Interkombinationslinie (4p4s)®P; (m;=0) «+ (4s4s)'S, des Cal-
ciums war Motivation zur systematischen Untersuchung der langreichweiti-
gen Wechselwirkung zweier Calcium Atome. Die Potentialkurve eines Calci-
umdimers muss genau bekannt sein um, den Einfluss von Zweikdrperstossen
wahrend des Abfragens mit Licht zu untersuchen. Wir haben die Form der
Potentialkurve analysiert, die die Wechselwirkung zweier 'S Ca Atome be-
schreibt, indem wir die Position der Vibrations-Rotationsniveaus des X12+
Grundzustand des Cay gemessen haben.

Mittels hochauflésende Fourier transform Spektroskopie konnten wir mehr
als 99.8 % des XIE; Grundzustands bestimmen. Um die Position der am
schwachsten gebundenen Niveaus des Grundzustands zu bestimmen, haben
wir die Methode der Laseranregung mit gefilterter Fluoreszenz angewendet.

Die Ubergangsfrequenzen des CaQ B-X Systems von asymptotischen Niveaus
des XlEg Grundzustands bis v” = 38 wurden gemessen. Das hdchste ver-
messene Niveau ist nur 0.2 cm™! unter der Molekiilasymptote *S+'S und hat
einen klassischen dufleren Umkehrpunkt von etwa 20 A. Eine Potentialkurve,
die Dispersionsterme fiir den langreichweitigen Teil enthélt, wurde bestimmt.
Ein wichtiger Punkt ist die Genauigkeit von Aussagen, die man von diesem
Potential ableiten kann. Die Genauigkeit der abgeleiteten Dispersionskoef-
fizienten Cg, Cs, C1 sowie der Dissotiationsenergie wurden durch eine Monte-
Carlo-Simulation abgeschitzt. Ebenso wurde ein Intervall fiir die s-Wellen
Streuldnge bestimmt. Zur Beschreibung von Atomstossen wirend der Laser-
abfragung der Interkombinationslinie wird zudem eine genaue Beschreibung
des c®II, Molekiilzustands benétigt, der zu der 3P + 1S, Asymptote korre-
liert. Dieser Zustand kann nicht iiber einen dipolerlaubten Ubergang vom
Grundzustand erreicht werden, ist aber an den A'S} Zustand via Spinbah-
nwechselwirkung gekoppelt. Ein-Laser-Spektroskopie des A Zustands mit
stossinduzierten Satelitten wurde durchgefiihrt. Stérungen durch den c¢®II,
Zustand wurden vermessen und mit einer Arbeit von Hofmann and Harris
von 1986 verglichen. Eine Entst6ranalysie der beobachteten Werte wurde
mittels der Fourier-Grid-Hamiltonian-Methode begonnen. Unsere Experi-
mente bereiten zudem auf dopplerfreie Spektroskopie der ¢*II, Asymptote
in einem Molekiilstrahl vor und ermdglichen schon jetzt das Erreichen des
Triplettsystems des Calciumdimers.

Schliisselworte: Cas,, Molekiilspektroskopie, Potentialkurven, kalte Sté8e,
Monte-Carlo Simulation, Entstérung.



Abstract Olivier Allard

Recent progress in the development of a calcium optical frequency standard
using the (4p4s)®P; (m;=0) + (4sds)'S, intercombination line has motivated
us to perform a systematic study of the long range interactions between two
calcium atoms. To investigate the influence of the binary collision during
the laser interrogation of the clock transition, a precise knowledge of the po-
tential energy curves of the calcium dimer is necessary. We investigated the
shape of the potential energy curve describing the interaction between two
1§ Ca atoms by measuring the positions of rovibrational levels of the X'X¥
ground state in the Cay molecule.

A high resolution Fourier transform spectroscopy allowed us to accurately
describe more than 99.8 % of the XlE; state potential well. In order to
collect information about the position of the last bound levels of the ground
state we have applied laser excitations with filtered detection. Transition fre-
quencies of the Cay B-X system from asymptotic levels of the XlEg ground
state reaching v = 38 were measured. This highest observed level is only
0.2 cm™~! below the molecular 'S+'S asymptote and has an outer classical
turning point of about 20 A. A potential energy curve which includes disper-
sion terms for the description of its long-range part has been achieved.

One important issue is the accuracy of the predictions one may draw using
the derived potential. The precision of the determined dispersion coeflicients
(s, Cs, C1o and the dissociation energy have been estimated by implement-
ing a Monte Carlo simulation. A range for the s-wave scattering length has
been derived as well.

The description of the atom-collisions involved during the laser interrogation
of the intercombination transition necessitates also a precise knowledge on
the ¢®I1, molecular state correlated to the 3P 1+ 1§, asymptote. This state
has no dipole allowed transition to the ground state but is coupled to the
A'YF by the spin-orbit interaction. A single laser spectroscopy of the A state
extended by the observation of induced collision satellites has been realized
and new perturbations due to the 311, have been observed compared to the
previous study by Hofmann and Harris in 1986. A deperturbation analysis
on the observed data has been engaged using the Fourier grid Hamiltonian
method. Potential energy curves of both states and the spin-orbit coupling
have been derived. This study will allow an investigation of the ¢*II, asymp-
tote by Doppler free spectroscopy in a molecular beam of Cag and provides
already access to the triplet manifold in calcium dimer.

Key words: Ca,, molecular spectroscopy, potential energy curves, cold
collisions, Monte-Carlo simulation, deperturbation.



Résumé Olivier Allard

Les progrés récents dans le développement d’un standard de fréquence op-
tique sur la transition (4p4s)®P; (m;=0) « (4s4s)'Sy du calcium nous ont
motivés & entreprendre une étude systématique des interactions 3 longue
portée entre deux atomes de calcium. Afin de comprendre 1‘influence des
collisions binaires pendant 1’interrogation laser de la transition d“horloge,
une connaissance précise des courbes d “énergie potentielle est nécessaire.
Nous avons étudié la forme de la courbe décrivant 1’intéraction entre deux
atomes dans 1’état 'S par la mesure de la position en énergie des niveaux
rovibrationels de 1"état fondamental XIE; de la molécule de calcium Cas,.
Par spectroscopie & transformée de Fourier nous avons caractérisé plus de
99.8% du puits de potentiel. Afin d’obtenir plus d’informations sur la posi-
tion des derniers niveaux liés nous avons employé une technique d’excitation
laser combinée avec une détection filtrée en fréquence. Plusieurs niveaux ro-
tationnels des niveaux vibrationnels allant de v" = 34 jusque v” = 38 ont été
observés. Le niveau observé se trouvant le plus proche de 1”asymptote 1S+1S
est lié seulement par 0.2 cm™! et posseéde un point tournant classique proche
de 20 A. De ces données spectroscopiques nous avons établi une courbe de
potentiel qui inclut les termes des forces de dispersion pour la description de
la partie a longue portée.

Une question importante concerne la précision des prédictions que I’on peut
effectuer en utilisant le potentiel que l'on a determiné. C’est pourquoi, en
adaptant la méthode de Monte-Carlo nous avons déterminé la précision des
coefficients de van der Waals Cg, Cg, Cyq et de 1"énergie de dissociation. Un
intervalle pour la longueur de diffusion a été obtenu.

La description des collisions binaires entre atomes durant 1 ‘interrogation laser
de la transition dipolaire interdite nécessite une connaissance précise de [ “état
moléculaire ¢*TI, corrélé a 'asymptote 3P + 1S, Cet état ne posséde pas
de transition dipolaire permise avec 1état fondamental, mais est couplé a
I’état A'ST par 1’intéraction spin-orbite. Une spectroscopie laser de 1’ état
A étendue par 1’observation de raies satellites induites par collisions a été
réalisée et de nouvelles perturbations, comparés & 1" étude d’Hofmann et Har-
ris de 1986, ont été observées. Une analyse de déperturbation utilisant la
méthode de 1"Hamiltonien de grille de Fourier a été engagée. Des courbes
de potentiel pour les deux états et le couplage spin-orbite ont été obtenus.
Cette analyse permettra une étude précise de 1“asymptote de 1”état 311, par
une spectroscopie a haute résolution dans un jet moléculaire de Cas, mais
donne déja acces aux états triplets du dimeére de calcium.

mots-clefs: Cay, spectroscopie moléculaire, courbe de potentiel, colli-
sions froides, simulation Monte-Carlo, déperturbation.
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Chapter 1

Introduction

Twenty years ago the demonstration that light could be used to cool and
confine atoms to the sub-millikelvin range has opened many fascinating
new chapters in atomic, molecular, and optical physics [Phillips W.D et al.,
1985, Dalibard J. and Cohen-Tannoudji., 1985]. A considerable development,
of the cooling and trapping techniques followed and led to the observation of
exciting phenomena where the wave character of matter plays a fundamental
role. The realization of the Bose-Einstein condensation (BEC), the progress
on the atomic Cs clock, and the very recent investigations of quantum de-
generacy with fermionic atom pairs [Regal C.A. et al., 2004, Bartenstein M.
et al., 2004], exemplify the achievements in the domain.

The alkaline atoms are the widely used elements in all these developments.
Since few years, the scientific community turns its efforts towards the alkaline-
earth elements. The reason is that the group-Ila atoms offer in the same time
a strong dipole transition from the ground state 'Sy to the P; state suitable
for efficient trapping and cooling to the millikelvin range and a forbidden
transition from the ground state 'Sy to the 3P0,1,2 state presenting interest-
ing conditions for the development of frequency standards. Both transitions
are found in the optical domain for Ca and Sr providing favorable frequency
ranges for the use of laser radiations. The most abundant isotopes of the
alkaline-earth atoms have no nuclear spin except for Beryllium, and in con-
sequence present no hyperfine structure. Thus, the mechanisms developed
with the alkalis to reach ultra-low temperature using the multiplicity of sub-
levels of their atomic states cannot be applied. Therefore, new strategies, like
additional cooling on the ultra-narrow lines employing the quench-cooling
technique, which enhance the cooling force, have been proposed. The pos-
sibility to reach ultra-cold temperatures (micro Kelvin regime) using this
technique has been demonstrated with Ca atoms [Binnewies T. et al., 2001].
The figure 1.1, sketches the energy levels of the alkaline-earth elements and

11
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Figure 1.1: Lower levels structure of Group-II atoms.

of the Ytterbium atoms, which presents a similar structure. The group-1la
elements have two valence electrons filling entirely the ns orbital above the
closed core [1s,...np%]. The °D states and the 1,3G ghift downwards in energy
as the atomic mass increases. For all the alkaline-earth elements the 138
levels are located above the L3P states. For Be and Mg the *D states are
above the L3P states but lye between the 'P and the *P states for Ca and Sr,
and are below the 3P states for Ba. The relativistic interactions increase
with the atomic mass. Therefore, the mixing of the *P; states with other
states, which have an allowed dipole transition to the ground state, raises. In
consequence, the lifetime of the intercombination line for the heavier Sr and
Yb atoms is sufficiently low to use this transition without the quench-cooling
technique to cool further these two atoms to the micro Kelvin range. Tem-
perature of 400 nK was achieved with the Sr atom [Katori H. et al., 1999]
and around 20pK with the Yb atom [Kuwamoto T. et al., 1999]. Quantum
degeneracy has been recently obtained with Yb atoms using a far-off reso-
nant trap (FORT) by the same group [Takasu Y. et al., 2003].

The cold and ultra-cold binary collisions occupy a strategic position in the
physics of dilute, weakly interacting atoms. The understanding and the
quantitative description of the collisional processes allow precise determina-
tions of atomic and molecular properties and open new possibilities to control
with the help of light or magnetic fields the atomic pair interactions [Cor-
nish S. L. et al., 2000]. We understand thus the necessity of an accurate
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knowledge of the dimer interaction potentials. For instance one can quote
the precise modeling of trap-loss photoassociative spectra in alkali systems
for large detuning achieved thanks to the well-known alkali dimer potential
energy curves [Williams C.J. et al., 1999).

The recent progress in the realization of an optical frequency standard us-
ing the calcium intercombination line *Py (m; = 0) + 'S, [Wilpers G. et al.,
2002] and the attempts by different groups to reach quantum degeneracy
with “°Ca atoms [Hansen D.P. et al., 2003] show the necessity of a compre-
hensive study of the collisions between two calcium atoms. Recent results on
binary collisions between two calcium atoms, one in the ground state 1Sy and
one in the excited state P, have been obtained by photoassociation spec-
troscopy [Degenhardt C. et al., 2003]. To describe the intensity pattern of
the photoassociative spectra, an accurate knowledge of the Ca, ground state
is required. At short range the collision partners, under the photoassociative
radiation, can encounters change of state leading to trap losses. To describe
these phenomena we need to know precisely the involved molecular potentials
dissociating to different asymptotes and their couplings. Therefore we have
engaged a systematic study of the calcium dimer states and in particular
those correlating to the 'Sy + 'Sy and the 3P, + !S; asymptotes.

The alkaline-earth homonuclear dimers have a shallow ground state and a
total electronic spin equal to zero. The closed s-shell of the atoms gives
a main van der Waals character to the binding interaction. Such behav-
ior is also known for the group-VIII, the rare gases, and for the group-IIb,
(Zn, Cd, Hg). It is characteristic of the van der Waals diatomic molecules
that the lower state is only weakly bound with a large equilibrium distance,
whereas the excited states are strongly bound with their minimum positions
at relatively shorter internuclear distances. Additionally, the most abundant
atomic isotopes have no nuclear spin, and have a single ground state 129
(except Beryllium).

Little is known so far about the shape of the potentials of the diatomic
alkaline-earth molecules. For the calcium dimer, few spectroscopic studies
and ab-initio calculations were realized on the molecular structures. The
theoretical study of the bond nature of the calcium dimer started with the
work of R. O. Jones in 1979 [Jones R., 1979] followed by the study of metal-
cluster boundings by [Pacchioni G. and Koutecky, 1982] and [Ortiz G. and
Ballone P., 1991]. The first determination of potential energy curve was
achieved for the ground state by [Dyall K.G. and Mclean A.D., 1992]. Re-
cent calculations of the complete structure concerning the lower states were
published by [Czuchaj E. et al., 2003] and concerning only the (*P+!S) and
(*P+1S) asymptote in [NIST-databases, 2004]. Several states calculated in
the two last mentioned investigations, are differing significantly, in particular
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the states correlated to the (*P+'S) asymptote. To obtain accurate ab-initio
potential energy curves is very difficult due to the complexity of the calcu-
lations. The obtained potential curves are often not sufficiently precise for
the description of the observed spectra and the cold collision phenomena but
provide important information for the assignment of spectra and give useful
onsets for accurate determinations of PEC from experimental studies.

The experimental study of the calcium dimer started in the middle of the

Simplified level scheme for Ca,

Zinner M. 2000
Dengenhardt C. 2003 'S+'R,
\ 'S,+'D,
. \ 'S,+°D
C.Vidal 1980 \
\
\

Hofmann & Harris
1986

Cooling at 423 nm

C. Vidal 1980

Figure 1.2: Simplified level scheme and studied region of the calcium dimer.
The full lines indicate studied part of potentials, and the dashed lines rep-
resent regions, which were not investigated up to now. The question mark
indicates that the repulsive branch of the ground state potential presents a
non-physical shape. PA: Photoassociation.

seventies by the observations of molecular transitions obtained by absorp-
tion spectroscopy which was achieved by [Balfour W.J. and Whitlock R.F.,
1975). Investigations on the A'E} state correlated to the 'Dy + 1Sy coupled
to the c3TI, dissociating to *P + 'Sy were realized by LIF spectroscopy and
molecular constants have been derived by [Bondybey V. E. and English J.H.,
1984] and [Hofmann R. T. and Harris D. O., 1986]. The long-range region
of the B’ has been studied by photoassociation spectroscopy in the group



15

of F. Riehle with the collaboration of E. Tiemann and reported in [Zinner
G. et al., 2000] and [Degenhardt C. et al., 2003]. The only determinations of
potential energy curves concern the ground state X'EF (*S; + 'Sp) and the
B'ZF (*Py + 'So) state for the short internuclear distances and have been
achieved by W.J. Balfour and R.F. Whitlock [Balfour W.J. and Whitlock
R.F., 1975] and later by C. Vidal in 1980 [Vidal C. R., 1980]. The figure 1.2
presents the studied region of the potentials. The published potential energy
curve for the ground state presents a non-physical behavior at its repulsive
part. The lack of explanations in the article concerning this fact led us to ask
for having the original spectroscopic data. Unfortunately, these data have
been lost! Consequently, a complete re-investigation of the ground state of
the calcium dimer becomes necessary.

This thesis work is devoted to the study of the ground state potential energy
curve up to large internuclear separations and the prediction of cold collision
properties between two Ca atoms in their 'S, ground state. Potential energy
curves corresponding to molecular states B'S} | ¢®II, and A'SHF correlating
respectively to the asymptotes 'Py + 'Sy, 3P 4 1S, and D, + S, will be
investigated.

The Hamiltonian describing a colliding pair of atoms and the Hamiltonian
of two bound atoms forming a diatomic molecule are the same. Therefore,
the knowledge of the molecular potentials up to large interatomic separations
allows to describe and to make reliable predictions on the collision processes.
By the knowledge of the positions of the bound levels of the potential wells
from the deeply bound region to the asymptotic limit, one can construct
the corresponding potential curves up to large internuclear separations by
a procedure of inversion involving full quantal methods. This approach is
well developed, and one can quote, for instance, two experimental works: in
[Seto J.Y. et al., 2000] the observation of the energy ladder of the ground
state of Rb, allowed a full determination of its potential energy curve and
in [Jones K.M. et al., 1996] the combination of conventional molecular spec-
troscopy and photoassociative spectroscopy of ultra cold atoms permitted a
direct measurement of the ground state dissociation energy of Nas.

The chapter II, is devoted to the determination of the ground state Xlzg of
Cag. The spectroscopic study is presented and followed by an explanation
of how potential energy curve can be extracted directly from the observed
molecular bound levels. In the following, we will address and answer the
question of the reliability of the derived potential energy curve. It is an
important issue that the derived potential provides an accurate description
of all the observations. But we ask more, we want to use this potential to
predict binary collision properties observable in ultra-cold dilute Ca, gases.
In the chapter III we are proposing a simple and precise method to transfer
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the knowledge of the precision of positions of observed levels, to the precision
of predictions determined with the derived potential. The chapter IV deals
with the determination of the potential energy curve of the B'Y] state. The
last chapter exposes the measurements and the analysis on the A’X} — 31l
coupled states.



Chapter 2

The calcium dimer ground state

In the following section, I will present what is known about the ground state
and explain in more detail the problem appearing on the repulsive part of the
potential curve, which has been derived by C. Vidal [Vidal C. R.., 1980]. Then
the experimental study to obtain the position of bound level of the ground
state in the relatively deep bound region will be presented and followed by
an analysis of the reliability of the long-range part of the potential when a
limited set of data near the asymptote has been collected. In the next section,
I will describe the measurements to obtain more levels near the dissociation
limit. With this enriched data set an accurate potential curve will be derived
up to very large internuclear separations. The reliability of the predictions
derived from the potential curve is an important issue. We will show that
it is possible to transfer the knowledge of the accuracy of the spectroscopic
data to the precision of quantities related to cold atomic collisions.

2.1 What do we know about the ground state?

The study realized by C. Vidal concerns the B+ «X'%} system. Transi-
tions between both states have been observed by laser induced fluorescence
(LIF) spectroscopy by excitation of the B state with the visible lines of an
Ar* laser and a Kr+ laser. The induced fluorescence was recorded through
a 2m grating spectrometer with an accuracy of 0.02 cm~!. The vibrational
quantum numbers ranged from v'= 0 to 33 and the rotational quantum
numbers ranged from J’'= 11 to 161 for the B state and from v'= 0 to 34
and J”= 10 to 162 for the ground state. A set of Dunham! coefficients from
the spectroscopic data has be obtained. The Dunham coefficients are a set

lsee equation 2.4 in section 2.3 page 33 or for more details see [Herzberg G., ] or the
original paper by Dunham [Dunham J. L., 1932].

17
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Figure 2.1: IPA potential published in [Vidal C. R., 1980]. A zoom of the

repulsive branch near the asymptote is inserted. The dashed line shows a
regular shape of the repulsion branch.

of parameters representing the energy positions of the bound rovibrational
levels. Considering the shape of the potential to be almost harmonic and
treating the non-harmonic correction by the quantum theory of perturbation
one can derive this set of parameters. A Rydberg-Klein-Rees (RKR) poten-
tial has been derived using the set of Dunham coefficients. The RKR method
allows to calculate the classical turning points of the vibrational level ladder
of the potential using a set of Dunham coefficients (an explanation can be
found in the text book [Lefebvre-Brion H. and Field R.W., 1986]). Employ-
ing the inverted perturbation approach IPA (a description of the method can
be found in [Vidal C. R. and Scheingraber H., 1977]), the author improved
the potentials for the B and X states, and claimed that they can represent

the observed data with the standard deviations of respectively 0.025 em™!

and 0.031 cm~!. The IPA potential of the ground state is plotted in figure

2.1. In the inset, an enlargement of the repulsive part of the potential shows

a significant deviation from a regular behavior. The RKR potential presents

the same irregularity. Such inflection is not expected for a ground state po-
tential. The states, which can couple with the ground state and produce
an avoiding crossing, are lying several thousands of wave numbers higher in
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energy. Their weak influence cannot produce such inflection. This kind of
irregular behavior comes usually from the set of Dunham coefficients from
which the RKR potential is derived. Close to the asymptote the Dunham
coefficients fail to represent correctly the energy positions of the observed
levels due to the strong anharmonicity of the potential. One can compensate
the resulting deviation by imposing, for instance, strong constraints to the
repulsive branch. The IPA method which is used to correct the shape of
the potential using directly the observed data should permit to remove such
unphysical behavior. Due to the loss of the original data it is not possible to
understand why the IPA conserves this inflection. A complete experimental
reinvestigation of the level structure of the ground state is a necessity and
will be achieved mainly by laser induced fluorescence spectroscopy.

2.2 Laser induced fluorescence experiment

2.2.1 LIF Setup

A scheme of the apparatus is presented on the figure 2.2. The set up is
composed of three main parts. We have a cell to obtain a vapor of calcium
dimer, a system of lasers to irradiate the vapor, and a Fourier transform
interferometer to spectrally resolve their induced fluorescence emission. The
Fourier transform interferometer is a Bruker IFS 120HR. and it can work in
a spectral range from 63200 cm™! in the ultra violet region to 450 cm~lin
the infrared region.

One difficulty of this experiment comes from the high temperature (more
than 1200 K) necessary to obtain a sufficiently dense vapor of calcium atoms
which collide to formed Ca dimers (see the appendix C). A special cell has
been constructed following the model of a heat pipe oven [Vidal C. R., 1980]
and this cell is described in the next section. Inside the heat pipe oven
the calcium vapor is irradiated by the lines of a multimode argon ion laser
(Coherent CR-2000K) with an output power of 1 to 1.5 W. These lines are
known to excite several transitions of the B'¥;} —X'Z} [Balfour W.J. and
Whitlock R.F., 1975] and [Vidal C. R., 1980]. The fluorescence light emitted
in the backward direction is reflected by a mirror pierced by a horizontal
slit. This slit lets pass the incoming laser beam without reducing too much
the reflection surface of the mirror. A set of two lenses (lens 1 and 2, see
the picture 2.2) collects the fluorescence light. The first lens of 60 cm focal
length converts the fluorescence beam, coming from the center of the pipe,
to a parallel beam. The second lens of 20 cm focal length focuses it onto the
aperture of the Fourier interferometer. Between the two lenses, color glass
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Figure 2.2: schematic of the experimental setup for the LIF experiment where
the fluorescence is treated via a Fourier transform interferometer.

filters are placed to cut the unwanted light coming from the oven in order to
reduce the noise and the background light of the recorded spectra. Additional
interference filters with their band pass centered at 550 nm and 546 nm were
used for the observation of transitions to the last bound levels of the ground
state. A photomultiplier tube (Hamamatsu R928) detects the light at the
output of the interferometer. The interferometer is controled via a computer
interface equipped with the OPUS software system. This system calculates
Fourier transformation of recorded interferograms and allows processing the
spectra.

The heat pipe oven

The heat pipe cell is made of a stainless steel tube heated around 1220K.
The oven used to heat the cell is a commercial one from the Kanthal firm. It
allows to reach temperatures closed to 1500K and can be used to heat any
tube having a diameter smaller than 60 mm. The pipe has a length of 960
mm, a diameter of 34 mm, and a wall thickness of 2 mm. A schematic of the
heat pipe oven is presented in the figure 2.3. It is filled with approximately
5 g of calcium granule composed of 99.5% of calcium. The natural isotopic
abundance of 9°Ca is 96.94%. Each end of the tube is closed by an anti-
reflection coated glass window allowing an optical access for the laser and the
emitted fluorescence. The windows are mounted on coolers whose purpose
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is to remove the heat radiated and conducted through the metal pipe by the
very hot central part. A flow of 1 liter per minute is sufficient to keep the
windows cold. A ceramic insulating tube surrounds the pipe to provide a
better homogeneity of the heat. At both ends a metal ring closes the gap

glass
window

anti reflection coated
glass window

insulating
metal ring

insulating
ceramic tube

Figure 2.3: section of the heat pipe oven

between the pipe and this tube, reducing strongly the flux of air and thus the
loss of heat. On the window holders an access for vacuum pumping and buffer
gas filling is provided. A buffer gas, which accumulates in the cold region
of the pipe, prevents the calcium vapor to reach the windows. Argon gas is
used at a pressure between 10 and 40 mbar (measured at room temperature).
We tried helium gas also but it requires a higher pressure to work efficiently
as buffer. Some heat is removed by the buffer gas from the calcium vapor
causing the condensation to the liquid phase and partly to the solid phase
of calcium. The liquid part runs to the center by capillary. In contrast to
the alkalis, a metal mesh covering the inner part of the pipe, which is often
used to increase the capillary effect, does not offer the same advantage with
calcium, and so was not used. The liquid returning in the center of the pipe
evaporates again. In this way a continuous cycle of vapor > liquid > vapor
is created along the heat pipe. This is called the heat pipe regime, and it
allows working with one filling during weeks. The formation of solid calcium
at the end of the pipe reduces the efficiency of this cycle, emptying the center
of the pipe of calcium. After typically 8 hours of operation (using argon) the
amount of solid calcium accumulated at both ends blocks the optical path
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for the fluorescence. A thin layer is firstly formed and then several dendrites
grow across the laser axis stopping the experiment. By heating more the zone
where the solid calcium grows we can melt these calcium depots. The liquid
calcium runs then to the center again. In this way we can have several runs
with only one filling of calcium of the heat pipe. This provided us enough
time of operation. It was not necessary to investigate whether an efficient
heat pipe regime [Vidal C. R., 1996, Vidal C. R. and Cooper J., 1969] could
be reachable or not by investigating more systematically the influence of the
oven temperature and the pressure of the buffer gas.

2.2.2 Transitions

The transitions excited during this study with the 514 nm, 496 nm and 476
nm lines of the Ar*t laser have been previously observed by Vidal [Vidal C.
R., 1980]. Each excited rovibrational level (v, J°) radiatively decays to
the vibrational levels of the ground state for two different rotation quantum
numbers J”. The spectra consist then of several progressions of doublets if
several transitions are excited simultaneously. The probability of decay to
each individual vibrational level v“depends on the overlap of the wave func-
tions of the excited rovibrational level and the rovibrational level it decays
to. One doublet consists of a P (J’= J'+1) and a R (J"= J’-1) line as
expected from the selection rules for a 'S} — 'S type system (described in
Hund’s case (a) ) for homonuclear diatomic molecules. In the general form
of Hund’s case (a) we get,

Q=X+4+A AQ =0,%1 and AJ=0,=41

Q is the projection of the total electronic momentum of the considered state
along the internuclear axis, in which A is the projection of the electronic
angular momentum and ¥ is the projection of the spin momentum onto the
same axis. We have A J= J’- J”. For the two states A = 0 and ¥ = 0,
AJ = 0 is forbidden and so only AJ = %1 holds. In addition, for bosonic
atoms in diatomic molecule, only odd values of J exist for the electronic
states with u symmetry, and only even values of J for the electronic states
with g symmetry, for ¥ states. Therefore, the ground state Xlz:g has only
even J-values.

The Dunham coefficients determined for the ground state in Vidal’s paper
were used to assign the observed spectra. Since these Dunham coefficients
represent the levels with relatively low quantum numbers of vibration and
rotation within an error of 0.046 cm™ it allowed us to assign the observed
progressions without ambiguity.
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1)/ J' 2" JII [ 1]

0 97 — 7 96 18787.6738(56)
0 101 — 7 102 18788.3028(60)
1 111 — 13 110 18787.3804(66)
2 21 — 9 20 18788.3639(60)
2 25 — 9 26 18788.2842(61)
2 69 o 11 70 18787.6237(68)
2 77 e 12 76 18788.3853(60)
2 99 — 15 100 18788.3088(61)
3 87 — 14 56 18788.3059(62)
3 85 — 18 84 18788.3471(61)
4 27 & 16 28 18787.4502(105)

Table 2.1: Transitions of the B'E} <+ X'S} excited with a single mode
frequency doubled cw Nd:YAG tunable laser.

A previously unassigned transition at 514.5 nm reported by Vidal has been
observed and identified to be v'=9, J'= 83 + v'= 24, J"= 84.
From the calculation of Franck Condon factors? (FCF) between the B and X
states, and for the range of excitation energy reachable by the laser sources
available at that time in our group, we found that levels with v = 2 are the
most favorable to induce fluorescence to the last bound levels of the ground
state (figure 2.4 a). We then chose the single mode frequency doubled cw
Nd:YAG laser (neodyme yttrium aluminum garnet) radiating around 532.4
nm since the (2, 21) + (9, 20) and (2, 25) « (9, 26) transitions fall conve-
niently into its 90 GHz tunable range. The laser line width was less than 10
kHz and the output power was typically 150 mW.
The FCF between v’'= 2 and the last bound levels are indeed favorable but
they are anyway weak and decrease very fast as v” increases (figure 2.4 b).
Another cw frequency doubled Nd:YAG laser (Coherent Verdi-10) was used
because it delivers high power (up to 10 W) and has its frequency (the
laser was not tunable) which coincides with the (2, 21) + (9, 20) transition
within the Doppler width. The power applied during our experiment was
between 1 W and 3 W. Comparing the width of the transition lines excited
by this laser at different laser intensities, no detectable broadening within
the experimental resolution have been observed.

The transitions of the B-X system excited by both Nd:YAG lasers are
presented in the table 2.1. These transitions have not been observed by

2The RKR potentials of the B and X state published in Vidal’s paper were used to
calculate the FCF.
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Figure 2.4: a- Franck Condon factors from v”= 35, J”= 20 to the vibrational
levels of the B state for J'= 21. b- Franck Condon factors from v'= 2,
J’= 21 to the vibrational levels of the X state for J"= 20

Vidal.

2.2.3 Observed spectra

An example of spectrum obtained by excitation with the 496 nm argon ion
laser line is presented on figure 2.5. It shows several progressions of P and R
doublets. By tuning the Nd:YAG laser and using the powerful Verdi laser we
were able to obtain information on the position of levels near the dissociation
limit. Using laser radiation with relatively high power increases proportion-
ally the scattered light and thus the noise in the recorded spectra. A band
pass filter with a width of &~ 8 nm centered around 546 nm, where the tran-
sitions from v’= 2 to the rovibrational levels converging to the dissociation
limit with J"=22, 24 and 26 are expected, was used to compensate for reduc-
tion of the signal-to-noise ratio (SNR), since the SNR, varies as 1/(BW)Y/2
where BW is the optical bandwidth.

The excitation of the (2, 25) + (9, 26) and the (2, 21) < (9, 20) transitions
resulted in the observation of vibrational progressions reaching respectively
v’=34 for J"= 24 and 26 and v"= 35 for J"= 20 and 22 ( see figure 2.6).
I should mention that the frequency of the frequency fixed Verdi laser was
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Figure 2.5: Bound-bound spectrum obtain with the 496 nm line of an Ar™
laser.

slightly dependent of the laser power anyway (the change was smaller than
0.1 cm™!). We used this to excite the two mentioned transitions, which are
in fact separated in frequency by more than the Doppler width ( 0.053 cm™!)
just by changing the power of the laser. It should be noted also that each
Doppler profiles of the transitions (2, 25) + (9, 26) and (2, 21) + (9, 20)
overlaps with the (0, 101) < (7, 102) transition. The spectra of these two
transitions are accompanied by the strong bound-continuum fluorescence in-
duced by the excitation of the (v'= 0, J'= 101) level. Progressions from the
excited levels (2, 21) and (2, 25) to the energy region close to the dissoci-
ation limit are thus recorded on a relatively high background, affecting the
signal-to-noise ratio.

In addition to the excited transitions, several collisionally induced transi-
tions have been observed. The population of a laser excited rovibrational
level (v, J7) is partly transferred to the surrounding rotational levels J 42,
J'+4, J'+6... due to collisions with the buffer gas atoms. The collisions
with calcium atoms lead mainly to molecular quenching. The probability
of molecule-molecule collisions is much weaker than for molecule-atom colli-
sions due to the relatively weak density of Cay in the heat pipe. Then, the
populated levels radiatively decay to the ground state leading to neighboring
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Figure 2.6: Vibrational progression from the excitation of the (2, 21) level
of the B state leading to the observation of the highest observed levels (v'=
35) by the LIF spectroscopy. Rotational satellites lines of the populated (2,
19), (2, 23) and (2, 25) levels, labeled as P(J"+2),R(J"+2), P(J"+4) and
R(J"+4), are present as weak lines around each main doublets.
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Figure 2.7: Collisionally induced lines are labeled with Py-(J”) and R,-(J").

doublets around the main doublets induced directly by the laser. In figure
2.7, a portion of the fluorescence spectra obtained with the 514.5 nm line of
the Ar* laser shows several collisionally induced satellites from the popula-
tion of rotational levels around the excited (5, 67) level decaying to v’= 0.
In figure 2.6 satellites are present and can be followed up to v'= 31.

Additionally, we have observed several shape resonances corresponding to
the fluorescence decays (0,101) — (19,102), (0,121) — (17,122) and (0,161)
— (9,160). One of them is presented in figure 2.8 where we can see that the
fluorescence line corresponding to the transition (0, 161) < (9, 160) shows a
broadening in the order of 0.5 cm™!.
We have found a few weak progressions that belong to the calcium iso-
topomer *Ca*’Ca. The excitation transitions by the Nd:YAG laser were
assigned to (0,42) + (4,43) and (0,72) «+ (5,73) at 18788.36 cm™! and
(0,111) « (8,112) at 18787.36 cm~!. I would like to mention that the
widths of the observed shape resonances and the isotopomer progressions
will not be included in the data set that will be used to fit the potential
energy curve of the ground state. They can serve as a check of consistency
for the determination of the potential.

A total of 2872 transitions have been observed from the B! -X*2} sys-

tem involving 730 ground state energy levels. The field of v"and J"quantum
numbers is given in figure 2.9. It covers rotational quantum numbers from
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Figure 2.8: Vibrational progression from the (2, 161) B state level presenting
a shape resonance for the v’'= 9 J"= 160 ground state level.
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Figure 2.9: Data field of the observed levels of the XlE;' state.
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J”"= 10 to 164 and vibrational quantum numbers from v"= 0 to 35. The
same range of J"has been covered by C.R. Vidal in 1980 but more levels
with higher vibrational quantum number were observed during our experi-
ment, that is to say, four rotational levels for v'= 34 and two with v"'= 35.
The observation of v”'= 34 clearly indicates the necessity of a revision of the
asymptotic behavior of the previously reported ground state potential [Vidal
C. R., 1980]. Indeed, the energy position of v'= 34 (J"= 0) is 0.155(7) cm™*
above the predicted asymptote of the IPA potential and even 3.018(7) cm™!
above for v’= 35 (J"= 0). The incorrect behavior of the potential starts
already much deeper into the potential. For v'= 21 the difference between
our observation and the prediction with the IPA potential already reached
0.1 cm™! which is 2 times the stated accuracy of 0.046 cm™* of the IPA.
This confirms that not only the long range behavior of the potential needs to
be analyzed again but a rather complete reinvestigation of the ground state
potential is necessary.

The observation field consists of a large and dense data set that will allow
a precise determination of the potential energy curve. We can already men-
tion that a careful analysis should be made about the extrapolation to the
long range region of the potential since the very last bound levels are not
observed. But, before describing the procedure to determining the potential
energy curve (PEC) I will present in detail the estimation of the experimental
uncertainties of the positions of our observed lines obtained by the Fourier
transform spectroscopy.

2.2.4 Experimental uncertainty

A special care should be exercised on the determination of the experimen-
tal uncertainties. As we will see later, the determination of the reliability
of quantities of interest, like the van der Waals coefficients or the s-wave
scattering length is based on the data accuracy. We will determine the dif-
ferent contributions which lead to the profile of the observed lines. Then a
determination of the experimental uncertainty will be given.

Doppler broadening The main contribution to the experimental uncer-
tainty comes from the Doppler broadening of the molecular lines when ex-
citing with a laser running in multi-mode. The Doppler width is given by
the following relation, see for example the Demtroder’s text book [Demtroder

W, ).
Swp = (2wp/c)+/2RT In 2/M (2.1)
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R is the gas constant, T the temperature of the gas, M the molar mass of the
molecule under study, ¢ the velocity of light in vacuum and wy the central
frequency of the molecular emission line. The temperature of the Ca, sample
being 1223 K and for a typical line frequency® of 21000 cm™!, the Doppler
width is then 0.059 cm~!. The mass of “°Ca, is two times the mass of Ca
and maoc, = 39.9625912 mizc ( mizg = 1.66053886 x107%7 kg from [NIST1,
| and [NIST2, ).

Instrumental broadening The Fourier interferometer uses a frequency
stabilized Helium Neon laser to set the stepping motion of the scanning
mirror. It gives a relative accuracy better than 0.5 x 10~7¢ and an absolute
accuracy better than 5 x 10~7c, where ¢ is the frequency in wave number?.
The interferogram of a monochromatic line is a sine function of the optical
path difference which extends to infinity. Practically, the path of the scanning
mirror is limited. One can only record a fraction of length L of the sine
function. This limitation introduces a broadening of the observed lines. The
shape of a recorded line is obtained by the convolution product of the real
profile with the instrumental line shape function. This function is simply the
Fourier transform of the rectangular function of length L. The instrumental
function in the Fourier space is equal to:

I¢(o) = 2L sinc(27(0o — o)L, (2.2)

where oy is the central frequency of the line and L the optical path difference
used in the recording. The full-width at half-maximum is, in terms of wave
number, do & 1.21/2L

Another inconvenience of a finite path difference comes from the fact that this
instrumental function has side lobes or ”feet” which could be mistaken with
lines of nearby wavelengths. To avoid such confusion the size of the "feet” are
reduced by the process called ”apodization”. The idea is simply to replace
the rectangular function by another function whose Fourier transformation
leads to a line shape with smaller side lobes. Depending on the choice of the
apodization, the full-width at half-maximum can change significantly. We
have chosen to use a triangular function giving an instrumental line width
equal to éo = 0.9/L for some of our spectra. But most of the time we
used the rectangular function also called Boxcar for apodization. Following
the Rayleigh criterion, two lines are resolved if the maximum of one line
falls at the first zero of the other line. This criterion leads to the following

3For reference the frequency of the 476 nm Argon line is 20981.12 cm™".

4At ¢ = 21000cm™"! the absolute accuracy is 0.01 cm™! and the relative accuracy is
0.001 em~1.
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relations between the optical path difference and the resolution (RES) for an
unapodized interferogram (1) and for a triangularly apodized interferogram
(2):

(1) RES=1/2L (2) RES=1/L

We can now relate the instrumental line width (ILW) to the desired resolu-
tion: doypw ~ 0.9/RES for triangular apodization.

The IFS-120 Bruker interferometer has a slightly different definition of the
optical path difference (OPD) OPD = 0.9 L. This leads to a line width which
is 00 =~ 0.68 x RES for the Boxcar apodization and equal to the resolution
in the case of a triangular apodization o ~ RES. We selected a resolution
of RES = 0.05 — 0.06cm™" to record the spectra of Cay. This choice was
also made as a compromise between the expected Doppler line width and a
reasonable time of recording.

Aperture For the experimental uncertainty one should not forget to take
into account an additional broadening of the line and a shift in frequency
introduced by the extended light source or, equivalently, introduced by the
finite optical aperture of the interferometer. Because the source is not a point
source a part of the rays inside the arms of the interferometer are slightly
oblique. The calculation of the consequent shift and broadening are clearly
presented in the reference [Bell R. J., 1974] and only the resulting formulas
will be mentioned here. The wave number spread doa, and the shift in the
wave number scale Aoap, are given by

6UADL/O-0 = dzApt/Sfc?ol AOAPL/UO =- dZApL/Ichzol

where f.;;=41.8 c¢m is the focal length of the curved mirror at the entrance
of the instrument collecting the light from the aperture of finite size dap.
The typical diameter used to get enough light and a not too large broadening
and shift was equal to 1.3 mm. We have then a broadening of the lines of
the order of 0.025 cm™! and a wave number scale shifted by —0.013 cm™! at
oo= 21000 cm™! . The OPUS software provided to control the interferometer
corrects automatically the shift in the frequency scale.

Summery Finally the resulting line profile is the convolution of the Doppler
profile and the instrumental profile. The line width can be obtained in good
approximation by the following relation with the considering that the instru-
mental profile which is a sinc function does not differ significantly from a
Gaussian profile:

do =~ [(5UDoppler)2 =+ (50'ILW)2 -+ (50Apt)2]1/2 (23)
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The lifetime of the B state is in the order of 22 ns (width ~ 0.0015 cm™")
[Bondybey V. E. and English J.H., 1984] which is negligible compared to
the other contributions. ,

Using this relation, one obtains a line width equal to 0.071 cm ™" around 21000
cm™!, which corresponds effectively to the typically observed line width at
a temperature around 1220 K. Some of the spectra were recorded at higher
temperature and/or at different buffer gas pressure. We have seen some
dependence of the line profile under these different conditions. The reduc-
tion of the lifetime of the excited levels by collisions with calcium atoms can
explain the broadening of the transition lines we observed. The level po-
sitions, mainly of the excited state, are expected to be also shifted by the
collision process. This affects of course our accuracy. So most of the spectra
were recorded using lower temperatures than 1250 K and buffer gas pressure
lower than 40 mbar (at room temperature) since under these conditions no
significant broadening was observed within our resolution.

Signal-to-Noise ratio The determination of the position of the center of a
line depends on the width of the line, the signal-to-noise ratio and the number
of points falling along its profile from the digital recording. For lines with a
signal-to-noise as low as 1 ~ 2 an uncertainty of 0.03 cm™" was estimated.
The uncertainty was taken to 0.01 cm™ for a line with a SNR higher than 5.
In order to improve the accuracy of our measurements, the same LIF spectra
were recorded several times. Some transitions were observed up to 15 times.
By averaging these transitions weighted by their SNR we could reduce the
uncertainty on the value of the transitions. In fact, as it will be mention in
the next section, differences between transitions have been constructed. So
it is these differences which were averaged.

2.3 Determination of the interaction poten-
tial

Before explaining the procedure of construction of the potential, I will ex-
plain how we extracted, in a simple way, information only about the ground
state from our observations. By LIF experiment we normally collect less data
on the excited state than on the lower state. Therefore, the determination
of the two involved electronic states using the observed transitions does not
seem justified. The procedure would need to overcome the problem of the
existing strong correlations between the two states by the limited data set.
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Predictions using only one of the states would then become questionable.
The way to extract from the observed spectra information concerning the
ground state is to calculate differences between transitions which originate
from a common upper level. The main advantage of this method is to sup-
press the influence of the excited state. This is quite important since, in our
case, the B'X} state is expected to be perturbed [Vidal C. R., 1980]. In ad-
dition, the collisional shift of the spectral lines, we have discussed previously,
might be of the same order of magnitude than the experimental accuracy.
Since in most cases, the influence of the collisions is larger for the excited
state levels than for the ground state levels, building differences will permit
to decrease the influence of this effect.

Several spectra were recorded with a single mode laser. If the laser is not
tuned exactly to the maximum of the Doppler profile, a significant shift of
the fluorescence frequency is induced. Calculating the differences will allow
reducing the influence of this Doppler shift below the experimental uncer-
tainty. Since this shift is frequency dependent it will not be the same for the
different transitions of a fluorescence progression and cannot be completely
eliminated. The residual shift is expected to be reduced to ~ 0.003 cm™!.
We have restricted the possible combinations of differences between transi-
tions in a progression to crossed differences. That is to say, for each P line
(similarly for R line) of one progression (of doublets) we calculated the differ-
ences between all the R lines of the same progression (similarly for all P lines).
So we have ignored the differences within P lines and within R lines. We have
mentioned earlier that some progressions have been observed several times.
In this case the differences between transitions have been formed within each
progression and then statistically averaged weighted by the accuracy of the
considered line center of the transition lines. We have obtained in this way a
set of more than 6500 differences from the 2872 observed transitions, which
will compose our data basis to determine the XlEg+ state potential energy
curve.

2.3.1 Construction of the potential energy curve

When a large set of observed energy levels has been collected, one usually
desires to find a reduced set of parameters of an appropriate function of
the vibrational and rotational quantum numbers v and J which provides an
accurate description of the data ensemble in a compact form. For example,
the Dunham expansion is widely used [Dunham J. L., 1932] and [Herzberg
G" ]7

@ =3 VA (v+HII+1) - ofm (2.4)
lm
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where the V)%, are the so-called Dunham coefficients. This representation

works for many states but fails to describe states which present a shelve
shape or a double well structure.

Although the Dunham representation is very useful for regular potentials,
our interest is to go beyond the simple data regression. We want to describe
the interaction between two colliding calcium atoms in their ground state. To
fulfill this goal we need to determine the potential of interaction represented
by the potential energy curve (PEC).

The description of the interaction between two ground state Ca atoms re-
lies on the following assumption: The Hamiltonian is treated in the Born-
Oppenheimer approximation. We describe the interaction in the single 1y
(*Sp +' Sp) channel. The energy separation between the next excited states
and the ground state is large (in the order of 10000 cm™ ) so the adiabatic
picture is applicable®.

The Hamiltonian operator for two interacting atoms separated by a distance
R is written following the notation of [Lefebvre-Brion H. and Field R.W.,
1986] as:

~  zel N  AROT  arel

A=0"+T +0 +8" (2.5)
where H® includes the electron kinetic energy and the electrostatic potential
energy for the nuclei and the electrons, TN is the vibrational nuclear kinetic

energy, HROT is the rotational nuclear energy and I:I]rel describes all relativistic
effects. In the case of the ground state of Cay we have the total electronic
spin S =0, A = 0 and ¥ = 0. The Hamiltonian reduces in this case to the
simple form in the Born-Oppenheimer approximation:

A N h2
f=T"R)+——=JJ+1) + Vi (R) (2.6)
2uR

where J is the total angular momentum without the nuclear spin and p is
the reduced mass of the molecule. V&, (R) is the interaction potential which
depends only on the internuclear separation in the BO approximation being

. . el . . .
the eigenenergies of A%, The eigenvalues of the total Hamiltonian are the
rovibrational energies E,, ; and the eingenvectors are the rovibrational wave
functions | xy, s > .

H | Xv,1 >=Ey, 5 | xv, 3> (2.7)

5The adiabatic picture holds when (%)%ﬁ, < 1. Assuming El;, at its maximum

value, namely the dissociation energy of the X state D, ~ 1000 cm™' and the separation
with the lower excited state AE® ~ 10000cm™! we have the ratio 0.1 x (%) which is very

small compared to 1. (m, and u are the mass of the electron and of the reduced mass of
the molecule)

Me
m
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The problem is to determine the potential energy curve. Once the poten-
tial V35 (R) is known the Schrodinger equation 2.7 can be solved, using one’s
favourite numerical method, to predict interesting properties of the system.
In principle the potentials can be found by ab-initio calculations, but ob-
taining precise potentials is a great challenge for the theoreticians due to the
many body nature of the problem.

Another approach is to construct the PEC from the measured transition
energies, or, in our case for a single channel analysis, from the differences be-
tween energy levels of the considered state. The basic idea is to fit parameters
of a potential function such that the eigenenergies obtained by solving the
Schrodinger equation with this potential match the observed spectroscopic
data. Several methods or approaches have been developed in this scope, us-
ing either analytical [Seto J.Y. et al., 2000] and [Samuelis C. et al., 2000] or
point-wise representations [Pashov A. et al., 2000b] for the potential function
and different strategies to find the parameters either by linear or non-linear
fitting procedures. This full quantal method offers the possibility to adjust
the potential form directly to the observations without intermediate steps.
In this thesis two approaches have been employed for the determination of
the potential of the ground state. The first one uses an expansion over ana-
lytic functions to represent the potential. The parameters of the expansion
are found by a non-linear fitting procedure. The second representation uses
a set of points, treated as parameters, connected by cubic spline functions.
Corrections of the positions of the potential points are found by an iterative
linear fitting procedure. Both methods have been proven to give potentials
which can describe observed data within their experimental uncertainty. Ex-
amples are the determination of the Na, B!II, state using the analytical
representation [Richter H. et al., 1991] and the determination of the double
well NaK 6'Z+ state [Pashov A. et al., 2000a] for the point-wise representa-
tion.

In the next paragraph I will describe both methods.

The analytical representation The potential energy is represented by a
truncated expansion®:

V(R) =D a:é(R)’ (28)

®One can find, for instance, descriptions and comparisons of different choices of repre-
sentations for the analytical functions in the thesis of Y. Huang [Huang Y., 2001].
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over the following analytic functions

R—-R
R =( —-"™ : 2.9
«® = (nr ) (29)
and {a;}, b, and R, are parameters (R, is close to the value of the equilib-
rium distance). At short internuclear distances, the expansion is continuously

extended by
V(R) = A+ B/R" for R < Rinn (2.10)

and at long internuclear distances by
V(R) = DX — C6/RS — C3/R® — Cyo/RY for R > Row:  (2.11)

Equation 2.10 ensures the steep slope of the repulsive branch and R, lies
usually within the range of inner turning points of the observed levels. The
extension at large R, equation 2.11, is used only to fulfill the required bound-
ary conditions for the calculation of the eigenenergies and wavefunctions at
this point of the determination of the potential. R,y is chosen to lye out of
the range of outer turning points of the observed data. We will come back
later to these considerations when we will focus our attention to the reliabil-
ity of the long range extension of the potential.

The {a;} coefficients are determined by a non-linear fitting procedure using
the well-known MINUIT program library [MINUIT web page, |. This pro-
gram is used to fit the potential on the constructed set of energy differences.
It minimizes the mean standard deviation & defined as

Eobs Ecalc
=5 NZ( e ) (2.12)

0P is the experimental uncertainty of the i** energy difference E¢™ and Egle
is the corresponding calculated energy difference. N is the number of differ-
ences and N, is the number of parameters describing the potential.

In order to speed up the convergence, it is better to start the fitting routine
by using already a reasonable guess for the initial set of parameters. For this
purpose the RKR potential curve determined in [Vidal C. R., 1980] has been
taken to fit a first set of parameters including b and R,,. Then, b and R,
remain fixed during the fitting procedure.

Several analytical potentials have been then adjusted on the observed differ-
ences. They were constructed with different sets of a; parameters composed
of 21, 23, and 39 values. The position of the inner connection Ry, was var-
ied be’rween 3.5 A and 3.7 A and, the outer one R,,; between 12 A and 13
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A. These potentials will be used for checking the range of reliability of the
final potential. They reproduce the observed differences with a normalized
standard deviation of close to & = 0.40 and an absolute standard deviation
of 0.0065 cm™t. ‘

Numerical TPA potential The construction of the potential is based on
the Inverted perturbation approach developed by C. Vidal and H. Schein-
graber presented in [Vidal C. R. and Scheingraber H., 1977]. The principle is
to start by an approximate potential Vo(R), for example an RKR potential,
and to seek for corrections V(R) to it, that the set of differences between the
eigenvalues obtained by solving the Schédinger equation with V¢(R)+dV(R)
agree with the differences from observed levels within their experimental
uncertainties in the least squares approximation sense. Assuming that the
correction should be small compared to the energy difference (if the starting
potential is already representing the observed levels sufficiently well) one can
find the correction using the first order perturbation approach.

0E,; =< X?,’ J | (SV(R) | X?,, > (213)

EY; + 6E,; = ESP (2.14)

The correction of the potential is developed over functions as:
6V(R) = Z ci fi(R) (2.15)
=0

Replacing §V(R) into the equations (2.13) and (2.14) we obtained a system
of linear equations were the unknowns are the correction parameters c;.

0By = Zci <xXog | i(R) | x5 >= By — EY (2.16)
i=0

Initially Vidal and Scheingraber used an analytical function for f;(R). The
choice of f;(R) is critical. It is not obvious, in general, which shape the
correction must have and if the chosen function will be able to reproduce
it. This means that the expansion should be flexible enough to avoid a rep-
resentation with a too large number of parameters {c;}. Pashov proposed
an alternative to the analytical expansion. The correction to the potential
curve is expressed as a set of n points at equidistant internuclear distances
{Ry, 6V;}, connected with a modified cubic spline function [Pashov A., 2000].
This representation of §V(R) is very flexible and can handle relatively fast
varying corrections with R without a too high number of points. Another
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advantage is that the correlations between neighboring points decrease ex-
ponentially due to the modified cubic spline functions. The corrections are
local. »

The system of equation 2.16 is over determined since there are more equa-
tions than parameters. It can happen that the data are not significant for
a parameter or a particular linear combination of parameters. In this case
the value of the parameter combination can tend to get very small values
and one would like to eliminate it from the fit and reduce the number of free
parameters. By using the Singular Value Decomposition (SVD) technique
one can find the fitting parameters, on which the fit depends only weakly.
The system of equations is solved numerically using this method.

In the present case of the determination of the ground state of Cag the po-
tential curve is initially defined in the interval 2.7 A - 13.1 A using a grid
having between 50 and 118 points. As previously the curve is extended at
long range by an expansion of the form given in equation 2.11. The coeffi-
cients of the expansion are determined by fitting the shape of the potential
between 12 A and 13.1 A. The connecting point Ry, is chosen in a way to
ensure a smooth connection with the point-wise potential.

A potential in point-wise representation has been determined in this way
which can reproduce the set of observed differences with a standard devia-
tion of 0.0068 cm™! and a normalized standard deviation of & = 0.41.

2.4 Long-range analysis on the ground state

Since our interest is to describe the cold collision phenomena and in par-
ticular to make predictions concerning the interaction between two largely
separated calcium atoms we need to investigate the reliability of the deter-
mined potential curve.

In the previous section we have derived several PECs by two different meth-
ods. On the graph 2.10 differences are plotted between the analytic potential
with 21 a; parameters and three other potentials, one analytic with 39 a; pa-
rameters and two point-wise potentials, respectively with 50 and 73 points.
As mentioned before, these potentials were smoothly extended from Ry
close to 13 A, which corresponds to the largest turning point of the observed
levels. These differences will help us to determine whether the extension at
13 A is reliable.

Because these different potentials reproduce the experimental data with sim-
ilar accuracy, we can conclude that the fast oscillations, we see on the fig-
ure 2.10 for the intermediate range (R < 10 A), are within the fluctuations
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Figure 2.10: Differences between the potentials of the X state obtained using
the two representations. The differences exhibit the region where we can
consider that the shape of the potential is unique and does not depend on
the type of representation.

"tolerated” by the experimental uncertainties. I mean that the difference be-
tween the position of a level calculated with a potential presenting this fast
oscillations and the position calculated with a potential much smoother is
smaller than the experimental uncertainty of the corresponding level. We can
understand that solving the Schrodinger equation will integrate over these
oscillation structures and thus some averaging occurs. Therefore, improving
the experimental accuracy will reduce the differences between the potentials.
On the other hand, the amplitude of the oscillations is largely increasing for
internuclear separations beyond 10 A. The range of classical outer turning
points from observed levels extend to 13.1 A but the number of observed
levels having an outer turning point beyond 9.5 A is only 18. This should be
compared to the 712 observed levels of which the turning points lye in the
region 4.5 A < R < 9.5 A. Obviously the small amount of data beyond 9.5
A does not allow to determine the shape of the potential without ambiguity.
In contrary, for the intermediate region, the large number of observed levels
imposes strong constraints on the possible fluctuations of the potentials.

The different representations allowed us to determine the range where the
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shape of the potential is unique within the experimental uncertainty and re-
liable. This range is significantly smaller than the range of turning points
of observed levels. Moreover, we cannot rely on the position of the outer
turning point at 13.1 A of the highest observed level to extend the potential
curve to very large internuclear separations.
This means also that we cannot reliably extend the potential at large sep-
arations (R > 13 A) using the physical analytical form (see equation 2.11)
valid at large distances.
We have to remind ourselves that the interaction between two calcium atoms
is relatively weak due to the two closed atomic s-shells. So, the binding en-
ergy should exhibit, in this case, mainly van der Waals character. It is worth
then to examine whether it is possible to describe the experimental data by
smoothly extend the PEC starting from a connecting point lying at shorter
distance. More importantly we need to see if this point can already lye in
f&he region where the potential is uniquely and reliably determined (R < 10
).
Before making such changes we should estimate the contribution of the ex-
change energy.
For that, we apply the expression from [Radzig A.A. and Smirnov P.M., 1985]
and [Kleinekathofer U. et al., 1995]:

Vexch(R) - BRanp(_ﬁ R)> (217)

where for the Cay ground state B = 0.067 a.u., o = 4.16 a.u., and = 1.356
a.u. A calculation at 9.5 A gives an energy which is only 0.07 cm™. This
should be compared with the magnitude of the contribution of the small-
est discussed dispersion term (i.e Cyp) which is ~ 1.5 cm™!. Therefore, we
will examine whether the experimental data can be described by a pure long
range expansion eq. 2.11 starting fron 9.5 A allowing a physical extension of
the potential while keeping the long range model as simple as possible.
Several potentials using the analytic representation has been obtained where
the LR C,, dispersion coefficients were directly fitted to the experimental
data. All found potentials have similar accuracy (& < 0.45). This means that
the data can be correctly represented by potentials having a pure LR form
after 9.5 A. No additional damping (or cut off) functions for the dispersion
coefficients should be introduced. A check of consistency was performed by
verifying that the quality of fit of the differences did not depend on the choice
of representation of the potential. All fitted potential have virtually identical
shape for intermediate internuclear distances but have different long-range
extension. All of them reproduce, in particular, the levels of which turning
points lye between 9.5 A and 13.1 A within their experimental uncertainty.
Since the LR dispersion can reproduce the experimental data starting in
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the region where the PEC is well characterized we can say that the long
range representation is reliable. I mean by reliable, that among the obtained
long-range extension coefficients we can find with high probability the true
parameters of the LR model known by Mother Nature! Following this def-
inition we can say that an extension performed at R, > 10 A would not
be reliable. Unfortunately, the existing experimental data (the 18 levels) are
not enough in order to allow a precise determination of the contributions of
each dispersion forces. For instance, the value of Cg varies from 0.7 x 107
em™! A% t0 2.01 x 107 cm™! AS. Nevertheless the variation of the value of
the dissociation energy DX is quite constraint to an interval of 0.7 cm™?, i.e
between 1101.9 cm™" and 1102.6 cm ™!,

It is clear that we cannot determine accurately the dispersion coefficients
uniquely from the experimental observations. In order to improve our pre-
cision and get, as well, a better estimate of the dissociation energy, we can
restrict the variation of the leading term in the long-range extension, Cg, to
within a defined interval around the most reliable theoretical prediction of
its value.

Among the available calculations of Cg we can find in the literature, the re-
cent prediction published by S.G. Porshev and A. Derevianko [Porsev S. G.
and Derevianko A., 2002], is given together with an estimate of uncertainty.
Their value of Cg was adjusted on experimental data for the electric-dipole
matrix element [Zinner G. et al., 2000] and the energy of the principal tran-
sition 4pds P9 — 4s?1S,. The semi-empirical value is 1.070(7) x 1077 cm™!
AS thus only 0.7% uncertainty. We restricted the variation of the value of
Cs to within 5% around the theoretical value which can be understood as a
relatively loose constraint.

The sequel analysis was performed and is summarized on the graph 2.11.
We have calculated all possible potentials which fulfill the three following
requirements.

(i) All potentials parameters were varied within ranges that allowed an accu-
rate description of the experimental differences especially the ones involving
v’= 35. A deviation from the observed positions of two times the experi-
mental uncertainty was allowed.

(i) The long-range expansion is smoothly connected to the intermediate ex-
pansion eq 2.9 using D, and Cjp .

(iii) The value of the Cs coefficient was restricted to vary within an interval
of +5% around the theoretical value.

In this way we have obtained a family of potentials ”allowed” by the ex-
perimental data within the constraint of the value of the leading van der
Waals coefficient Cg. The value of the dissociation energy is now restricted
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Figure 2.11: Long-range analysis relying on the theoretical value of Cg leading
to a smaller interval for the dissociation energy.

to a much smaller interval 1101.99 cm~'~ 1102.17 cm™!. This is mainly
the position of the highest observed levels, namely (v’'= 35, J”= 22) which
gives the lower limit of the interval of the dissociation energy. The calculated
position of this level deviates from the observed position by two times the
experimental uncertainty (0.017cm™!) at the lower boundary of DX. The
interval obtained for Cg and C1g are presented in the table 2.2. In this table
the value of the dissociation energy D¥ is given with respect to the v”= 0,
J”= 0 level which is observable and which does not depend on the chosen
representation of the potential unlike DZ.

Table 2.2: Parameters of the long range expansion for the Xl}ig state in
40Ca, applied in this study and compared with the most recent data from
the literature.

DX, cm™! 1102.08(9)
D¥, cm™* 1069.88(9)
Cs x 1077, cm™1A® selected interval 1.02 — 1.12

Cs x 1078, cm™A® 1.1—-3.8
Cho x 1079, cm™ 1A 3.7—-17.0

A comparison of the present dissociation energy, taking DX = 1102.08 +
0.009 cm™! as a mean estimate, with the dissociation of the IPA potential
determined by [Vidal C. R., 1980] DX = 1095.5+0.5 cm ™" shows a deviation
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by 7 em™! (see figure 2.12). We have also recalculated the level positions

v\ 1 192_08 += 0.09 cm—i
--------------------- 1095+0.5 cm*
: = C.R. Vidal (1980)
5 1070 — This study
1060 -
1050
é - 110 T 1|1 l|2 ll:)'

internuclear separation [A]

Figure 2.12: Comparison between the °Ca, ground state potentials deter-
mined by C. Vidal (squares) and derived in this study (solid line) near the
dissociation limit. The lower dashed line indicates the value of the dissocia-
tion limit determined by C. Vidal. The upper one indicates the dissociation
limit derived in this study.

predicted by this IPA potential (a natural cubic spline was used to interpolate
the points of this potential) for levels below v"= 29 (classical outer turning
point ~ 8.6 A). We found that it can, in fact, reproduced the experimental
data with a standard deviation of 0.1 cm™! (to be compared to the stated
standard deviation of 0.031 cm™!).

2.5 Predictions

This analysis allows us to make reliable prediction about collision phenomena.
The precision of the possible predictions relies on the accurately calculated
value of the Cg van der Waals coeflicient and on our choice for its uncertainty.
We have shown that such considerations lead to a relatively small interval
(0.09cm™!) for the prediction of the dissociation energy from 1101.99 cm™'to
1102.17 cm ™.

In order to show the consistency of the entire PEC it is interesting to com-
pare the observations - not used in the procedure to determine the potential -
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Figure 2.13: Shape resonance observed for the transition involving the ground
state (v'= 9, J"= 160) level. In blue is presented the calculated profile.

to their predictions. For this purpose, we can check if agreements, for exam-
ple, between calculated and observed profiles of shape resonances are found.
The profiles can be calculated by different methods. We choose simply to
calculate the overlap between the wave functions of the excited level of the
B state” and the wave function of the dissociating ground state level of the
considered broadened transition line. The dipole interaction was supposed to
be constant. Inhomogeneous broadening from Doppler effect was neglected
due to its much smaller magnitude compared to the dissociation broaden-
ing of the observed resonances and also because it is of the same order of
magnitude as the experimental uncertainty of the width of the resonances.
We can see on the figure 2.13 the observed shape resonance concerning the
transition (0, 161) — (9, 160) together with the calculated profile. Both pro-
files agree very well, see in Fig. 2.13. Such agreement has been obtained, as
well, for two other observed resonances. The calculated and observed widths
are given in table 2.5. It is interesting to mention that, due to the shallow
potential, the nine levels of the potential well with rotation J“= 160 lie above
the dissociation threshold. All these levels present then a broadening due to
their non-zero probability to dissociate. Of course, only the ones close to the
top of the centrifugal barrier have a significant broadening and only v'= 9

"The RKR potential of the B state from Vidal has been used for these calculations
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transitions observed line widths | calculated line widths
[cm™!] [em™]
(0, 161) — (9, 160) 0.44(5) 0.440
(0, 101) — (21, 102) 0.18(2) 0.185
(16, 121)— (17, 122) 0.25(9) 0.301

Table 2.3: Observed and calculated line width of shape resonances.

have a large enough line width to be observed in our LIF experiment.
Another prediction that can be made is the determination of the s-wave
scattering length a. For all constructed potentials, we have calculated the
corresponding value of the scattering length. We have used a program devel-
oped in our group which calculates the phase shift (k) induced to the wave
function by the interaction of the two colliding atoms. The phase shift is
related to the scattering length by the relation:

a = lim [—%tan(é(k))] (2.18)

where E=A2k?/2y is the relative kinetic energy of the colliding atoms.

The value of the calculated scattering length ranges from 112 ay to 850 ao.
The highest limit happens for the lowest values of the dissociation energy
D¥ = 1101.99cm™!. Decreasing the value of the dissociation energy will
result in a fast raising of the value of a which can then pass the infinity®
and become negative. As we have discussed previously, the lower boundary
for DX = 1101.99cm™lis a limitation coming from the experimental data.
Decreasing further the value of DX beyond this limit would lead to unac-
ceptable contradiction with the observation. Therefore we believe that if the
deviation of Cg from the theoretical prediction does not exceed the selected
5%, the given interval for the scattering length is reliable.

2.6 Achievements

We employed the laser-induced fluorescence spectroscopy combined with a
high resolution Fourier transform interferometry to observe transitions from
the B state to the ground state. We collected a large amount of informa-
tion about the position of rovibrational levels of the ground state. This

8When the scattering length becomes infinite from the positive side the potential well
looses one bound level.
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field of data allowed us to determine potential energy curves of the ground
state, from the smallest ”observed” turning point (~ 3.63 A) to the largest
”observed” one (~ 13.1 A), using two different representations. These po-
tentials describe the experimental data within the experimental uncertainty.
The standard deviation of the differences between levels calculated by both
representations equals 0.0023 cm™!, which is much smaller than the experi-
mental uncertainty.

Then, the reliability of the potentials was discussed. We have seen that,
despite the fact we have experimental data up to 13.1 A, the potentials from
both representations are identical and unique only up to 10 A. Tt was ex-
plained by the decreasing number of observed data whose turning points lye
beyond 10 A (18 levels). We have seen that it generates ambiguities for ex-
tending the potential curve to larger internuclear distances.

Two important facts were found during our analysis which permitted us to
remove this problem. First, we discovered that the highest observed levels
can be described accurately by a pure long-range model, containing the van
der Waal terms (Cs, Cs, Co) and the dissociation energy D,. Second, this
physical model can be connected to the part of the potential curve which
is reliably determined keeping a correct representation of the observed lev-
els. Consequently, we obtained a unique potential curve which represents
accurately the observations and is reliable for the whole range of internuclear
separations from short internuclear separations to infinite separations.
Having ensured the potential energy curve to be reliable we analyzed how
precise the long range coefficient could be determined. An accurate determi-
nation of the contributions of each dispersion term was not possible due to
the limited set of near asymptote levels. Therefore we relied on the theoreti-
cal prediction of the leading term Cg to fix the possible variation of the other
long-range coefficients. To achieve that, we have adjusted all parameters of
the potential in order to construct all possible potentials which represent
equally well our observations, which have smooth connections between the
intermediate and the long part, and which have a value of Cg within £5%
around its theoretical value taken from [Porsev S. G. and Derevianko A,
2002]. This procedure gave a family of reliable potentials and a well deter-
mined dissociation energy: D, = 1102.08 & 0.09cm™!. From each potential
belonging to the so defined family we have calculated the scattering length
leading to an interval of positive values ranging from 112 ao to 850 ao indi-
cating that a Bose-Einstein condensate with calcium atoms would be stable.
To improve the determination of the long-range coefficients and base the
analysis solely on experimental data, we need to observe more high lying lev-
els. The observation of higher levels would require longer time of observation
and thus higher stability for the recording by Fourier transform spectroscopy.
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The desired stability was not achievable with the heat pipe oven apparatus so
we decided to perform another spectroscopy. We used the technique called
the filtered laser excitation (FLE). I will explain in the next section this
method and the results we achieved. ’

2.7 Filtered Laser Excitation

In the precedent section, I showed that vibrational progressions up to v'=
35 have been observed for J”= 20 and 22 using LIF technique where the flu-
orescence was recorded with a Fourier transform interferometer. To observe
these levels a powerful laser and a narrow interference filter were used in
order to achieve a sufficient signal-to-noise ratio. Nevertheless, we reached
somehow the limits of what we could detect and we have not observed higher
lying rovibrational levels. The limit can be understood by calling upon the
following reasons. The noise amplitude at a given wave length is proportional
to the total light power falling into the detected spectral window. We under-
stand that all the light reaching the detector will contribute to the amplitude
of the noise. The narrower the filter centered at the interesting frequency,
the better the signal-to-noise ratio. The availability of central positions and
band pass widths of the filters are rather restricted, leading to a first limita-
tion of the Fourier transform interferometry. The other well know technique
to improve the signal to noise ratio is to average several spectra since the
SNR depends on the number of scans N as (IV)¥/2. The typical number of
scans we used is 20, each lasting approximately 1 minute. To improve the
signal-to-noise ratio by a factor of two only, one hour and 20 minutes of time
of recording is necessary. Furthermore, this assumption relies on the achiev-
able improvement of the long term stability of the conditions in the heat pipe
oven. Improving significantly the signal-to-noise ratio (more than 2 times)
would demand long term stability which was not achievable with the present
apparatus.

Thus, the observation of the levels closer to the asymptotic limit requires an-
other spectroscopic technique involving other means of detection. We chose
to perform a selective detection on laser fluorescence excitation. This tech-
nique is called the Filtered Laser Excitation [Linton C., 1978]. I will explain
how we have adapted this methods.

The most favorable Franck-Condon factors to observe the transitions to
the levels near asymptote of the Xlzg are with the vibrational level v'= 2
of the B state (see graph 2.4 page 24). At the temperatures of the oven,
all vibration levels of the ground state are thermally populated. It is then
possible to observe absorption spectra directly from these high lying lev-
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els of the ground state. Each resonance encountered by scanning the laser
around these transitions will result in a fluorescence progression along the
ground state levels. The detection of the total fluorescence as function of the
laser frequency will lead to a very congested excitation spectrum, because
the density of levels is high approaching the asymptotic limit. Nevertheless,
the position of the fluorescence transitions towards the lower vibration lev-
els within each progression is different and well separated from each other.
By centering a very narrow filter on one line of a selected progression we
can greatly simplify the excitation spectra since only encountered resonances
which have a fluorescence transition that lies in the chosen window will be
detected while scanning the laser.

A 1 m monochromator (GCA/McPherson Instruments) is employed as the
narrow band pass filter. The typically used window width was 2 cm™, suf-
ficient to have good resolution. The window of the monochromator is set on
the strongest fluorescence line (v'= 2, J"= J’-1) of a selected progression
(v'=2,J") when exciting one transition of this progression. Then the laser,
a Coherent CR 699-21 frequency stabilized single mode ring dye laser oper-
ated with Coumarin 6 pumped by the blue line of an argon ion laser (= 7W)
which (the dye laser) have a short term stability better than 1 MHz, scans
the frequencies around 550 nm of the transitions from the near asymptote
levels to the selected v'=2 level. A broad band photomultiplier (Hama-
matsu R928) detects the fluorescence transmitted through the selected band
of the monochromator. Although many other transitions of the B-X system
contribute to the absorption spectrum of the calcium dimer in the scanned
spectral region, only excitations, which decay into the selected frequency win-
dow, are detected. Thus, this selective technique provides greatly simplified
excitation spectra in a region where the weak transitions from asymptotic
levels are completely overlapped by much stronger transitions and leads also
to a significant improvement of the signal-to-noise ratio due to the important
reduction of the band width of detection.

A drawing of the experimental setup is presented in figure 2.14. While scan-
ning the laser, the spectra are recorded together with the frequency comb of
a temperature stabilized Fabry-Perot cavity of free spectral range 149.75(1)
MHz to have a relative calibration of the FLE line positions. The absolute
line position is obtained using a laser normalized absorption spectrum of io-
dine vapor at room temperature. The calibration of the I, spectra is realized
using the IodineSpec calculating software developed in our group [Iodine-
Spec, ] which can predict the position of the lines better than 3 MHz in the
considered spectral region. The laser power is recorded for normalizing the
calcium fluorescence to minimize the influence of laser power fluctuations. To
improve further the SNR the FLE spectra of selected J “were recorded several
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Figure 2.14: Experimental setup. DA: differential amplifier, FPI: Fabry-
Perot interferometer, PM: photomultiplier

times and averaged after calibration. The different calibrations were realized
using a numerical program developed by St. Falke [Falke St., ] which greatly
simplifies and speeds up the procedure. The typical observed line width
corresponds to the Doppler broadening (~ 0.05 cm™!). In addition to the
FLE lines, as it was mention before, the discrete fluorescence is accompanied
by a strong background emission, slowly varying with the frequency, due
to bound-bound-free and free-bound-free molecular transitions. This slow
varying background, intensity of which is comparable to the strongest lines,
is mainly responsible of the noise in the spectra. This noise has random am-
plitude varying much faster in frequency than the line amplitude contributing
thus weakly to the uncertainty of the determination of the line positions. We
have no instrumental broadening, therefore, the main contributions to the
uncertainty come from the precision with which we can determine the center
of the Doppler profile of the Cay lines and the profile of the I, lines. The
estimated experimental uncertainty of the absolute position has been set to
0.006 cm™ (150 MHz) for the strongest lines (SNR>5). For the weakest
lines, the SNR has been included in the estimation increasing progressively
the uncertainty up to 0.008 cm~! for a signal-to-noise ratio of 2.

Two excitation spectra are presented on figure 2.15 from the several recorded
ones. The spectral window of the monochromator was set to the frequency
of the (2, 9)—(2, 8) transition or to the frequency of the (2, 15)—(2, 14)
transition respectively. On the graphs, one can follow the excitations up
to v'= 37 for J"= 14 and 16 and up to v'= 38 for J"= 6, 8 and 10. The
recorded experimental trace (black lines) contains some gaps, which were not
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Figure 2.15: Portion of filter laser excitation spectra. Frequency position and
width of the spectral windows of observation is given at the top left part.

Only transitions from ground state levels v'> 34 are labeled. The blue curve
is the simulated spectra calculated with the previous ground state potential.
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scanned, corresponding to positions of excited transitions whose fluorescence
occasionally falls into the selected window but does not involve asymptotic
levels. On the graph a simulation of FLE lines is presented in addition. The
simulated spectra were calculated by determining all the transitions of the
B-X system which have their frequency inside the monochromator spectral
window. From them, only the position of transitions involving a B state
level, which can be excited by the laser at a frequency within the scanned
range, were selected. The excited line profiles and relative intensities were
determined assuming a Doppler profile and considering a population of the
ground state levels at T = 1223 K, Franck-Condon factors, and a constant
dipole moment. Calculations were performed using the IPA potential of the
B state published in [Vidal C. R., 1980] and using the potential derived pre-
viously using the LIF data set, which was reaching only v"= 35. We see that
the agreement with the observed positions of the recorded transitions, which
have v”higher than 35 is very good. The relative intensities and profiles show
good agreements as well. Some differences still exist in the absolute position
of the lines which is attributed to the limited accuracy of the B state IPA
potential (~ 0.05 cm™!). The relative position of lines within a progression
(with a common upper level) is fairly good (better than 0.02 ¢cm™!). This
proves the reliability of the previously derived ground state potential and the
quality of the predictions that could be realized with it.

We have observed, using the filtered laser excitation technique, transitions
from 44 ground state levels, 25 of which have a higher vibration quantum
number v”> 35 than the ones observed in the LIF experiments. The levels
nearest to the asymptote are v'= 38 with J"= 6, 8 and 10 levels. The FLE
data field is presented figure 2.16 in full black dots.

LIF complementary data In the section 2.2, I reported the experiment
realized using the LIF technique. We were not using all possible lines of an
argon ion laser but only the three following lines: 514 nm, 496 nm and 476
nm. We have enriched our LIF data set with the progressions obtained with
the other lines 502 nm, 488 nm and 458 nm, with an Ar™ laser from Spectra
Physics (beamlock 2060). Most of the transitions, which have been already
reported in [Vidal C. R., 1980], were observed here as well.

In a first step, the experimental uncertainty was estimated as in the previous
LIF experiment. A reasonable estimation of the uncertainty normally gives
an error in the order of one tenth of the line width for a good SNR. The choice
of an uncertainty of 0.01 cm™! for a line having a width of 0.07 cm™!, shows an
overestimation. In addition, the value of the normalized standard deviation
¢ =2 0.45 resulting from the fitting procedure confirms the overestimation of
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the magnitude of the experimental errors. A simple simulation of the possible
error to find the line maximum introduced by the number of points falling
into a line profile and by the influence of the noise shows that an uncertainty
of 0.006 cm ™! is more realistic. Accordingly, we changed the errors of all the
LIF frequencies by a factor 0.6.

Summary of observations All collected data from the two spectroscopic
techniques, the LIF and the FLE, cover a range of rotational quantum num-
bers from J"= 4 to 164, and extend from v"= 0 to 38 for the vibration at
ones. A total of 3580 transitions were observed involving 924 ground state
levels. The total field of quantum number v”and J“is presented on the figure
2.16.
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Figure 2.16: Data field summarizing the range of quantum number of the
levels observed with the LIF and FLE spectroscopies

This data set will be used to improve the shape of the potential in the long-
range region. We have made some changes in the procedure of fitting the
data for the point-wise representation that the dispersion coefficients C,, can
be adjusted as well with this method. I will present the changes we imple-
mented. Then I will talk of the improvement on the shape of potential.
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2.8 The interaction potential

The set of differences was constructed in the same way as previously within
progressions with a common level of the B state. Only crossed differences
were calculated. Because we only use the relative positions of the levels
within observed progression by construction of differences, and because the
FLE data contain only very few transitions with lower vibrational levels (v"<
32), it could result that the relative position of the long range part of the
potential obtained by the fit of the FLE data compared to the position of the
lower part of the potential cannot be determined. To solve this problem, we
have generated transitions extending from v”"= 0 to the low v”of FLE data
for each FLE progression, using presently the potential of the XlEg state.
Then, differences were calculated between generated and FLE transitions.
Since the calculated low levels lie in the region of the potential, which is very
well characterized, they have virtually no influence in the quality of the fit.
We have constructed a total of 8490 differences from the 3624 observed and
generated transitions from which we will fit the potential. As it was men-
tioned, the intermediate region of the potential is already very well defined
due to the large amount of data. So, it is mainly the long range part, which
will be improved.

2.8.1 Improvement of the potential

I will present in this section the slight changes introduced to fit the new
data set. We have used the two representations for the determination of the
potential. Both representations were defined in section 2.3.1.

The main changes were introduced to the point-wise representation and it
concerns the long range region. The correction to the potential in the short
and intermediate regions of the potential (from R, = 3.09A to Rout) is
still represented by a set of points {¢;} connected by modified cubic spline
function, equation 2.19. This equation is now written with f;(R) = S;(R).

We want to include the long range model into the fitting routine. The C,
and D, coefficients will be treated like the {¢;} parameters. We will minimize
the differences between AEZY . and the differences calculated with the
corrected potential. The corrections to the long-range part are now included
as:

0Cs 0Cs 6Chp

SV(R) =46D, — X TR RO for R > Rows (2.20)
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where 6 D, and the 6C,, are the correction to the initial long-range parameters.
According to the perturbation approach in section 2.3.1 the corrections to
the energy differences due to 6V can be written as:

N
5(AE°bs ) ___Zéci(Kz@nh _ szsz) _ Z 6Cn(LglJ1 _ L:)Lsz) :

v1J1,v2J2
=1 n—=6,8,10

+ 6D (L — L)

(2.21)
where
Rout
K = / ¥2,(R) S;(R)dR (2.22)
Rmin
L = / U2 (R)R™dR (2.23)
Rout

are the corresponding mean values of S;(R) and R™" calculated with the
wave function < R|x?%;, >= ¥,;(R) of the levels forming the differences.
The connecting point Ry is chosen in the following way. Initially, the data
are fitted using the point-wise form up to 13 A. Secondly, this point-wise
potential is stopped at Roy = 9.5 A and the long range parameters 6C,, and
8D, are adjusted on the data, beyond Rey. The continuity of the potential
is still ensured by varying slightly the connecting point Ry, and to a smaller
extend the parameters Chyp.

The derived potential using the analytic representation describes the to-
tal set of differences between observed spectral lines with a standard de-
viation ¢ = 0.0064 cm™! and a normalized standard deviation & = 0.69.
We can estimate the standard deviation for the near-asymptote levels using
only differences involving at least one level with v"> 35. We have obtained
oy>35 = 0.0092 cm™! and Gy >35 = 0.92. For the point-wise representation,
we have o = 0.0068 cm™* and & = 0.74 for all the data and o,->35 = 0.0092
cm™! and Ty g5 = 0.89 for the levels close to the asymptote. The standard
deviation obtained using the analytic representation is satisfactory. The an-
alytical potential gives a slightly better representation. The standard devia-
tion of the differences between levels calculated with the two representations
is 0.0023 cm™!. Since this value is smaller than the mean experimental un-
certainty, it is not necessary to try to obtain exactly the same quality of
representation by both methods. The parameters of the so-called best po-
tentials are listed in the appendix A for both representations.

The value of the dissociation energy Dy with respect to v'= 0, J'= 0 is
given in these tables. It should be clear that Dq is the good parameter for
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comparing the potential depth instead of D.. Not only because, as it was
mentioned, Dy is the real observable, but because D, is subject to the vari-
ation of the position of the bottom of the potential. Calling upon the WKB
semi-classical view, we can say that different shapes of the potential below
(v =0, J = 0) can lead to the same accumulated phase of /2 for the lowest
level. The shape of the potential below (v = 0, J = 0) is dependent of the
choice of representation of the potential. No physical inputs are known to
restricting the possible shapes. So a different bottom form leads to a different
energy position of (v = 0, J = 0) with respect to the minimum. The same
difference echoes on every level of the potential and the dissociation energy.
The relative position of these energies will be given with respect to (v = 0,
J = 0) in the rest of the manuscript to avoid the addition of non-physical
uncertainty on the determined quantities. It is then not surprising that the
values of D, are different for the two representations, namely they differ by
0.014 cm™!. On the other hand, the very good agreement (within the exper-
imental uncertainty) between the values of Dy (they differ by 0.002 cm™)
speaks again about the consistency of the two determinations.

A comparison with the same parameters as from section 2.4 shows, as well,
a very good agreement. It tells that the potential derived using a theoretical
value for Cg with an uncertainty interval of 5% and the newly determined
potential with more data are consistent.
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Chapter 3

Precision of the long-range
parameters

3.1 Introduction

3.1.1 Motivations

In the previous chapter, I presented the spectroscopic study which allowed us
to collect rovibrational levels up to very close to the asymptote (outer turning
point up to 13.1 A). From the dense and large field of data we have derived a
potential which describe the different observations within their experimental
uncertainties. We have ensure that the potential is reliable for the whole
range of internuclear distances.

Our interest is to make predictions of molecular or scattering properties. The
reliability of the possible predictions is then of great importance. We need for
that to establish the relation between the experimental data including their
uncertainties and the accuracy of quantities we want to predict. We want
to see how our measurement errors propagate through the determination of
the PEC to the quantities we are interested to calculate. For these reasons,
we need to ask what are the variations of the model parameters around the
fitted ones, which are still in agreement with the experimental data. In the
precedent analysis we have answer this question by investigating the variation
of the goodness-of-fit with the long-range parameters. Though, the method
give reasonable boundaries for the values of the LR coefficients, the obtained
intervals can not be considered as definitive and satisfactory estimations of
their uncertainties. We rather want to establish a confidence region for all
the potential parameters including the LR coeflicients. Having found this
region, it is straightforward to predict the value of interesting quantities and
to address their confidence intervals.

57
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3.1.2 How to determine the confidence interval?

For the non-linear fitting procedure one can try to use the error surface in the
parameter space to delimit a contour plot, which will correspond to a certain
confidence limit. We face here a problem, since it is not clear to which con-
fidence level the choice of the contour plots does correspond or equivalently
the choice of an interval of variation Ag? for the value of 52, because of the
non-linear relation between observables and model parameters. Thus there
is an ambiguity in the statistical interpretation of error limits of the fitted
parameters determined by contours plots.

In the linear least squares fitting, the matrix of variances and covariances
obtained from the linear system of equations can be used to determine the
confidence limits of the model parameters. But one is allowed to use this
matrix only when the fitted data are independent and their errors follow a
normal distribution. This is not true in our case since we are fitting differ-
ences between observed transitions, thus the quantities which enter the fit
are dependent.

We decided to use another method to get the confidence region of our model
parameters. We employed a Monte Carlo simulation adapted to the case
of molecular potentials for determining the reliability of the parameters of
the potential model and in particular the long-range coefficients of the dis-
persion forces. One main advantage is that the procedure doesn’t rely on
the assumption that the data are uncorrelated. The Monte Carlo simulation
provides in a same time quantitative estimations of confidence limits of the
fitted parameters in a precise way and gives the possibility to present them
in a very visual and simple form. It also answers to our former question by
setting confidence intervals for predicted properties directly drawn up from
the experimental data.

I will now explain the Monte Carlo simulation procedure and direct the dis-
cussion to the determination of the potential-parameter confidence regions.
A rather complete explanation of the Monte-Carlo simulation can be found
in [Press W.H. et al., 1985].

3.2 Determination of the parameter distribu-
tion from the experiment

3.2.1 The general case

Let us consider what would be the best way to obtain the desired confidence
region on our model parameters directly from an experiment. This consid-
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eration will lead us to important assumptions on which the Monte Carlo
simulation is based.

We can suppose that in our physical world, it exists a true set of Np param-
eters for a true mathematical form, that I call ¢;e. By measuring a data
set, noted D, coming along with experimental random errors, we mea-
sure actually one of the possible realizations of the true parameters. In the
following, the usual procedure is to fit the parameters of the model to the
measured data set employing our favorite minimization technique to obtain
the corresponding set of best parameters c().

The number of possible realizations from ¢y, is infinite due to the random
character of the error process coming from the measurement procedure. Each
realization could have been the one measured, but happen not to be. Suppos-
ing that we could repeat many times the experiment (each independently),
we would have obtained each time a different data set D(;y and determined for
each one a different parameter set c(;). Collecting all the parameter sets, we
would obtain the distribution of all parameters in the Ny parameter space.
We should note that the actual "measured” set c(g) is not a particular realiza-
tion of cypye, it is just one member of the distribution. Having this parameter
distribution, or better ¢y — Cirue, We could derive the probability for each
parameter value to be realized and we could address quantitative uncertain-
ties on the parameters directly from the experiments.

Of course this universe of possible realizations c(;y — cyye is not accessible to
us in practice, since we cannot performed our measurements with a statis-
tically sufficient number of times, and we cannot ensure each measurement
to be really independent. Furthermore cy.. is not accessible to us! So we
should find some way to approximate or simulate the distribution cg;y — cirue,
having only one set of measured data and one set of fitted parameters. The
way is to perform a Monte Carlo simulation.

3.2.2 The Monte Carlo simulation

The determined set c(g) is not the true one, but let us consider, for a moment,
a fictitious world in which it would be the true one. Since we tried to do
our best to "measure” the model parameters, we can reasonably think that
they are not too wrong, and thus this fictitious world derived from c(g) is not
too different from the true world of ¢4e. In particular, we can assume that
the form of the distribution cy)y — c(q) is very close to ¢y — Cyrye. We are in
this way following the assumption that the random statistic does not change
rapidly with ciue, and so c(gy can serve as a good substitute (figure 3.1). We
are now able to calculate the distribution of ¢y — c(o).
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Figure 3.1: Schematic of the assumptions on which the Monte Carlo simula-
tion is based.

Here is the way to proceed: We start with our derived potential. We sim-
ulate a set of data as our own synthetic realization applying the potential
with the set of best parameters ¢()'. The simulated data are a set of tran-
sitions, which have exactly the same manifold of v”, J”and measurement
uncertainties as the actual observed ones. To each transition frequency, a
small random quantity is added, which has a normal distribution with mean
value zero and a standard deviation equal to the experimental uncertainty of
the transition. Then the obtained set of transitions is transformed to a set
of differences Dfl) in the same way we formerly done it. The synthetic set of
differences is used to fit a new set of parameters ¢(;y. The whole process can
be repeated several times to generate different synthetic data sets Dé), ...Df;)

and to obtain several parameter sets 0(52), ...c(Si). If sufficient simulations are

performed we are able to map out the probability distribution c(Si) —¢(oy in the
Np parameter space. A flow chart of a Monte Carlo simulation is presented
figure 3.2.

T All fitted potential parameters are meant by ¢(gy so including the long-range ones.
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Figure 3.2: Principle of the Monte-Carlo simulation of an experiment.

3.2.3 Implementation of the Monte Carlo simulation

In order to apply the Monte-Carlo simulation we use only the iterative linear
fitting procedure with the point-wise representation of the potential. For
each iteration of the simulation, the best parameters corresponding to the
simulated synthetic data set should be found. From the experience with the
non-linear fitting procedure of the analytic potential we know that a fairly
large number of fitting steps could be necessary to ensure convergence in the
fit leading to a very time consuming process in total. In contrary, the linear
fitting converge in few iteration steps and for an initial set of parameters not
too far from the best ones only one step is often necessary. This situation is
usually encountered since we are exploring the parameter space in the near
vicinity of the "measured” parameters. The use of the IPA method provides
immediately the distribution of chi) — ¢(p) since the procedure seeks directly

correction d¢; = cé) — ¢(o) if at each iteration of MC simulation the fit is
initiated with c(g) as first guess.

We have seen previously that the shape of the potential is very well fixed
within the experimental uncertainty by the large amount of data in the region
from 3.5 A to 10 A and doesn’t depend on the choice of representation.
By connecting the long range part of the potential at 9.5 A, i.e within the
well defined region, we expect that the performed analysis on the whole
potential be almost independent of the choice of functional form modelising
the potential in this region. The residual variations within the experimental
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uncertainty of this region of the potential are included in the Monte-Carlo
simulation since the whole set of parameters are adjusted at each iteration
and not only the long range ones ( d¢;, 6D,, 6C,). In the following part
we will present the distribution of parameters and draw confidence region of
their values. The dissociation energy will be given with respect to (v'= 0,
J”=0) not only, like we said it, because the observable is Dy and not D, but
also because the precision reached with the new data set (with FLE) for the
dissociation energy is in the order of +0.01 cm™! (see next section), which
is of the same magnitude as the uncertainty of the minimum position taken
with respect to (v'= 0, J"= 0).

3.3 Results: Confidence limits on the long-
range coeflicients

3.3.1 From the distribution to the confidence limits

The distribution of the potential parameters? were determined by perform-
ing N, = 3000 simulations allowing a statistical treatment, and to set the
probability distribution of the N, = 52 parameters of the potential. The
dimension Np of the parameters space prevent from a detailed presentation
of the results. We have compared the distribution of the LR coefficients
solely obtained by fitting with and without the ¢; parameters. No significant
change® was detected on their distribution confirming the statement that
the data imposed strong constraints on the intermediate part of the poten-
tial. The distribution of the LR coefficients wasn’t affected by the number
of points ¢; as well (as long as the fit itself is not influenced) confirming that
the choice of representation for this region has weak influence on the long-
range parameters distribution. This allows us to work only in the sub-space
(Cp, Do) and to present the result only for the long-range coefficients.

The confidence region is a domain of N, dimensions (N, = 4, now), centered
on the best set parameters point ¢y, which contains a large percentage of the
parameters probability distribution. The percentage is called the confidence
level and some value are customary in physics, like 68.3%, 90%, 95.4%* and
so on. Since our experimental uncertainties are supposed to follow a nor-
mal distribution, the correct shape of the confidence region should be a N,

2We should understand parameters as the corrections to them, namely d¢;, § Do, {6Cp}.

3This is true while we use D¢ and not D,.

4These values of the confidence level come from a normal distribution. The MC simu-
lation can be performed in the case of non-normal distributions and these choices of values
are clearly customary
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dimension ellipsoid. The contour of the confidence region at a certain con-
fidence level is called the confidence limit (CL). The ellipsoid should follow
the shape or orientation of the distribution. So the first step is to find the
correct axis of the ellipsoid. When the axes are found the equation for the
ellipsoid in this frame follow the relation:

N,

L 2
> (‘S—c’p—‘sc‘i = R? (I; > 0 Vi), (3.1)

where the [; keep the ratio of the length of the ellipsoid axis constant and R
increase the volume of the ellipsoid. In practice the distribution is centered
around zero by subtracting its mean value. Then the distribution is normal-
ized to have a distribution width very closed to 1 by dividing each value of
the parameters (6C,,, §Dy) by the variance of its distribution. Afterwards, we
rotate the distribution to have the axis of the ellipse on the parameter axis
and to apply directly eq. (3.1). Then, we count how many parameters are
contained within the ellipsoid for the value of R%. The value of R is increased
until the number of counted parameters reaches the selected confidence level.
In this way, we find the confidence region for different choices of confidence
levels. Then the whole distribution is rotated back, rescaled and center on
the best parameters in the 4 dimension sub-space (Dy, Cg, Cs, C1g). The
distribution is centered around the best set of parameters since the basic idea
is that the confidence region should inspire confidence on the "measured” set
of parameters, the so-called best parameters. The ellipsoid contour of the
confidence region and the full distribution is projected onto a 2D parameters
axis in order to be presented. Note that the confidence limit is determined in
the four dimension parameter space and is projected afterwards. Performing
firstly the projection and then counting the number of parameters into an
ellipse up to obtain 68.3% of them would lead to a wrong statement. In this
procedure we would count parameters lying outside the 4D confidence region,
which would be, by projection, included in the 2D region. It would lead to a
smaller and thus incorrect confidence limit.

3.3.2 Meaning of the confidence limits

Let us come back to the important statement on which the Monte-Carlo is
based (fig: 3.1) to clarify the meaning of the confidence region. The follow-
ing sentence is sometimes encountered in the literature: ”There is a 68.3%
chance that the true parameter values fall within the 68.3% confidence region
around the measured value”. It is not correct. The statement should be: If
we center the 68.3% confidence region around all possible measured parame-
ters (not the simulated) 68.3% of them will contain the true parameters. Now
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following the assumption that the measured parameters set is very closed to
the true set, then the area of overlap between the 68.3% confidence region
around all possible measurements of the parameters should be nearly the
same as the confidence region around the actual measured set. This assump-
tion is then important to be able to state that there is a 68.3% chance that
the confidence region contains the true set of parameters. Another wrong
statement encountered sometimes in the literature, which found its origin in
the somewhat not intuitive definition of the Monte-Carlo approach, is the
following: ”There is 68.3% probability that the value of Cg lies inside the
limit of the confidence region”. In reality it is possible to speak only about
the probability of an experimental outcome, and not about the probability
of the true value of a physical quantity (like Cg). This true value is supposed
to be constant.

3.3.3 Precision of the Cg, Cs, Cip and Dy values

The projection onto the (Dy, Cs) sub-space of the full distribution and the
projections of the 68.3% and 90% confidence limits are shown in figure 3.3.
We can now set the confidence intervals for the dissociation energy Dy and
the leading dispersion term Cs. In principle, the correct confidence limits are
the boundary of the ellipse region. Therefore graphics should be presented
as the results of the Monte-Carlo simulation. For a direct communication of
the results one usually summarizes the graphics into confidence intervals by
giving the values where tangents to the 68.3% ellipse are horizontal for the
y-axis, and where they are vertical for the x-axis. This is presented in the
figure 3.3. The confidence interval of Dy is [1069.858 cm™'— 1069.878 cm™'].
So the uncertainty of the value of the dissociation energy is +0.01 cm™'. The
confidence interval for Cg is [0.969 x 107 cm™' A® — 1.036 x 107 cm™! Af]
which corresponds to a precision of 3.34%. The confidence interval for Cy is
[3.15 x 10% cm ™! A® — 4.46 x 10® cm™' A®] which corresponds to a precision
of 34% and the confidence interval for Cyg is [1.7 x 108 cm~! A® — 8.4 x 108
cm™ A®] which means that Cio is not known with a precision better than
133%. The projection of the distribution concerning Cs and Cs is presented
in the figure 3.4 and the confidence interval are summarize in the table 3.1.
We can see on the distribution in the three plans (Cs, Cs), (Cs, Ci0), (Cs,
C1o) appendix B,that it results from the MC simulation that the coefficients
C, are strongly correlated with each other. The confidence intervals obtain
meanings only in relation with the distributions and thus one must stress the
correlations. In the pictures only the distributions are shown and not the
68.3% and 90% confidence limits for clarity.

The correlations show that individual contribution of the different dis-
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Figure 3.3: Projection on the long-range (Cs, Dy) plane. The projection of
68.3% confidence region is delimited by the inner (red) ellipse. The outer
(green) ellipse delimited the projection of the 90% confidence region. Confi-
dence interval on Cg and Dy are given by the horizontal and vertical lines.

persion forces cannot be determined independently despite a rich data field
for the near asymptote levels. Only two vibrational levels, namely v"'= 39
and v”= 40, from the full vibration ladder are currently not observed. In-
formation, in a classical view, has been obtained for fitting the long range
coefficient from 9.5 A up to 20 A which is the outer turning point of the
highest observed level v’= 38. One would think that with the actual preci-
sion (~ 150 MHz) and the amount of observed data it should be possible to
characterize each long-range coefficient. The Monte-Carlo simulation shows
clearly that it is not the case.

We can see the improvement realized on the determination of the dispersion
coefficients and the dissociation energy with the observation of levels below
v”= 38 by returning to our first experiment and compare the results now
using the powerful tool, the Monte-Carlo simulation. With the LIF experi-
ment the highest level was v”= 35. We concluded at that time that we could
not give a reasonable estimate for the value of the C, coefficients without
external information. Now, by using the Monte-Carlo we can be more rigor-
ous. We can calculate and compare the parameter distribution obtained only
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Table 3.1: Derived parameters of the long range expansion for the Xlzg k
state in 4°Cas.

Dy, em™! 1069.868(10)
Cs,107 cm™1AS 1.003(33)
Cs, 108 cm— A8 3.15 — 4.46
Ch0,10° cm—TA10 1.7 —8.4

with the LIF data with the one obtained with the addition of the FLE data.
The distribution corresponding to the previous data set is generated using
the precedent potential derived with this data with the theoretical value of
Cs. The errors of the LIF data are the ones before their revisions to be able
to compare. In figure 3.5 page 68 both projections onto the (Dy, Cg) plane
are presented. We see that the distribution for the previous data is very
broad (black dots). The value of Cs range from zero to 1.9 x 107 cm™ AS
and the precision on Dy is in the order of 1 cm™!. This distribution is so
broad that calculating the distribution with the theoretical Cs = 1.070 x 107
cm™ A8 or the new fitted one Cg = 1.003 x 107 cm~! A® doesn’t play a role.
The broad distribution shrinks to the distribution in the center (the same
distribution as figure 3.3) after the addition of the FLE data. In the insert a
zoom of the central region is shown, where the red dots are the distribution
obtained having the FLE data. Concerning the other coeflicients Cs and Cy
their previous distributions were even extending to negative values. From
this distribution it is clear now that solely from the previous data no precise
determination of the dispersion coefficient was possible. What is important
as well is that the recent distribution is entirely contained in the previous
one showing the consistency of the analysis. The broad distribution shows
the necessity at this time, for a complement of information coming from the
theory side in order to better characterize the value of the dispersion coeffi-
cients and the dissociation energy. On the same graph are given the intervals
coming from the choice of 5% variation of Cg around the theoretical value.
We see that the size of this interval is of the same order as the distribution
of Cg with FLE. This is simply a coincidence since it is due to the arbitrary
although reasonable choice of 5%. From this point of view, it seems that the
uncertainty of the long-range parameters has not been improved. We should
consider that the determination on these LR coefficients is now determined
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Figure 3.4: Projection on the long-range (Cs, Cs) plane.

using only experimental data. No external information into the analysis was
introduced to set the confidence region for our measured parameters. In the
first analysis the intervals of possible variation of the dispersion coefficients
were centered on the theoretical value of Cg. This value differs from the value
obtained by the new fit. That’s why the distribution from the MC simulation
is shifted compared to this interval. We will discuss in more detail this dif-
ference in the next section. The second point questions about the validity of
the long range model down to 9.4 A. The influence of other contributions was
neglected since the actual model was adequate to reproduce the experimen-
tal data within their experimental uncertainty. These contributions can by
readily included in our model if experimental evidences show their necessity.
We know that the derived Cy and the potential in general are always effective
ones containing or compensating for weak effects not included in the model.

3.3.4 The exchange contribution

In the treatment, I have exposed so far, we have included in the long-range
model only the dispersion terms with the coefficients Cg, Cs, Cip and the
dissociation energy. The main influence which was neglected is the exchange
energy. In order to have an estimate of the change of the value of the Cg co-
efficient we have introduce in the model the term given in equation 2.17 with
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plane for the LIF data (black dots) and the LIF+FLE data (red dots in the
center). In the inset a zoom of the central region is given. The lines remind
the selected 5% variation interval around the theoretical value of Cg.
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Table 3.2: Derived parameters of the long range expansion for the XlZg
state in *°Ca,. Comparison with published calculated values.

References Ce x 107 cm=1A% | Cg x 108 cm™1A8 | Cjp x 109 cm—1A10
This study: without exchange 0.969 — 1.036 3.15 — 4.46 1.7 - 8.4
with exchange 1.001 — 1.067 2.3-3.7 6.9 — 14.
[Maeder P. and Kutzelnigg, 1979] 0.9663 2.699 7.369
[Standard J.M. and Certain P.R.., 1985] 1.3205—1.3639 2.564-3.360 6.689—8.616
[Stanton J.F., 1985] 0.9841
[Mérawa M. et al., 2001] 1.1205
[Porsev S. G. and Derevianko A., 2002]
semiempirical 1.070(7)
ab-initio 1.045
[Bussery-Honvault B. et al., 2003] 1.0983 3.2666 4.7350
relativistic 1.0781 3.2178 4.6265
[Moszynski R. et al., 2003] 1.0368
[Mitroy J. and Bromley, 2003] 1.054 3.05 3.056

A, a and gamma fixed to the values taken from [Radzig A.A. and Smirnov
P.M., 1985, Kleinekathofer A., 1995]. The fitting procedure leads to a higher
value of the coefficient Cs to 1.034 x107 cm™ A® and of the dissociation
energy Dy to 1069.873 cm™!. Since the exchange energy is positive, in order
to have the same position of the levels, the coefficient Cg should be larger.

The quality of the fit did not change by the addition of the exchange term.
Performing the Monte-Carlo simulation with the new model, but keeping the
coefficients of the exchange energy fixed, we have obtained the same distri-
bution area but centered on the new values. Since the quality of the fit is not
changing, we cannot conclude about the necessity to have these additional
terms in our model. What we show is which influence the addition of the ex-
change term, in the form it was modelized, has on the overall determination.

3.3.5 Comparison with other published values of the
C,, coeflicients

Table 3.3.5 gathers calculated values of the dispersion coefficients Cg, Cs and
Cio I found in the literature, and the ones determined in this study. All the
published values of the Cg coefficient can be found within an interval of £8
%, except for the values given by [Standard J.M. and Certain P.R., 1985]
which differ from other values by more than 27%. The most recent values
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of Cs given by [Moszynski R. et al., 2003] (which is a new calculation of Cs
by the same group compared to the on published in [Bussery-Honvault B.
et al., 2003]), and the value reported in [Mitroy J. and Bromley, 2003] as well
as the ab-initio value given in the publication [Porsev S. G. and Derevianko
A., 2002] fall inside the 68.3% confidence interval determined with the long-
range model including the exchange energy. All the ab-initio values were
determined with high accuracy relativistic many body calculations. Another
value calculated using a semi empirical approach reported in the same article
[Porsev S. G. and Derevianko A., 2002] which is published with an error bar
lye outside the confidence interval. The confidence interval and the stated
error bar overlap. This semi empirical value was calculated using the dipole
matrix element of the dipole transition 'P; < 'S, from the photoassociation
study at this asymptote in [Zinner G. et al., 2000]. Since new results have
been obtained on the photoassociation experiment leading to a change in the
value of C; by —2.5% [Degenhardt C. et al., 2003], the calculation of the
value of the van der Waals coeflicient Cg should be updated, as the authors
proposed it, in case of new results.

It is often that the values given by theoretician are reported without their
uncertainties; it is then not easy to conclude about their reliability and to
compare them with our derivations. From our side, the correlations between
the experimentally determined dispersion coefficients prevent us from a com-
parison with the calculated theoretical coefficients realized independently for
each dispersion forces. We can just notice that the most recent calculations
and the values (including the exchange energy) derived in this study for the
value of the Cg are consistent. For the Cy coefficient all published values fall
within the 68% confidence interval. And for the Cyg coefficient the agreement
with all published value and its confidence interval is mainly due to the fact
that this interval is large.

3.4 Critical analysis

Our analysis is based on different assumptions that I would like to remind,
not only due to their importance but also because they will help to point out
what could be the limitations of the study and to engage a critical discussion
of their validity.

The main assumption is that the long range model equation 2.11, is valid
starting from Roy = 9.5 A which allowed us to connect the long-range ex-
pansion to the well determined region of the potential. This opens at least
two questions:

e What is the influence of the position of the connecting point Ry ?
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Figure 3.6: Projections of the LR parameter distribution onto the (Dy — C)
plane using a connection at 9.4 A and at 10 A.

e Which consequences are expected from neglecting the contribution of
the exchange energy?

Let us start by the first question. The addition of data doesn’t increase very
significantly the range of internuclear distances in which the potential is well
defined without using the long-range model, in the sense we have described
it in the section 2.4 (we refer to the graph 2.10). The amount of data is still
one order of magnitude higher in this region than in the long-range part (R
> 9.5 A). Thus connecting the LR model beyond 9.5 A will suffer from the
relatively weak determination of this part of the potential. The reliability of
the analysis is then based on the possibility to link the lower levels to the
long range ones by the LR model already from 9.4 A with a reproduction
of the data within their uncertainty. We will check the variation of preci-
sion by connecting at Roy > 9.5 A using the Monte-Carlo simulation. The
graph 3.6 shows the distribution of the Dy and Cg parameters in the case of
a connection at Ry = 9.4 A and 10 A and the change of the 68.3% con-
fidence region. The procedure to get the distribution was repeated in the
same way as describe before but starting with the potential representing the
best data set using the point-wise representation up to 10 A. We see that
the distribution has broadened significantly compared to the one obtained
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with a connection at Ry = 9.4 A. The loss of accuracy reach a factor two
for the Cg coefficient and the confidence interval for Dy has increase from
+0.01 cm™! to ££0.0145 cm™!. The change is mainly affecting the long-range
dispersion coefficients. The uncertainty on Dy is mainly determined by the
uncertainty on the highest observed level. That’s why we see also a rotation
of the distribution.

Let us go now to another point in our study that should be considered,
namely the influence of the repulsive branch of the potential. We saw in
figure 2.10 that the region below 3.5A is not well fixed by the experimental
data. Imagine a variation of the repulsive part that generate a change in
energy position of the last bound level in the order of only 1 MHz. Could
this variation affect this level without influencing the position of the other
levels? To answer this question we call upon again the first order pertur-
bation theory. The shape of the wave functions for the high lying levels of
a potential are almost identical at small internuclear separations and differ
only in amplitude. The position of the last bound level v'= 40 with respect
to the asymptote is in the order of Dy — Eyp ~ 1 MHz ( we will come back
on this prediction in the next section). The shape of the waves function
< R[v" >= ¥, (R) of v"= 40 and a more deeply bound high level v'= 35
are identical up to 7.5 A and the ratio of their amplitude is:

\Ilv"z 35 (R)

V=0V ~35 for R<7.5A
U,-— 10(R)

A =
So using the perturbation theory we have a change in energy position 0 E,-

induced by a correction to the inner potential § V(R) localized at R < 3.5 A
given by:

< v'= 35l5Vlv"_—_ 35 > _ 42 5E40< 6V >4

0F35 = 0F. ~ - 74
% W v'=40[6V[v'= 40 > <0V >4

= A2 5E407

where the notation has been simplified. it is obvious that a variation of the
potential for R < 3.5 A shifting the position of v’= 40 by 1 MHz will shift
the position of v'= 35 by ~ 1.2 GHz ( 0.04 cm™" ). This local change of the
potential will not affect the position of the deeply bound levels, for instance
the position of (v"= 0) will not be influenced. The difference E(v"=35) —
E(v"=0) will then change by the same amount of 1.2 GHz which is 6 times
the typical experimental uncertainty. The fitting procedure will not ” accept”
such variation. So we see by this scaling law that the influence of the repul-
sive part is limited to variation of the lower v in energy position. It does not
mean that the position of the steep repulsive branch is known precisely. In
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fact its variation may be large but is not sufficient to move the high lying
levels. In other words, its influence on the position of those levels is very
weak.

Another point in our study is the estimation of the experimental uncer-
tainties of the data. In particular we made a revision of the LIF data and
obtained a normalized standard deviation of the fit close to one. The value
is in fact slightly smaller than one for the long range levels (& ~ 0.9) and
clearly smaller for the overall fit (& ~ 0.7 ), independently of the choice of
representations of the potential. This indicates that either the models for
the potential are too flexible or the estimation of the experimental uncer-
tainties is still too ”pessimistic”. The models, in the intermediate region of
the potential (R < 9.5 A), are probably not flexible enough to compensate
the random process involved in the uncertainties. Furthermore the amount
of collected data is very large in this region. Therefore, it is not reasonable to
think that the experimental uncertainties are relatively large and the model
can compensate for all the observed levels and lead, by the fitting procedure,
to smaller standard deviations than the experimental uncertainties. For the
long range region we can assume that the physical model employed is sim-
ple enough to be not too flexible as well. We have tested the influence of
the addition of other contributions into the model on the quality of the fit.
Fitting the long-range parameters and the other terms, like the exchange
energy, described previously, or higher terms in the dispersion expansion like
-C12/R1?, provides more degrees of freedom for the representation of the LR
levels, but doesn’t give a better reproduction of the observations. The value
of the standard deviation doesn’t decrease significantly showing that the sim-
ple model (D, Cs, Cs, Cip) is sufficient and not too flexible. We can then
conclude that the uncertainties are probably still overestimated, particularly
the ones of the LIF data. The consequence on the distribution of parameters,
of a reduction of the uncertainties, will be observed on the long-range pa-
rameters. The ¢; parameters are already very well constrained and no change
will occur. Changing the errors of the FLE data to obtain an increase of the
normalized standard deviation from & ~ 0.9 to 1 will slightly shrink the dis-
tribution of the long range parameters within the distribution obtained with
& ~ 0.9. The confidence limits presented (& ~ 0.9) as results of this study are
thus too large and the precision of the determination slightly underestimated.

There is another assumption inherent to every experiment which is present,
for this reason, in our study as well. We suppose our measurement not af-
fected by a bias that wasn’t detected or can’t be detected with our experiment
solely. In this case only comparisons with other experiments devoted to the
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Figure 3.7: Distribution of the scattering length as function of the value of
the van der Waal Cs coefficient. A zoom of the region of the scattering length
restricted by the confidence interval of the Cg values is given in the inset.

measurement of the long range dispersion terms or involving the determina-
tion of any quantities calculable using the ground state potential can help
to detect such bias. The Monte-Carlo simulation is not of help since the
bias and its statistical error are not known by assumption and cannot be
introduced in the simulation. Another related point is the supposition that
the experimental errors follow a normal distribution. This is very likely since
we have a large body of data and that every statistical distribution should
tend to a normal distribution as the number of observed events or random
variables increase as we learn it from the central limit theorem.

3.5 Predictions

3.5.1 The s-wave scattering length

For each simulated potential of the distribution obtained by the Monte-Carlo
procedure using the model without the exchange term, we have calculated
the s-wave scattering length a. The distribution of its value is shown on the
figure 3.7. The 68.3% confidence interval for Cg as well as the corresponding
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interval for the value of the s-wave scattering length are shown on the inserted
picture. The confidence interval of the scattering length ranges from 270aq
to 1000ay. This interval is large. The size of this interval depends also on
the value of Cg and not only on the experimental uncertainty. Since we are
trying to determine a quantity which is close to a singularity, a relatively
small uncertainty on the value of Cs have a large effect on the precision of
the scattering length.

The discussion in the previous section showed that the introduction of an
exchange term in the long range model shifts the distribution to higher value
of Cg. The interval for the scattering length becomes 200ay — 800aq. This
interval is slightly smaller due to the non-linear dependence of the scattering
on C.

3.5.2 The last bound level

The singularity of the scattering length is due to the weak bounding energy
of the last level v"= 40. We predict the position of this level with respect to
the dissociation to be 1.3 MHz with a precision of 1.1 MHz. The distribution
of predicted bond energy of the last level is presented on the graph 3.8. The
68.3% confidence on Cs is also display. This very small value of the binding
energy shows the precision of the prediction we can make with the potential.
Let’s understand why. As we have shown in the section 3.4 the repulsive
branch of the potential has a very weak effect on the position of the levels
near the asymptote and in particular on the last one. The intermediate part
of the potential is fixed by the dense amount of data, so the possible value
of the position of v”"= 40 can only depend on the dispersion coefficients. In
fact, the binding energy of the last level is not so sensitive to the disper-
sion coefficients since this energy is the difference between two energies, the
dissociation energy Dg and E,~_, both with respect to the deepest bound
level (v =0, J = 0) which have a similar dependence on the main coefficient
Cs. Thus, this binding energy depends weakly on Cy as we can see it in the
figure 3.8. The dependence on Cg of the binding energy of the last level is
inverse to the behavior of the value of the scattering length while approach-
ing the singularity. The reliability of derive potential and the weak variation
of the binding energy with Cg explain the precision. For the same reason an
equivalent precision on the scattering length demands much higher precision
on experimental data.

We see also in the figure that the distribution is narrowing as the binding
energy of the level is decreasing. The influence of the other terms than Cs
express themselves in widening the distribution. So their influence decrease
as the binding energy becomes smaller.
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Figure 3.8: Position of the last bound level with respect to Dy

3.5.3 Analytic dependence

As a remark from the distribution of the last bound level and the scattering
length it is possible to extract an analytic formula for their dependence on
the coefficient Cs. Plotting the two previous graph in log-log scales we see
clearly linear dependences graphs 3.9. This means that both quantities follow
a power law o (Cg — CJ)™. With a linear fit we can extract the exponents
m and the coefficient C9 which is the value of Cs where the scattering length
becomes singular and the binding energy of v”“=40 reach zero. The value
of 09 = 0.954(1) cm~! A® was determined using the figure 3.7. The value
of m from the linear fit was found to be respectively m = —0.90(5) for the
scattering length and m = 2.08(6) for the binding energy of the last bound
level.

3.6 Continuation of the study

We will see in this section that the next step of this study should provide
a significant improvement of the experimental uncertainty to have a better
characterization of the precision of the long-range coefficients. To specify
what procedure should be applied, we can ask the question whether the ob-
servation of one higher level with the filtered laser excitation spectroscopy,
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Figure 3.9: Power law on the binding energy of the last bound level with
respect to Dy and on the scattering length in function of Cs.

namely v’= 39, could help to decrease the uncertainty on the long range
coefficients and whether the correlations can be broken. One great advan-
tage of the Monte-Carlo simulation is it offers the possibility to simulate an
experiment in which this level would have been observed. Let us suppose we
have observe transitions from v’'= 2 and J "= 3 of the B state to the levels of
the ground state from v”= 31 to v"= 39 for J"= 2 and 4. The uncertainty
is the one obtained with the FLE technique (~ 150 MHz). The positions
of these levels are generated using the potential with the best parameters.
Let us now perform the Monte-Carlo simulation in the same way we have
done it until now. The (Dy — Cs) projection of the resulting distribution of
the long-range coefficients is plotted figure 3.10. We observed that the area
covered by the both distribution without v”"= 39 in black and with v"= 39
in red are very similar. We learn from this that the additional observation
of a closer level to the dissociation, does not improve the determination of
the LR dispersion coefficients, even if its classical turning point lies around
25 A which is 5A beyond the actual largest turning point.

We can understand this fact by calculating, which constraints impose the last
bound levels and its uncertainty on the potential parameters by the theory
of perturbations at the first order. We consider simply the Cg term for the
long range. The change in energy position of a level E? introduced by a
slight correction 6Cs to the value of Cjy is scaled by the expectation value of
1/R®. Considering two levels, one very close to the asymptote v = 40 and
a deeper one v = 35 into the potential which have both an outer classical
turning point in the long-range region. We have, in the first order:

SE® =< v = 35]1/R®|v = 35 > 6O

SEY =< v = 40|1/R|v = 40 > 6CL°
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Figure 3.10: Projection on the long-range (Dy, Cg) plane with two different
synthetically constructed level sets.

A same variation or uncertainty in the position of both level will lead to
different uncertainty in the value of Cg which scales as:

5CE < 1/R% >y
(50&10 N < 1/R,6 >35 ’

where the notations of the expectation values have been simplified. The
expectation value of 1/R® decrease rapidly with the increase of the vibrational
number v due to the increase of the amplitude of the wave function at large
internuclear distance while the level approaches the asymptote. Thus we

have:
) 05’5
5C10

The variation of the position of the level v= 35 demands a correction of Cg
which is much smaller than the one necessary for a same change of the po-
sition of v= 40. A precise knowledge of where are located the lower levels
leads to stronger constraints on the variation of the value of Cs. That is why,
for similar experimental uncertainties, it is more efficient to observed deeper

<1,
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bound levels than the last ones. Of course we have simplified the potential
with the single term Cg/R®. The deeper the level is bound the more its
position is influenced by the other contributions, the Cg, Cy,... dispersion
interactions and the exchange energy. To describe the position of this level
we need to include more term into the model. The degrees of freedom in the
potential form are increasing with the number of parameters and the preci-
sion with which we can determine each contribution, knowing the position
of this level accurately, decreases in consequence. To avoid such limitation
one should observe levels influenced by the less contributions as possible,
imposing to observe the closest levels to the asymptote. So we see that both
considerations are in conflict. The higher efficiency, whether to observe the
pure long-range levels or the more bound levels, depends strongly on the
molecular system which is studied. For the calcium dimer case, observations
with better accuracy of levels lying between v”= 31 and 37 will have stronger
influence on the determination of the long range-model coefficients than ob-
servations of v”’= 38, 39 and surely 40 with limited accuracy due to the fact
that the long range model is valid at relatively short distances compared for
instance, to the alkaline dimers. So the influence of the other contributions
than the dispersion forces play a significant role at much shorter distance
than what we expect for a non van der Waal dimer. So we can keep the
long-range model simple.

Thus, a significant reduction of the parameter uncertainties can only come
from a more precise spectroscopy of the last bound levels. The limitation of
the present study was coming from the Doppler effect, which broadens the
observed lines. To go beyond it is necessary to perform a Doppler free or
highly reduced Doppler spectroscopy. Using the heat pipe apparatus the
realization of such study will require a two photon spectroscopy. It is not
recommended to undertake such study in a Calcium heat-pipe oven due to
the rapid loss of coherence provoked by the collisions between the buffer gas
or the calcium atoms with the Cas molecules. One proposition is to use a
beam experiment where the Doppler width of observed lines could be reduced
by a factor of 100 compared to the lines obtained during this study.

The construction of such molecular beam apparatus has been started in the
group. The beginning of the construction coincided with the end of the
experiment using a molecular sodium beam. We have then taken the op-
portunity to use this apparatus and to adapt it to the case of calcium. The
main difficulty is coming from the temperature that should be reached in the
oven containing the calcium sample to obtain a sufficient vapor pressure of
molecules. The temperature is the same as for the heat-pipe, at least 1225
K. A thermal beam apparatus is usually composed of at least two chambers.
One is containing the oven with a small aperture (< 1 mm) from where the
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material is expanding, and the second chamber separated from the previous
one by a wall with a hole giving the arrangement of differential pumping.
The axis passing by the center of both holes defines the beam axis. The two
chambers are pumped and one is usually satisfied for such experiment with a
background pressure in the order of 10~% mbar in the second chamber where
interactions with laser radiation are set up. Due to the presence of the oven
with evaporating material in the first chamber, the vacuum one can reach,
with usual pumps, is not so low. The presence of the relatively high voltage,
necessary to heat the oven, in this environment, could lead to undesired dis-
charges. To solve this problem we have decided to place the heaters outside
the oven chamber and to heat it entirely. The price to pay is the increase of
the volume to be heated and a raise of the losses either by radiation or con-
duction. The oven should contain enough material to provide several hours of
work with one fill leading to boundaries of its size. The oven has a diameter
of 6 cm and a length of 10 cm. The heated chamber has a diameter of 8 cm
and a length of 50 cm. To decrease the losses a shield in the back side of the
- oven was placed in order to reflect radiations to the direction of the oven.
The power necessary to reach at least 1225 K inside the oven place in this
chamber is 2300 W. Due to the losses the non directly heated vacuum parts
connected to this chamber are getting hot (100 — 200 °C). Water coolers
have been then added to these parts. A design of the whole apparatus is
presented in the figure 3.11. With the help of the shielding, we have reached
temperatures above 1225 K as it is shown on the graph 3.12. The sudden
increase of the temperature at t = 1.5 h comes simply from a raise of the
applied voltage to the heaters. The conditions to have a beam are fulfilled
but no test with calcium in the oven has been performed at the time when I
am writing this manuscript.

Depending on the employed spectroscopy method to observed the last bound
levels of the ground state different limitations on the precision with which
one can determine the line positions can be encounter. I discuss shortly the
case of a two step process. The first step is to transfer population to a se-
lected rovibration level of the B state from a low lying vibrational level of
the ground state. In a molecular beam, only levels with low rotation and
vibration quantum numbers are significantly populated. The level of the B
state is selected for having favorable Franck-Condon factors with the last
bound levels of the ground state. Then a second scanned laser stimulates
transitions from the excited level to near asymptote levels each time a res-
onance is crossed. The total fluorescence of the upper level is monitored
as function of the second laser frequency [Samuelis C. et al., 2000]. At the
same time FPI peaks for relative frequency position of lines and absorption
Todine spectrum for the absolute frequency position are recorded simultane-
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ously with the second laser. One obtains a depletion spectra and the width
of the observed lines is determined by the lifetime of the B state 7 =22+ 7
ns [Bondybey V. E. and English J.H., 1984]. This lifetime broadening is the
dominant effect. The residual Doppler broadening for a typical collimation
ratio of 1/500 is 10 times smaller. One can propose to use a stimulated Ra-
man adiabatic passage STIRAP configuration for the two lasers that would
suppress the limitation by the upper level lifetime since it plays, in principle,
no role in the transfer of population from the low to the high lying levels.
No population is transfered to the intermediate level when the lasers are in
resonance. In this case the Doppler broadening will be the main limitation
of the experimental uncertainty.

With the reduction of Doppler effect in the molecular beam, one can ob-
tain, in principle, an experimental uncertainty in the order of 4 MHz for the
lifetime-limited measurement, and 0.3 MHz in the STIRAP configuration.
With such precision we ask the question: What will be the quantitative im-
provement in the determination of the long-range coefficients? We ask to
which extend the confidence region will be reduced and if the correlations
between the parameters will decrease? Once again we could perform a simu-
lation of the proposed experiments. I will only consider in the following that
the measurements have an experimental uncertainty in the order of 4 MHz
corresponding to the lifetime-limited measurement. We take the potential
corresponding to the best set of parameters and generate ”"measured” levels.
I chose to generate levels having the same quantum numbers v”“and J”as the
ones observed in our study. That is to say, I suppose to have observed levels
with v”from 35 to 38 and J"from 4 to 10 with a precision of 3 MHz. The
long range model contains the dispersion terms (Dy, Cs, Cs, C1o) which are
fitted and the exchange energy term whose parameters are kept fixed. Then
a Monte-Carlo simulation has been performed with 3000 iterations. The gen-
erated parameters set distribution is presented in the figure 3.13 projected
onto the different plans of parameters and the former distribution is as well
presented. We clearly see the shrink of the distribution to the small area
plotted in red in the center. The real or absolute position of this distribution
is not known. We just believe it lies within the 68.3% confidence limits with
a probability of 68.3%. The present point of interest is not this absolute
position but the reduction of the uncertainty on the long-range coefficients.
The choice to put the distribution centered on the previous experiment best
parameter set is thus arbitrary. The uncertainty on the value of the Cg coeffi-
cient reduce to 0.17%, the value of Cs to 2.5%, the value of C10 to 3.6%, and
the uncertainty on the value of the dissociation energy is +80MHz. We see
that despite the high accuracy of the simulated experiment the long range
coeflicient Cg and C;0 cannot be determine better than few percent. Fur-
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Figure 3.13: Simulation of an experiment which would have allowed to ob-
serve the high lying levels with a precision in the order of 4 MHz

thermore, we see clearly on the distribution that the correlations between
the coeflicients do not disappear and even do not decrease with the higher
experimental precision.

We have nevertheless to consider these predictions with care. Apart from
the assumptions on the model in general we have largely discussed already,
some limitations of such predictions should be emphasized. In particular, the
higher experimental accuracy will show the necessity of a better characteri-
zation of the exchange energy. Then, the possibility to adjust the coefficients
of the exchange terms should be introduced in the fitting procedure. The
distribution of the long-range coefficients from the Monte-Carlo simulation
will be therefore modified. It is probable that the confidence region will be
larger than calculated here. Therefore, we should see these predictions as
the optimistic view of the results for the given experimental uncertainty. In
addition, we see that the correlations between parameters are still present.
Furthermore, the introduction of the exchange term will probably add new
correlations between its parameters and the LR ones. It is certainly infor-
mative in this case to observe deeper levels than the v"= 35 assumed in this
simulation to have a better characterization of the exchange energy. Then,
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definitively, different distributions of parameters will be obtained. It could
be interesting to determine the best data set that should be observed for
a given experimental line uncertainty using the Monte-Carlo simulation in
order to obtain the smallest confidence limits for the LR coefficients and the
exchange energy parameters.



Chapter 4

The calcium dimer B state

4.1 Introduction

The B state and the ground state potentials were not obtained independently
in the study by Vidal [Vidal C. R., 1980]. Since the ground state potential
have been improved significantly, we should re-investigate the B!Z7 state as
well. In section 2.3 the way we have constructed differences between observed
transitions belonging to the same progressions ensured to have a set of data
to fit the ground state almost independent of the B state. The determined
potential of the X state allows us to construct term energies for the levels of
the B state with the observed transitions of the B-X system (see chapter II
and III). The applied vibrational assignment for the B state follows the one
achieved by Vidal [Vidal C. R., 1980], and was used in the previous chapter.
A comparison between the observed intensity patterns of several fluorescence
progressions and the corresponding Franck-Condon factors will support the
vibrational assignment, and will be presented in the section 4.3.

Almost all transitions from both spectroscopic methods were observed several
times. We weighted them according to the inverse of their uncertainties and
averaged them. We have added to the averaged transitions the calculated
energies of the ground state levels involved in each transition to form a set
of term energies for the B state taking the minimum of the ground state
potential as the reference of energy. The predictions of level energies of the
ground state potential are reliable and sufficiently accurate compared to the
experimental uncertainty of the observed transitions, therefore we keep the
uncertainties of the calculated term energies equal to the uncertainties of
the transitions. Then the obtained term energies corresponding to the same
rovibrational levels have been averaged. Altogether, the data set is composed
of 72 level energies. This set will be used to determine the potential energy
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Figure 4.1: Observed data field of quantum numbers for the B'X] state.

curve (PEC) of the B state. We give the field of quantum numbers of the
observed data in the figure 4.1.

4.2 Potential energy curve

We assume a single potential representation within the Born-Oppenheimer
approximation. We neglect all other surfaces that could be coupled to the
B!'XF state. We will check a posteriori whether this approximation is suffi-
cient. The potential energy curve is determined by a direct fitting procedure
on the experimental term energies. We represent the potential by the ana-
lytical form as described in section 2.3.1.

At large internuclear distances the expansion is extended by

V(R) = D® — C3/R?® — C/R® for R > Row (4.1)
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in order to ensure proper boundary conditions for the numerical resolution of
the Schrodinger equation. The parameter Cg and the dissociation energy D?
were adjusted to have a smooth connection between the analytic expansion
(equation (2.8)) and the extension part (equation (4.1)). The value of Ripn
and R,y are chosen to be close to the values of the smallest (3.232 A) and the
largest classical turning points (5.094 A) of the observed levels. The RKR
potential published by Vidal has been used to determine an initial represen-
tation of the potential curve. For that, the parameters {a;} were adjusted
with a linear fitting routine in order that the functions defined in equations
(2.8) and (2.9) reproduce the RKR potential curve. The value of b and R,
have been determined in this way and then fixed. Then, the parameters {a;}
were adjusted using the non-linear fitting program (MINUIT) [MINUIT web
page, | for the spectroscopic data. At each iteration the value of A, B, Cg
and D¥ are adjusted to keep the continuity of the curve at the connecting
points. Finally, the value of the parameter C; was chosen such that the dis-
sociation energy equals DF + T2 = AE(*P —' S) + DX = 24754.389 cm™'.
T?5 is the electronic term difference between the B state potential and the
minimum energy of the ground state potential, DX = 1102.074(9) cm™! is
the dissociation energy of the ground state and AE(*P —!' S) = 23652.309(1)
cm™! [C. Degenhardt, 2004] is the energy separation between the two atomic
states (4s?)'Sy and (4s4p)'P;.

We have determined a potential, which reproduces all the observed term
energies with a standard deviation of o = 0.013 em™ corresponding to a
normalized standard deviation of & = 1.61. The representation of the poten-
tial is achieved with 20 parameters, 13 of which are the free parameters a;.

4.3 Analysis

With the determined potential of the B state and the potential of the ground
state, Franck-Condon factors (FCF) can be calculated and can be used to
verify the assignment of the B state, which was used up to now. Figure 4.2
presents a comparison between calculated Franck-Condon factors and the
intensity pattern of several fluorescence progressions. The progressions were
obtained by the excitation of low vibrational levels of the B'S} state by
the two single mode 2wNd:YAG lasers. The excited levels (v, J*) are (0,
85), (0, 101) and (2, 21). We choose these low vibrational levels since their
Franck-Condon factors are very sensitive to the choice of assignment. We see
in the graph that an excellent agreement is obtained between the observed
intensity patterns and the FCF using the present potentials, which confirms
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that the original assignment by Vidal was correct.
We see in figure 4.1 that the field of data is quite scattered. Therefore, we
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Figure 4.2: Comparison between calculated Franck-Condon factors with the
intensity pattern of several fluorescence progressions to the X! 2; state from
low excited levels of the B'X} state. The good agreement confirms the
assignment made by Vidal.

check whether the data constrain sufficiently the shape of the potential over
the whole range of observed turning points. This is not this range, which
defines the range where the potential is reliably determined as it has been
demonstrated in section 2.4. Depending on the density of data, the range of
reliability can be smaller than the range of turning points of the collected
data. In this case the extrapolated parts the potential can not be used for
making accurate predictions of molecular quantities like, for instance, energy
level positions. To check this point, we have fitted the term energies using
another representation of the fitted potential with the same analytical form
but using 14 a; parameters and a different value for R, and b. The achieved
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Figure 4.3: Difference between two potential curves of the B'S} state. Both
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quality of the fit is very similar & = 1.59. Figure 4.3 presents the difference
between both potential curves. In the range 2.2 A >R >51A, the differ-
ence between both potentials oscillate. Obviously, these oscillations do not
affect the quality of the representation of the spectroscopic data, since the
value of the standard deviation & of both potentials are almost equal. But,
the shape of the potential curve depends on the choice of representation. We
can attribute the presence of these oscillations to the restricted amount of
data. These data are probably not sufficient to strongly constrain the shape
of the potential; therefore the representation of the observed levels is not
unique. Nevertheless, the goal to determine a potential energy curve, which
can accurately reproduced the observe data, is fulfilled. This potential can be
used to make reliable predictions of energy positions of levels whose turning
points lie within this range with an accuracy in the order of our experimental
uncertainty. Outside the range of data, the difference between the potentials
is significantly larger. For clarity, at very large internuclear separations, not
presented in the figure, the difference between the potentials tends to zero
since the potential were built to have the same dissociation energy. The ex-
tension functions (2.10) and (4.1) are used at Roy: = 5.1 A and beyond. This
connection is thus realized at very short internuclear distance. Therefore, the
coefficients of these functions have no other meaning than ensuring correct
boundary conditions for the resolution of the Schrédinger equation. This
potential can not be used to predict the position of levels having a classical
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turning point larger than 5.1 A.

The potential energy curve of the B state has been determined from 2.2 A to
5.1 A corresponding to an energy range of 2899 cm™! from the minimum to.
the potential energy at 5.1 A. The values of all the parameters of the potential
are listed in the table A.3. The value of the electronic term difference was
calculated with the determined potential function TZ = 18963.9(5) cm™.
Thus, the dissociation energy of the B state is DF = 5790.4(5) cm™!. These
values depend on the choice of the representation and can not be determined
with a better precision than 0.5 cm™ as we can see it in the figure 4.3. The
energy distance between the level (v'= 0, J'= 0) and the asymptote, which
is independent of the chosen representation, is DF = 5722.317(9) cm™*. The
parameters of the determined potential and the molecular constants are given
in the table A.3.

The standard deviation, given in section 4.2, is slightly larger than the av-
erage experimental uncertainty, which is equal to 0.009 cm™!. This is due
to 17 levels whose residuals exceed the experimental uncertainty by a fac-
tor varying from 2 to 5. No typographic errors or misassignments in the
data list have been found for these levels. Since the orders of magnitude of
these deviations are smaller or equal to the possible Doppler shift plus colli-
sional shift, we cannot attribute them to be caused by a perturbing molecular
state. Thus, among the observed data there is no evidence of any pertur-
bation within the experimental uncertainty. This is in agreement with the
observations made by Vidal who claimed that significant deviations appear
only for levels with v"> 25 which is above the highest observed vibrational
levels of this study. Nevertheless, we cannot exclude the presence of weak or
much localized perturbations below v'= 25 due to the fact that the present
field of data is rather scattered. For this reason, and also to improve the qual-
ity of the potential curve even more, a complete and precise investigation is
necessary.



Chapter 5

The A—c coupled electronic
states of calcium dimer

We are interested in the A'S} (*Dy + *Sp), ¢*IT, (*P + !Sy), and a3%, (°P
+ !Sy) coupled states. The knowledge of the potential curves can allow
the description of the scattering of atoms in ground and ®P; excited states.
The contribution of the atom-atom collisions to the error budget of an opti-
cal clock using the ®P; + S, intercombination transition can be analyzed.
Trap loss while cooling on this transition can be also estimated.

The A - ¢ coupled states have been studied since the middle of the eighties by
Bondybey and English in a supersonic beam [Bondybey V. E. and English
J.H., 1984], and by Hofmann and Harris using a heat pipe cell [Hofmann R.
T. and Harris D. O., 1986]. Molecular constants and coupling coefficients
have been derived by Hofmann and Harris using a local deperturbation ap-
proach,

In this work a coupled channel treatment using the Fourier grid Hamilto-
nian method combine with a fitting procedure will be employed to determine
the shape of the potentials and of the coupling in order to reproduce the ob-
served energy levels. In the section 5.1 I will present the results achieved by
Hofmann and Harris, then I will present our own spectroscopy. In the section
5.2, I will describe the theory underlying the coupled system and present the
deperturbation analysis and the achieved results in section 5.3.
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5.1 Spectroscopic measurements

5.1.1 Background

The A'S} — X'Z} red system was first observed by [Bondybey V. E. and
English J.H., 1984] using a supersonic jet experiment created from the va-
porization of calcium metal by a pulsed, Q-switched Nd-YAG laser. The
spectroscopic interrogation was realized by a pulsed dye laser system limit-
ing their experimental uncertainty to a few tenth of a wave number. The
total fluorescence emission was recorded tuning the excitation laser. Only
bands starting from low ro-vibrational levels of the ground state, the only
ones populated in the supersonic beam, were observed. 10 vibronic bands
were recorded from 14500 cm™! to 15730 cm™!. Vibrational constants were
derived. Their vibrational assignment was based on the fact that no bands
below ~ 14500 cm™! were observed and thus the lowest band around 15417.6
cm~! was labeled as vo = 0 - v’= 0. Numerous rotational perturbations
were observed but no deperturbation analysis was performed. The same
year Hofmann and Harris published Franck-Condon factors between the first
vibrational levels of both the X and A states are very weak for low J-values,
and thus are not observable in a supersonic jet [Hofmann R. T. and Harris
D. O., 1984]. The vibrational assignment achieved by Bondybey and English
is thus questionable!

Hofmann and Harris published two years later the results of a more thor-
ough investigation of the A'St - XS} system [Hofmann R. T. and Harris
D. O., 1986]. Since their observed and assigned transitions were available we
collected them and used them for our own investigations. They performed
laser induced fluorescence spectroscopy in a heat pipe oven, and used, in
addition, the filtered laser excitation technique to observed band heads. Ar-
gon ion pumped DCM dye laser operated in single mode configuration was
employed for the excitation to the A state. A 3/4 m monochromator of
0.1 nm resolution was used for the frequency-selective detection of the in-
duced fluorescence. The I, atlas from Gerstenkorn and Luc was used for
absolute calibration of the obtained spectra. They stated an experimental
uncertainty of 0.01 cm™!. From the observation of P-R doublets they assign
the progression to the A'Sf — X'SF system, and measured 720 lines cor-
responding to 340 different levels of the A state and involving 10 different
vibrational quantum numbers of the A state. Rotational assignment was re-
alized using Vidal’s data of the X state. Since the observed A-X bands never
involved ground state levels with vibration quantum number v higher than
11, the quality of the ground state Dunham coefficients allowed reliable rota-
tional assignments (see begining of the chapter devoted to the ground state).
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Figure 5.1: Presentation of the 6 local perturbations observed by Hofmann
and Harris on the rotational levels of the vibrational level assign by them to
be v'= 15. Term energies of the rotation ladder subtracted by the regular
Gy, + By, J’(J'+ 1) behavior.

The vibrational assignment was realized by comparing Franck-Condon fac-
tors obtained with an RKR potential of the A state and the Vidal’s X state
potential to the relative emission lines intensities. Their assignment of the
lowest observed vibrational level of the A state is vo = 7. This consists of
a large extrapolation from the lowest vibrational levels, which are usually
more sensitive to different assignments. A number of 28 local perturbations
were observed. Splitting of lines from 5 to 15 cm™! have been observed. For
instance, the rotational ladder of v, assign to be vao = 15 presents up to 6
local perturbations in the observed region from J'= 1 to J'= 55. The figure
5.1 presents the perturbations for vy = 15. To see clearly the perturbations
a simple Dunham expansion Gy, + By, J’(J’+ 1) has been subtracted from
the term energies obtained by adding to the observed transitions the energies
of the ground state levels.

The lowest local perturbation was observed for the vibrational level assigned
to vy = 7.

5.1.2 Spectroscopy

We are interested to collect precise spectroscopic data on the A'SF and ¢TI,
states. The ¢3I1, state is not optically connected to the ground state X'zt
Therefore the observation of its level-structure by a direct laser excitation
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from the ground state is not efficient. One can propose to perform a two
step excitation. First populate a level of the A'X} state which has sufficient
triplet character due to its coupling with the c¢ state, and from this level,
excite a level of another triplet state, and observed the fluorescence to the
¢ state. This method would provide a lot of information about the c state.
The realization of such spectroscopy is not favorable since no other triplet
states than the c¢ state have been studied so far for the calcium dimer. Fur-
thermore, the choice of a two step excitation performed with our apparatus
is not judicious due to the relatively high density of calcium atoms present
in the heat pipe oven. The first excited level will be depopulated by collision
and will lead to an extremely weak efficiency for the second excitation.

We have chosen the same approach as proposed by Hofmann and Harris to
study the A -c system. The rovibrational levels of the A state will be investi-
gated by laser induced fluorescence. Only the effects caused by the coupling
of the c¢ state to the A state levels will be observed. The LIF technique
provides less information on the upper state than on the lower state. We
use the possibility to increase the collisionally induced lines by varying the
temperature of the heat pipe oven to populate more neighbor rovibrational
levels of the A state.

We performed this study using the same apparatus as described in the chap-
ter 2, which was employed for the LIF study of the B'E} — X'SF system.
The fluorescence was recorded and analyzed with the Fourier transform in-
terferometer. A frequency stabilized, linear DCM dye laser (Coherent 599)
pumped by an argon ion laser (Innova 400) was run in single mode with a
typical output power of 70 mW. It was used to excite transitions in the in-
terval 14900 cm™! to 15650 cm™!. Transitions to the vibrational levels va =
7 to 13 (following the assignment of Hofmann and Harris) were observed.
The long term drift of the frequency of the laser was less than 10 MHz per
hour, which is sufficiently smaller than the Doppler width of the lines in this
frequency region ~ 1.3 GHz ~ 0.043 cm™! at 1260 K, to allow a stable exci-
tation during the time of recordings (~ 20 min corresponding to 20 scans).
To observe transitions involving more levels of the A state, the oven was
operated at (1240 - 1275 K). In this way the number of collision induced
satellites was increased. The figure 5.2 presents the P-R doublets progres-
sion from the excitation transition (11, 29)«(0, 28) at 15514.843 cm™!. On
the insert a zoom around the fluorescence lines P(28) and R(30) of v'= 0
shows the relatively large number of induced collision satellites (24 satellites
corresponding to 12 different J“-values). The instrumental resolution of the
interferometer was chosen to be 0.05 cm™. With a triangular apodization
the instrument line width is 0.05 cm™ (section 2.2.4). Since in single mode
operation of the laser, only a selected velocity class is excited, no Doppler
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Figure 5.2: Vibrational progression obtained from the excited (11, 29)«(0,
28) transition. In the inset the faster decrease of the intensity of the satel-
lite lines at lower frequency, corresponding to lower J’-values, compared to
intensity at the higher frequency is due to the decrease of degeneracy of the
rotational levels o (2J+1) and not due to a local perturbation.

broadening occurs. The lifetime of the A state is 57+5 ns [Bondybey V.
E. and English J.H., 1984] giving a homogeneous broadening of 5.85x10~4
cm™*, which is negligible compared to the instrumental broadening. The
broadening due to the size of the aperture of the instrument (~ 1.3 mm) is
in the order of 0.025 cm™! (see explanation section 2.2.4). Taking the relation
2.3 and §0ya5er = 10 MHz we obtain a line width of 0.056 cm™!. The widths
of the measured lines with a signal to noise ratio higher than 10 was ~ 0.062
cm™!. Collisional broadening due to the higher temperatures are probably
responsible for the additional width of 0.026 cm™?.

The relative uncertainty of the line positions within a spectrum is then es-
timated to 0.006 cm™ for lines having a SNR higher than 10. The relative
uncertainty was increased to 0.01 cm™ for lines with a SNR around 5, and
t0 0.02 cm™! for lines with a SNR lower than 3.

Due to the possible excitation of different class of velocities depending on
the frequency of the laser a Doppler shift can happen. The OPUS software,
controlling the interferometer, offers the possibility to perform short scans in
order to fast record spectra with low resolution, and to display them on live
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in a preview mode, before starting the recording with a higher resolution.
We used this option to check that the excitation was tuned at maximum of
emission for the selected A-X transitions before recording. In this way we
reduced the Doppler shifts to a magnitude of about ten times smaller than
the observed width, i.e. in the order of ~ 0.006 cm™.

The absolute accuracy in line positions for different recordings with the inter-
ferometer, in the region around 670 nm, is equal to 220 MHz = 0.0075 cm™".
The residual Doppler shift and the absolute accuracy of the instrument lead
to an absolute uncertainty of line positions of 0.009 cm™!. We will have to
take into account this absolute uncertainty when we will form term energies
with the transitions from different recordings.

The next step of our investigation was to observe lower vibrational levels
than v4 = 7 and to detect whether local perturbations are present. The
transitions to va = 6 with favorable Franck-Condon factors fall into the gain
profile of the DCM dye, i.e in the region 14950 - 15085 cm™!. Positions of
these transitions were estimated using an extrapolated Dunham expansion to
lower v . The estimation was not better than few tenth of a wave number,
so the laser was scanned and the fluorescence intensity was monitored using
the preview mode of the interferometer software system.

From the highest laser frequencies to the lowest ones we used, we have ob-
served a continuous increase of the noise in the recorded spectral region
coming from the oven radiation. This was particularly visible in the preview
mode since only fast Fourier transformation of single low resolution scans
are performed and displayed. Nevertheless we could still use the preview
mode to search for the lines. Once a transition to vy = 6 for a given J was
found, normal high resolution scans were recorded, and the spectrum showed
the P - R doublets and their neighboring rotational satellites. It was then
straightforward to follow the rotational progression. In the region around
J’= 51 a local perturbation was found with a splitting of 10.58 cm™!. As the
rotational levels approach the local perturbation the intensity of the lines de-
creases rapidly due to the raising of the c3II, character of the levels. A much
smaller local perturbation ~ 0.5 cm™! compared to a regular behavior was
found approaching J = 39. An occasional excitation of a higher J of vy =6
during the observation of the lowest rotational levels allowed us to ”pass”
the local perturbation. We completed the observation to J'= 89 and a more
complex structure was found from J = 81 to 89. The rotational progression
of the vibrational level still assigned to v, = 6 is presented on the figure
5.3. In the same way as in figure 5.1 we subtracted from the term energies
a simple linear Dunham expansion which has the only purpose to scale the
progression to present clearly the observed perturbations.

To observe even lower v, we used in the same linear dye laser, the pyridine 1
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Figure 5.3: Presentation of the local perturbations on the assigned vy =
6 rotational levels. Term energies of the rotation ladder subtracted by the
regular G, + B,, J'(J'+ 1) behavior.

dye. The gain profile of the dye allowed us to obtain lasing from 13850 cm™*
to 14560 cm~with an output power of 100 mW at maximum. This lasing
region does not overlap with the one obtained with the DCM dye. There
is a frequency region from 14560 to 14950 cm™!, which was not accessible.
DCM and Pyridine dyes cannot be mixed to enlarge the gain profiles. With
slight mixing of both dyes no lasing can be obtained. Among the well estab-
lished dyes there is none, which produces lasing in this frequency region and
can be pumped by our argon ion laser. Furthermore, we do not have in our
group another laser working in this frequency interval. This region corre-
sponds to the transitions offering the most favorable Franck-Condon factors
between the ground state levels to the vo = 4 and 5 levels of the A state.
The ro-vibrational levels below vy = 4 are reachable with the pyridine dye
laser with favorable Franck-Condon factors. Like for the higher vibrational
levels we wanted to use the preview mode to find the lower v lines. But, the
signal-to-noise ratio in this mode was very low due to the emitted red light
of the oven. Furthermore, the gap in frequency between DCM and pyridine
lasers and the unknown magnitude of the global or local shifts due to the
perturbation hinder large and precise extrapolation towards the lower v by
the present Dunham expansion or potential energy curve. It was necessary
to proceed differently than previously to find the resonances and to tune
precisely the laser to the maximum of emission of the found lines.

To observe the fluorescence lines when tuning the laser, the emission should
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be recorded through a very narrow spectral band width to increase sig-
nificantly the SNR. of the detection. We then decided to employ the 1 m
(GCA/McPherson Instruments) monochromator in a similar way as during
the filtered laser excitation spectroscopy. We kept one optical access of the
heat pipe for recording spectra via the interferometer and used the other
optical access to collect the fluorescence light and to reflect and focus it to
the entrance slit of the monochromator. This monochromator was used with
a band pass frequency width of about 2 to 5 cm™! giving a much higher
signal-to-noise ratio compared to the one in the preview mode. In addi-
tion, low pass filters RG665 and RG695 were employed. The light passing
through the monochromator was detected using a broad band Hammamatsu
photomultiplier (R928). Knowing the frequency range in which the laser
is scanned to excite a selected upper ro-vibrational level, and knowing pre-
cisely the position of the ground state levels, it is easy to set the central
position of the frequency window to a chosen transition involving neighbor-
ing v”of the excited one. The sufficiently large size of the window permits
to keep it fixed during the scan of the laser by 2 or 5 cm™!. When the laser
comes into resonance, fluorescence to the ground state is emitted, but only
upper excited levels which fluorescence falls down into the selected window
are detected. More detailed explanations of the technique can be found in
the section 2.7. To improve the detection a differential amplifier was added.
A time averaging of 100 ms was applied for the intensity detected through
the monochromator Ipyr. The intensity of the laser I, was simultaneously
recorded and used to form the following signal: I= [g x Ippr —1,] / 1, where
g is an adjustable gain factor. When a Ca, line is found and the laser put
to the maximum of emission and stabilized there, a fluorescence spectrum is
recorded with the Fourier transform interferometer. A scheme of the setup
is presented figure 5.4. Using this technique we have localized transitions to
the vo = 1, 2 and 3 vibrational levels of the A state. Only some satellites
were present in the spectra due to the decrease of the signal-to-noise ratio.
Double-sided forward and backward scans allowing an increase of the signal-
to-noise ratio compared to the single sided scans for the same number of
scans was employed. Nevertheless, often not more than 8 collision satellites
were observed for the strongest lines corresponding to 4 different rotational
quantum numbers J . For the rotational levels vp = 1, 2 and 3 we did not
observed local perturbations. In order to check whether a local perturbation
appears at high Jof v4 = 3 the rotational progression was followed from J "=
93 to 113. A progressive deviation towards lower term value from a regular
behavior, compared to the rotational progression of vy = 2 was discovered.
To observe vy = 5 and 4 excitations of transitions having not so favorable
FCF should then be performed. This was realized for v, = 4 but necessitated
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Figure 5.4: Experimental setup for finding and tuning the laser radiation to
resonance and record LIF spectra.

a different spectroscopic method since the obtained signal was rather weak.
Since no satellites were present, the Fourier transform spectroscopy was not
of particular advantage.

We decided to apply the complete filtered laser excitation spectroscopy. Un-
til now, we had the possibility to observed lines through the monochromator
but no frequency scale for measuring the position of the lines was used. The
purpose was just to find lines and to excite them at the maximum of emission
and to record Fourier transform spectra.

The temperature of the heat pipe oven was reduced to 1240 K. We used
the spectroscopy exactly as it was described for the observation of the last
bound levels of the ground state, section 2.7. The window width was set
to 2 cm™!and adjusted on v’= 3 for a selected J which corresponds to the
highest Franck-Condon factor of its oscillatory pattern in function of v”. We
scanned the laser continuously within intervals of ~ 10 to 15 GHz to excite
reachable transitions from v”= 11 which correspond to the second maximum
of FCF, which is a factor 2 lower than the first one. We recorded simulta-
neously iodine differential absorption spectra, from a 60 cm heated cell (820
K), for absolute frequency calibration and high finesse cavity peaks of 149.7
MHz spectral range for relative frequency determination. The molecular sig-
nal was time averaged for about 300 ms. The power of the laser was taken
as well for intensity calibration of the molecular calcium signal. The four
signals were recorded via a multi-channel voltage recorder connected to an
analogue-to-digital signal converter treated by computer Labview software
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equipment. We used the IodineSpec software program to calibrate the spec-
tra [lodineSpec, |. It provides a prediction of I, transitions with an accuracy
better than 25 MHz in this spectral region. The width of the calcium lines
was 0.042(1) cm™! corresponding to the Doppler width of 0.04 cm™ and a
residual broadening of about 0.012(3) ¢cm™!. The width of the Iodine lines
(heated to 850 K) was in the order of 0.04 cm™! depending on the underneath
hyperfine structure. The absolute experimental uncertainty is determined by
the precision whose I, and Cay line centers are estimated. The signal-to-noise
ratio was sufficiently high for the I, and Ca, lines to allow a determination
of their centers better than 0.004 cm™! for each of them. The accuracy of
the position of lines was then estimated to be 0.005 cm~!. The (4, 61) —
(11, 62) measured Cay line is presented on the figure 5.5. Rotational levels

. window set at 14284.9 cmi® 8v =2 cm’
4.0 4
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Figure 5.5: (4, 61) — (11, 62) Cay calcium line recorded with I, absorption
lines (reversed here) and FPI peaks. The traces of Cas and I, have been
smoothed.

from J = 27 to 77 were observed for vo = 4 in this way. No local perturba-
tions were observed for low J ‘but a strong deviation to lower term values is
present towards J = 77. These onsets of local perturbations for vo = 3 at
high J and for vy = 4 for J’-value approaching 77 are caused by the rota-
tional progression of the same vibrational v, level of the ¢®II, state. Since no
local perturbation has been observed for lower levels both perturbations are
the manifestation of the two lowest local perturbations of the A - ¢ system.
The presence of strong perturbations, the frequency position of the laser at
the end of the gain profile of the dye laser to excite transitions with smaller
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Franck-Condon factors compared to va = 4, and the presence of impurities
becoming rather strong in this region prevented us to observe more than three
rotational levels for vy = 5 (J'= 43, 45, and 47) with the FLE technique.
The signal to noise ratio was very low, in the order of 1.5, leading to an
accuracy for these three lines to be not better than 0.03 cm™!. Rovibrational
levels of vy = 5 with J’-values higher than 99 have been obtained during the
LIF experiment.

Search for vy = 0 has been tried. The transitions starting from v”= 13 of the
ground state offer the most favorable Franck-Condon factors 0.033 to excite
va = 0 for J’-values around 45. This corresponds to frequency transition
lying outside the gain region of the pyridine dye laser. The laser was then
tuned in the interval [13817 cm™ - 13823 cm™! ] with which the transitions
starting from v"= 9 can be searched. The FCF is then 0.024. The scanned
range was larger than the expected spacing between two consecutive rota-
tional transitions (~ 4.3 cm™ ). The window of the monochromator was
set to the frequency interval [13660 cm™! - 13664 cm™! | where we expect
fluorescence from vy = 0, J'= 45 to v'= 13, J"= 46. The laser intensity was
two times lower than in the frequency range for the excitation of vy = 1 and
2. During the scanning procedure we have not found any transition that we
could assign to vy = 0.

5.1.3 Revision of the vibrational assignments

Let us talk first about the vibrational assignment of the A state. The cou-
pling between the A state and the ¢ state affects the vibrational levels below
va = 4 as a global shift of the rovibrational levels towards lower energies.
The variation of the shifts with v, -values and J "-values is much more mono-
tonic compared to the local perturbation at higher v, -values. These shifts
are also much smaller than the vibrational spacing of the levels. We can
thus consider that although a one channel fit of such levels will not provide
a good reproduction of energy level positions, will nevertheless be sufficient
for a determination of Franck-Condon factors. We can test different assign-
ments and compare the intensity pattern of the fluorescence progressions to
the calculated FCF for each fitted potentials. Three different assignments
other than the one of Hofmann and Harris and fits of potential energy curves
of the A state on the observed levels were performed for v < 4. Labeling the
vibrational assignment of Hofmann and Harris as vygy four potential curves
were tested corresponding to vyem — 1, vuen, vaen + 1 and vggy + 2. The
fluorescence progressions obtained by the excitation of the transition (Vagn
= 1, 61) + (8, 62), (Vvaen = 2, 57) < (6, 58) and (vgen = 3, 47) + (4,
46) are compared to the predicted Franck-Condon factors for the different
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Figure 5.6: Comparison between observed spectra obtain by the excitation
of the lower vibrational level vggn = 1, 2 and 3 of the A state and Franck-
Condon factors. Agreement is obtained for vy = vyen + 1.

assignments, and normalized to the most intense lines of each progressions.
These comparisons are presented on the figure 5.6. For clarity the assign-
ment corresponding to vggn + 2 has been omitted on the picture. The best
agreement is obtained for the assignment corresponding to vy = vugn + 1.
Therefore the assignment for the A state should be revised. All vibrational
levels observed should be numbered with one unit more.

Let us talk now about the c state vibrational numbering.

In the graphs of figure 5.7 the values of the effective rotational constant
B, of the lower observed vibrational levels are presented. The calculation
of the rotational constant was made using a simplified Dunham expansion:
B, ~ AE/(4J"—=2). AF is the spacing between two consecutive observed
rotational levels J’-2 and J’. We see on the lower graph that the B,-values
of vo = 8 develop towards the smaller B,-value of the perturbing c state.
The two lower perturbations are clearly visible and progressive.
In their analysis Hofmann and Harris proposed the following assignment: the
”downward” shift at the lowest J -value of this vy = 8 level is due to the level
ve = 0. Since they have not observed lower vibrational levels, they explained
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Figure 5.7: Rotational constant for the lower observed vibrational levels.

that this proposition should be understood as temporary. We have observed
6 lower vibrational levels than v, = 8 and observed new local perturbations.
In the same graph we see a decrease of the observed B,-value of v = 7 and
a level crossing at J'= 57 (J'(J"+1) = 3306). A smaller local perturbation
is present for the same v for J'= 39. For the rotational constant of v = 6
we have little information, but we can see that the B,-values are decreasing
strongly with decreasing J “-values. It indicates the presence of a level cross-
ing at J "< 43. Finally the decreasing of the B,-value of v = 5 for J"(J"+1)
approaching 6000 (J'~ 77) and of vy = 4 for J*(J’+1) approaching 12900
(J’~ 113) indicate two additional local perturbations.

Considering the magnitude of possible perturbations for the levels vp = 3
and 2, we could expect by a comparison with rotational constants of the
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higher vibrational levels, the effects of perturbations should be visible on the
observed levels, despite the gaps in the series of observed levels. But, such
effects are not observed; therefore we conclude that these two lower observed
levels are not locally perturbed. The same vibrational level of the c state,
crossing va =4 at high J’-values, causes the decrease of the B,-value for
va = 5. From this graph we conclude that these two local perturbations are
the lowest ones in energy, and, therefore are caused by the level v, = 0 of
the ¢TI, (Q = 0) state.

We have constructed term energies with the observed transitions and the
collected transitions from Hofmann and Harris by adding to them the term
energies of the involved levels of the ground state potential derived in chapter
II. The term energy of a level of the A state is obtained several times since
observed spectrum consists of a transition progression from a selected upper
level. We have averaged the transitions belonging to one spectrum weighted
with their relative uncertainty. To the averaged relative uncertainty we have
added the absolute uncertainty 0.009 cm™! (see section 5.1.2) to obtain the
experimental of one term energy. Then the term energies of the same levels
from different recordings have been averaged, weighted with their experi-
mental uncertainty. The data of Hofmann and Harris consist of P and R
transitions for 340 levels of the A state. We have added the term energies of
the ground state levels and averaged the two values obtained for each upper
level with the same weight.

We have compared the data obtained by Hofmann and Harris to our own
measurements. We calculated the differences between their and our term
energies. It corresponds to 64 common levels. The mean difference between
both data is —0.037 cm™! and the standard deviation of the differences is
0.038 cm™!. This standard deviation is larger than our experimental accu-
racy and the one claimed by Hofmann and Harris (0.01 cm™!). Hofmann and
Harris have recorded their spectra (of I and Cay) by mode hoping through
consecutive cavity modes (line width 0.0067 cm™?), which were separated by
0.0167 cm™!. The line width of the Iodine lines in the observed frequency
range is in the order of 0.03 cm™!. Thus they have very few points per lines.
In addition they claimed that they needed to make interpolation of the order
of 1 cm™! between strong I2 lines and the Cay lines. It is thus difficult to be-
lieve that they reached effectively an experimental uncertainty of 0.01 cm™!.
Their experimental uncertainty is probably larger than they claimed and can
explain for a great extend the standard deviation of the differences between
the two data sets. Concerning the global shift, we only found that they used
the I, atlas from 1978, which should be corrected by -0.0056 cm ™ compared
to recent atlas. This value is not sufficient to explain the observed shift.
We decided to shift arbitrarily all the term energies from Hofmann and Har-
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Figure 5.8: Range of quantum numbers of observed levels following the new
assignment. The black dots are the observed levels in this work. The blue
open circle are the data of Hofmann and Harris. Levels corresponding to
extra lines have received the same vibrational quantum numbers as these of
the A state levels.

ris by an amount of —0.037 cm™! and to give to all of them an error of 0.038
cm~*. We choose to remove from the data set of Hofmann and Harris the 64
common levels and to keep ours. The total data set consists of 503 term en-
ergies. The figure 5.8 gives the range of vibrational and rotational quantum
numbers observed in this work and those observed by Hofmann and Harris.
Extra lines at the strong local perturbations levels have been labeled with
the same vibrational quantum numbers as these of the A state.

5.2 Theory

The body-fixed molecular Hamiltonian is given in a specific subspace of states
by the following terms:

~ ~ rel

A=vBo 41" + 8" 41 (5.1)
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where VBO are the Born-Oppenheimer potentials, solutions of the fixed-nuclei

~N
electronic Schrédinger equation, and T is the nuclear kinetic energy operator
without the rotational term, which is given by:

~ ROT 1 -
- 2uR? (R
1 A2 a2 .2 ~2 A2 A2
(L8 +08)-(Ll +31)-(,8.+18) 62
Spin—;erctronic L—un(:(;upling S—un;gupling

We use the ladder operators Ox = O, + zéy in the molecule-fixed axis zyz
where O stands for J, L and S, see [Lefebvre-Brion H. and Field R.W., 1986].
H'® contains the spin-orbit interaction HSC, the spin-spin interaction HS®
and the spin-rotation interaction HSE.

We are interested in this section to derive the Hamiltonian matrix describing
the A'YF (4s4s'S + 4s3d'D), 31, (4s4s'S + 4s4p3P), and the a’L] (4s4s'S
+ 4s4p®P) coupled-state manifold (see figure 5.9). Other states dissociat-
ing at the asymptote 4s4s'S + 4s3d®D can couple to the considered states
but they are lying above the triplet manifold according to the ab-initio cal-
culations from [Czuchaj E. et al., 2003]. Their coupling will be much less
pronounced because of no resonance effect, and thus will not be included in
this analysis. The potentials we will derive will contain these small infiu-
ences, and in this respect should be considered as effective potentials. One
potential, the 3II, (1S + 3D ) is deep enough according to the ab-initio calcu-
lations to overlap with the A, ¢ and a states. But this overlap appears at the
very bottom part of 3I1,, where the density of levels is small. Only occasional
local perturbations can happen. Their magnitude are probably small, since
the wave functions of the A or ¢ states are oscillating faster than these of the
bottom of the ®II, in this overlapping region. Therefore we do not include
this state in the analysis. We will check latter whether this approximation
is justified.

5.2.1 Basis functions

In the Hund case (a) the angular momentum basis functions are:

le, J, 5,0, A, ¥ >, where « stands for all other state labels (e.g. vibration,
electronic configuration). We have seen in the section 2.2.2 that the ground
state has only even values of J. Electronic dipole transition for ¥ — X tran-
sitions obey the selection rules AJ = +1, and for the () symmetry of the
rotational levels the selection rules are e <> e and f <> f [Brown J.M. et al,,
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Figure 5.9: Schematic view of the Cay potential curves involved in the present
study.

1975]. In consequence only rotational levels with (e) symmetry have been
observed for the B'X via the excitation from the ground state X'EF . In
addition perturbation can occur only between levels of same (ji) symmetry.
Therefore, in the following we are only considering the subspace of levels with
(e) symetry. [Brown J.M. et al., 1975] defined ($) basis functions these with
symmetry (£)(—1)” for molecules with even number of electrons. Thus, the
properly symmetrized functions with (e) symmetry and odd value of J are
the following (see [Lefebvre-Brion H. and Field R.W., 1986)):

#5HAq, J e >= (2) V2o, J, A, 5,5, Q > —(=1)"5|a, J,-A, S, -5, -Q >]

Thus the normalized wave functions for the five involved states are:

AT Je> = |a,J,0,0,0,0 >
|1, (0), Jye > = (2)7V?(le, J,1,1,-1,0 > +|a, J,-1,1,1,0 >]
I, (1), J,e > = (2)7Y%a,J,1,1,0,1 > +|e, J,-1,1,0,-1 >]
1T, (2), Jie > = (2)7Y%|e, J,1,1,1,2 > +|a, J,-1,1,-1,-2 >]
1*2, (1), Je> = (2)7Ye,J,0,1,1,1> +|, J,0,1,-1,-1 >] (5.3)

For simplicity the labels (e) and « will not be repeated hereafter.
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5.2.2 Matrix elements
Selection rules

' + SO ~ROT
The main coupling operators are the spin-orbit H =~ and the rotation H .

The selection rules for the matrix elements of ﬂso, (see [Lefebvre-Brion H.
and Field R.W., 1986] table 2.2 and page 89), are:

AJ=0, AS=0(S#0) or AS=+£1
AQ=0, AA=AY =0 or AA=-AY =41
g u, eé> f, PIRERESD Yo (5.4)

Consequently the AL} state couples to the = 0 component of the ¢3II,
state. This interaction is responsible for the strong perturbations observed
in the rotational energy ladder of the A state. The a®%} (Q = 1) couples to
the ¢* I, (Q = 1). The Q = 0 component of the a®%] is not coupled to ¢*II,
(2 = 0) state nor to the A'ST state.

The coupling by the rotational interactions follows the selection rules AS = 0,

~ ROT
and depending on the considered term in H |, A2 = 0 or £1, meaning that
only states within the same multiplicity can couple.

Diagonal matrix elements

~ SO
For H .
< NG JIH [P Ag, J >= ATA(R) (5.5)

and for ﬂROT:

2

TSN T = 5%—2 X [J(T+1) - Q2 +S(S+1)—%2] (5.6)
b

<2$+1 AQ, JIH

Other terms of the relativistic Hamiltonian I:Irel can contribute to the energy,
but with much smaller magnitude than the precedent ones. They are the
spin-rotation interaction and the spin-spin interaction. An effective form of
the spin-rotation Hamiltonian can be written as follows (see [Lefebvre-Brion
H. and Field R.W., 1986]):

B =y R-§=4J-1-9)-§ (5.7)

It gives:
<25+ Ao JIE A, T >= 452 — S(S + 1)] (5.8)



5.2 Theory

An usual form of the effective spin-spin Hamiltonian is:

5 g 6(3§Z - 32)

leading with AS = AX = 0 to:

<25+ A JIEPPSHAG, J >= (352 — S(S + 1))

v and e depend on R.

Off-diagonal matrix elements
For B°°;

< STL(0H)AP AT > = y(R)
< AL 8] ®S4(1y) > = —C(R)

109

~ROT
For H we distinguish the different contributions of the rotational Hamil-

tonian.
The S-uncoupling operator is:

it contributes as:

<ad,A S S Q0 A, S, S~ 1,041 >=

2

175
2uR?

The spin-electronic term is:

2 x X VIJ+1D) -QQ+1) x /S(S+1) -Z( —1)

N 1 PN ~ A
Yo (.S +18),

it gives the contributions:

<al A ST QE el A+1,8,5 - 1,0 >=
2
2 x h—2 x v/S(S+1) - Z(T - 1) x L(R)
2uR

(5.14)

(5.16)
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And the L-uncoupling operator is:

=———J,L_+3_L} (5.17)
it gives the contributions:

<, A S5, QI jad, A —1,8,5,Q 41 >=
hQ
2uR?

2 x xVIJ+1)-QQ+1)x L(R) (5.18)

where we have the following matrix element from the L. operator:

LR) = <aJ,A+1,5%,Q+1|l el A, S 2,Q> (5.19)
= <aJ,AS QL o, A+1,5%,Q+1> (5.20)

Finally we have the non-diagonal contribution of the spin-rotation Hamil-
tonian:

~ SR P ~A A
8% = (1/2)(3,8- + 18y

<aJAS S QE a A, S S - 1,041 >=
Y/IT+1D) = Q(Q+1)/S(S+1) - =(T —1) (5.21)

We apply the above calculation to the normalized wave functions given
in (eq. 5.3)!. It results in the 5-dimensions Hamiltonian matrix for the
considered subspace of states, for a given J, and a fixed parity, shown on the
following page:

We note X = J(J+1), and H* 749 =< (25+17) A% + T (R)|(35+1Ag) > is
the matrix element of the diabatic Hamiltonian, diabatic with respect to the
spin-orbit and rotational couplings, for each state.

~el )
And with < (35+1AQ)[H|(25t!Ag) > are the diabatic potentials VE2P(R),
3170 1 3172
and therefore Hy'™ :—-HZH“ =H,™.

IThe factor 2 in the non-diagonal matrix elements cancel with the 1/+/2, which nor-
malizes the wave functions
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5.2.3 Fourier grid Hamiltonian method

The Fourier Grid Hamiltonian (FGH) method provides a precise way of cal-
culating bound energy positions of coupled channels. It was formulated by
[Kosloff R., 1988] and further developed by [Monnerville M. and Robbe J.M.,
1994] and [Dulieu O. and Julienne P.S., 1995]. This method was applied suc-
cessfully to the interpretation of the highly perturbed spectra in Rb, [Amiot
C. et al., 1999] and for the determination of potential energy curves in the
case of K, [Lisdat Ch. et al., 2001]. In these two papers, the perturbations
induced by the spin-orbit coupling of the A'X} and the bPIL, states®, both
dissociating to the first excited dissociation limit, were analyzed. We are
concerned in our work by a similar situation, except that the A'E} and the
c311, states do not share the same asymptote, so that the spin-orbit coupling
vanishes at large distances, instead of converging towards the atomic spin-
orbit. The FGH was also employed and partly adapted to the description
of long-range molecular states for the interpretation of strong perturbation
effects in the photoassociation spectrum of Rby at the 5s + 5p asymptote
[Kokoouline V. et al., 1999].

The stationary radial Schrédinger equation for a diatomic system in the
Born-Oppenheimer approximation is written as

< R| H | Xog >=Ey; < Rixgs >, (5.22)

where H is given by equation 5.1 and < R |x3, > is the wave function
in the continuous radial representation. We have the normalization relation
< R|R” >=46(R —R"). The Schrédinger equation can be written again
as

<R|[AN+V]|X3,J >=Egy < R|xy; > (5.23)

where we have inserted into V all potentials and coupling energies. For a two-

channel problem « and f, the potential operator writes V=v"+ Vﬂ + Vaﬁ.
The basic principle of the method is to discretize the representation | R >
into a finite grid of length L of N equally spaced points. We have the
normalization and closure relation becoming:

N
SR >< Rj| = 1 (5.25)

7

2A small misprint is present in the title of the [Amiot C. et al., 1999]. 'X}(0F) is
written instead of ' (0F).
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Inserting the closure relation into the equation 5.22 on both side of the Hamil-
tonian and using the normalization relation one obtain.

Hy x55(R;) = ES; X2, (Rs) (5.26)

where we have the projections of the wave function as
N
Xog(Bi) =< Ri| x5, >= Z SRy~ Ry) | Xoy > (5.27)
J

We obtain the NXN matrix representation of H on the grid of points express
as Hy; = T}; + V;;. The potential energies of both electronic states V*(R)

and the coupling interactions depends only on the variable R. V is then a

local operator and each matrix \70, Vﬁ and Vaﬂ are diagonal NxN matrix.
The kinetic operator T}; is independent of R. Its a non-local operator and its
matrix is non-diagonal. This operator is in fact local in the reciprocal mo-
mentum space. Its eigen-values onto the discrete reciprocal space momentum
basis §(P; — P;) are the local kinetic energy at R;. The inverse Fourier trans-
forms of these matrix elements are calculable [Kokoouline V. et al., 1999]
and the results is given by:

T __h N+2
4ul? 6
i h? 1 L,
T =(-1)"7 for i #£jA (5.28)

4uL? sin?[(i — j)m/N]

For the two channel problem (af) the formulation of the total Hamiltonian
is express as :

H® HeB T, + Ve yeh T 0 8

(H/’“ Hﬁ) = ( Yyee T4 vﬂ> + ( 0 T,,d) (5.29)
In the first matrix on the right side of the equation (5.29), each block is
diagonal and in the second one the two blocks are non-diagonal. The gen-
eralization to a more channel problem is then straightforward, as it consists
in building the corresponding kinetic and potential energy blocks, as well
as the blocks for the coupling between the channels. The main advantage
of the FGH method is now clearly express since the solution of the coupled
channel problem is simply restricted to the diagonalization of the 2N x 2N
Hamiltonian matrix, which gives the 2/N lowest eigenvalues of the coupled
states and the eigenvectors on the grid of the N points.
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Due to the sampling of the radial basis, variation of the wave function faster
than the grid spacing AR cannot be reproduced. This puts conditions on
the maximum value of the determinable wave number k... This is given
by the Nyquist theorem summarize as: kmee = 7/(2AR). Then we should
ensure that the choice of grid spacing will be sufficient in order to reproduce
the highest wave number in our physical situation. This is given by the dif-
ference between the highest energy and the lowest minimum of the involved
potentials that I note AV. We should then implement the grid in order to
have:

AR < wh/+/2uAV (5.30)

This relation supposes that the wave function varies as a sine function. In
the classically forbidden region it is not true since the amplitude of the wave
function drops down exponentially. The accuracy of the calculated energies
is then lower than we could expect from the Nyquist theorem solely. A pa-
rameter called 8 is then introduced to tune down the grid spacing to obtain
the desired precision. Further development of the Fourier grid Hamiltonian
method have been realized in the Orsay group [Kokoouline V. et al., 1999]
to avoid implementation of very large grid to treat correctly the asymptotic
region of potentials. In the present case, the collected data for the Ay
— c%II, system in calcium dimer concerns the relatively deep bound region
of the potentials and the need of such improvements of the method was not
essential.

The FGH method allows the calculation of energy position of coupled chan-
nels for fixed potential. Our interest is to determine the potential energy
curve and coupling strengths, which reproduce measured term energies within
their experimental uncertainty. We need to combine to the FGH a procedure
to fit the parameters of the modeled potentials and couplings to the observed
data. The development of such procedure has been already realized in the
frame of the collaborations between our group and O. Dulieu from the Orsay
group and led to a satisfactory representation of the same coupled electronic
state system in Ks [Lisdat Ch. et al., 2001]. The minimization MINUIT rou-
tine from the CERN is employed for the adjustment of the parameters in the
same way as presented section 2.3.1. To save a lot of computing time during
the fit, eigenvectors of the matrix 5.29 are not calculated. The attribution
of the calculated vibrational levels to the observed levels for a given J -value
is done by the closest approach. This may lead to wrong attributions when
calculated levels are far from the observed ones. We implemented a routine
which do the attribution by going through the list of calculated levels (for
a given J') by two directions: from lower to high values, and reverse. The
assignment, which gives the lowest standard deviation, is kept.
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5.3 Deperturbation analysis

The term energies are located between 14600 cm™! and 16272 cm™!. The
classical vibrational motion is then restricted from 3.08 A to 4.52 A for the
A state and from 3.37 A to 8.65 A for the ¢ state in the non-coupled pic-
ture. According to equation 5.30 a uniform grid of at least 123 points is
required to represent properly the coupled states over a total internuclear
interval ranging from 2.38 A to 10 A. This range is larger than the range of
classical turning points in order to include the extension of the wave function
into the classically forbidden region. The changes of values of the calculated
term energies decrease with the decrease of the value of the parameter 5. We
observed that these variations become much smaller than our experimental
accuracy for values of § < 0.5. With § = 0.5 the representation requires a
1235 x 1235 matrix for the 5-channel model. Since this matrix is diagonalized
for each J of the data field at each iteration of the fit, the time needed to run
one fit (typically 3000 iterations) can be rather long.

5.3.1 Two-states model

The first approach is to limit the manifold of states to the two surfaces A'T}
and ¢*I1,(Q = 0) to reduce computational time, but also because we observed
mainly levels of the A state. We have no direct observations of levels of the
triplet state except for few perturbed levels, which have a significant singlet
character (> 15%). Using the perturbation-theory picture the other surfaces
contribute at higher orders, since they are not directly coupled to the A
state. They are coupled indirectly through c3I1,(2 = 0) state. The matrix
5.22 reduces then to a 2x2 matrix.

Initial potential guesses

The problem to find the potential curves is rather complex, in the sense that
the fitting procedure, which minimize the standard deviation o (p, ps, ...) (see
eq. (2.12)), is a highly non-linear function of the free parameters p; of the
model. Furthermore, all the parameters of the fit are strongly correlated
with one another. Therefore, we should start the fitting procedure with the
simplest model possible to reduce the number of parameters. Another con-
sideration is that the time of convergence of the fit depends critically on
the initial guesses for the potential energy curves and the coupling. There-
fore, we have constructed initial diabatic potentials, which follow as much
as possible the observed rovibrational ladder. As we can see in the graph
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5.10, the vibrational and rotational structure can be well identified for the A
state (black dots). The constructed A state potential gives the levels repre-
sented by the blue dots. They follow the observed vibrational and rotational
structure. For the ¢ state, we have only the local perturbations to construct
the initial potential. The rotational ladder of one vibrational level of the ¢
state cross several rotational ladder of different vibrational levels of the A
state at different J-values. This was used to estimate the rotational con-
stants, and vibrational spacing to obtain an initial ¢ state potential, and the
corresponding rovibrational levels (red dots). By this we ensured that the
level functions of both states cross at the observed local perturbations. The
vibrational assignment achieved in section 5.1.3 has been used.

levels of initial states: = Astate & cstate observed levels: @

e
e ®

P
. ®
=

e
=
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e ®
=

14400

6 l 1606. 2600‘ 3600. 4600' 5600. 6600. 7600. 8600'
J(J+1)
Figure 5.10: Observed term energies (thick dots) and level positions of the

initial potentials for the A and c states. All odd and even J-values were
plotted just to realize this picture to make the functional form more visible.

The coupling of the states lead to a global and a local shift of each level.
Therefore, the construction of levels, which follow the observed position of
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the term energies, in a regular rovibrational series, gives a rough estimation
of the positions of the uncoupled levels. In a first iteration step, we used the
coupled-channel Hamiltonian with a spin-orbit interaction x to be indepen-
dent of R. We fitted only this constant to improve the representation of all
the observed levels. In this way we obtained a first guess of the magnitude
of the shifts caused by coupling. These shifts have been subtracted to the
observed term energies, which are not too perturbed. Then, the initial poten-
tial of the A state has been fitted to these roughly deperturbed levels. The
obtained potential has been used again to improve the value of the spin-orbit
parameter. The procedure has been repeated several times to improve iter-
atively the A state and the coupling. Then this method has been employed
once for improving the c state using this time the strongly perturbed levels
and the obtained value of x. The initial potentials and the constant coupling
give a standard deviation between observed and calculated levels & = 170.
The improved potentials lead to a standard deviation of about & = 110.

I mention here that the levels observed by the filtered laser excitation tech-
nique have an experimental uncertainty smaller than those obtained by LIF
and these of the Hofmann and Harris data set. Only the level v4 = 5 have
been observed with this technique. In order to avoid a too high weight, for
the fit, on a single vibrational level, we have increased their uncertainties to
0.030 cm 1.

Constructed potential curves

The matrix 5.22 reduces to the 2 x 2 matrix (Q4 = 0 and . = 0). The fitted
potential V{*(R) for the c*II, (Q = 0) include the diagonal spin-orbit matrix
element A(R) since we cannot distinguish its contribution from the Born-
Oppenheimer potential. Therefore, we have Vfi*(R)= VP9 (R) — A(R). The
contribution of the spin-spin interaction and the spin-rotation interaction
are expected to be small compared to the other contributions, and we can
neglect them (v = € = 0) at first. The representation of the initial potentials,
mentioned previously, was obtained by the analytic expansion as described
in section 2.3.1. We used 12 a; parameters for the A state and 16 for the
c state. The experience in our group, obtained by fitting potential surfaces
with this choice of representation, shows that this manifold of parameters
should allow correct descriptions of the potential curves, for the small range
of observed vibrational levels and for the expected well behaved potentials
(no shelf or double well structure, see ab-initio calculations from [Czuchaj
E. et al., 2003]%). According to our experience the fixed parameter b in the

®The '2,(*D +18) state in this publication is lying 2000 cm~! above the 3P + 1§
asymptote. The potential curve of a 1A, (*D +'S) state have a similar depth and shape as
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* function (2.9) should have a value lying between —0.6 and 0.3 for a good
representation. This value was fixed to —0.57 for the A state and —0.2 for
the ¢ state. The short and long-range extrapolation functions are connected
near the shortest and the largest classical turning points of the observed
levels. For both potentials the short-range extrapolations are done by the
same function:

V(R) = A+ B/R" for R < Rinn (5.31)
RA =3.080 A for the A state and RS, = 3.369 A for the c state.

The long-range extrapolations are obtained with the following functions,
for the A state:

V(R) = D} —~ C5/R® — Cs/R® = Cs/R®  for R > Rewy = 4.511A (5.32)
and for the c state:
V(R) = D; —Cs/R° — Cs/R® for R > Rey = 8.608A (5.33)

The dissociation limits D2/¢ are calculated with respect to the ground state
dissociation energy DX = 1102.074(9) cm™".

DA = AE(*D+' S) + D = 21849.634 + 1102.074 = 22951.708(9) cm ™" and
D¢ = AECGP +' S) + DX = 15210.063 + 1102.074 = 16312.137(9) cm™"
The atomic transition energies are taken from the reference [S. Bashkin and
J.O. Stoner, 1978].

Spin-orbit coupling

For the spin-orbit coupling x(R) of A'X} with ¢3II, there are no published
ab-initio calculations that we could use and model by mathematical func-
tions. We only know that x(R) vanishes for large internuclear separations
since the atomic spin-orbit interaction between the (4s4p)®P state and the
(4s3d)!D state is zero for reason of parity. We have then to guess the function,
which will model the interaction. We started the fit with a constant coupling,
which does not have the proper behavior at large internuclear distances but
allows representing the coupling with only one parameter. It simplifies the
representation, and permits to improve by fitting the shape of the potentials
before introducing a more complex function with more parameters to adjust.
This approximation can be justified by the fact that the range of internuclear
distances for the limited data set is small and located at fairly short distance.

the A state potential. There is probably some inversions of electronic symmetry concerning
the calculated states from [Czuchaj E. et al., 2003].
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Figure 5.11: Upper graph: Observed and calculated term energies minus the
regular Gy, =7 + By, =7 J'(J'+ 1) behavior for the 2-states model. Lower
graph: Observed minus calculated term energies together with the experi-
mental error.

Result of the fit

With the 2-states model, we obtained a normalized standard deviation of
the fit of & = 4.08. This represents an important improvement compared to
the situation with the initial potential guesses, which were giving & = 110.
The derived value of the spin-orbit coupling x = 36.46 cm™"! is of the same
magnitude as the spin-orbit splitting between the 3P; and the 3P, atomic
states 24 = 105.88 cm ™.

The positions and magnitudes of the strong perturbations are well repro-
duced for all observed vibrational levels. Let us exemplify the achieved
quality of the description by taking the rotational levels of v4 = 7 and vp =
12. In the upper parts of figures 5.11 and 5.12, deviations from a regular
rotational behavior of the A state levels for the observed and calculated term
energies are plotted. In the lower parts, the difference between observed and
calculated term energies together with the experimental error bars, are pre-
sented. We see that the deviations at the main local perturbations (around
J =51, 109 and 115 for vo = 7; around J'= 37, 63 and 75 for vy = 12),
which are in the order of 8 or 10 cm™, are reduced to 0.2 ~ 0.4 cm~!. Most
of the residuals are within or in the order of the error bars. It is a significant
improvement compared to the initial situations.

Nevertheless, the quality of the representation of the observed levels is not
satisfactory. The residuals at the strong perturbations are still ten times
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Figure 5.12: Upper graph: Observed and calculated term energies minus
the regular Gy, =12 + By, =12 J'(J’+ 1) behavior for the 2-states model.
Lower graph: Observed minus calculated term energies together with the
experimental error.

larger than the experimental error. Some contributions to the level shifts are
not yet taken into account in the 2-surface model. In addition, the pertur-
bations of smaller amplitudes, which are observed at several positions in the
data set are not described at all (for instance around J = 39 and 81 for va =
7). Such ”secondary” local perturbations appear between two consecutive
vibrational levels of the 3II,(Q = 0) state, therefore cannot be caused by this
state. These features show that the model is incomplete. It is necessary to
introduce the 3I1,(Q2 = 1) surface in the model.

5.3.2 Three-surfaces model
Potentials and couplings

We add to the coupled channel calculations the third state ¢*II,(Q = 1).
The contribution of the spin-orbit diagonal element A(R) can be distinguish
now from the Born-Oppenheimer potential, therefore it has been explicitly
included in the 3 x3 Hamiltonian matrix. There are effectively two potentials,
and thus no additional parameters for the representation of the ¢*IL, (2 = 1)
state is needed, since: V{*(R) = V{/*(R) + A(R) = VFO(R). The only
additional parameters concern the model for the diagonal spin-orbit coupling
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A(R):

A(R) = Ao+ 52+ 22

where Ay, A¢ and A9 are free parameters. This functional form assures to
approach a constant value for large internuclear distances being the atomic
one of the manifold 3P.
In the 3-surface matrix, the a®S} (Q = 1) state is not included. The spin-
orbit and the rotational couplings (the C’,(JOS) — ((R) matrix element) between
the *II,(Q = 1) state and the a®S] (Q = 1) state are thus neglected. This is
justified at relatively short internuclear separations where the energy spacing
between the two potentials is large compared to |((R)] ~ A(R) ~ 52.94
cm~!. The energy spacing is approximately 5600 cm™'at the internuclear
distance where the c®II, state cross the A'YF state [Bussery-Honvault B.
et al., ]. But at large internuclear distance the Born-Oppenheimer potentials
of the 3II, and the 3%, converge diabatically to the same asymptote, and
at infinite R they are degenerate. The effect of the coupling between the
diabatic potentials, which breaks the degeneracy, changes the shape of the
potentials. The adiabatic behavior of the 3I,(Q = 1) should be taken into
account. The diagonalization of the 2x2 potential matrix will allow getting
a good approximation for the adiabatic potential:

Vit + AR) Cfd-((R)
(02‘2 —C(R) Vaaw(®Sy) ) (5.35)

(5.34)

((R) was approximated by ((R) = —A(R), A(R) is given by equation (5.34).
C’gg is small compared to A(R), therefore it was neglected. We have used the
ab-initio potential of the a®L7 state from [Bussery-Honvault B. et al., ]. It
was smoothly extended to the center 3P + S, asymptote by the dispersion
functions -Cs /R - Cg/R®. This state is attractive. Therefore, the adiabatic
a’Ll (1) state converges to the *P; + S, asymptote, and the adiabatic 311,
(1) state correlates to the *Py + Sy asymptote see figure 5.13.

We have still a 3-surface model, therefore the dynamical effects caused by
the a®S§ (Q = 1) are not included. The change from the diabatic potential
to the adiabatic potential of the 3IL,(£2 = 1) has an effect on the quality of
the fit, which is not negligible.

Result of the fit

The potentials obtained previously with the 2-surface model are used as
starting point for the fit.
The standard deviation achieved by fitting with the 3 states is & = 1.913. It
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Figure 5.13: Adiabatic potential of u-symetry states correlated to the 5P +
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shows that the global description is clearly improved. The obtained value of
the spin-orbit coupling x = 36.51 cm™? is almost equal to the value obtained
with the 2-surface model. We take again the rotational ladder of v = 7 to
show the improvements of the representation, figure 5.14. The description of
the strong perturbations is better. The magnitude of the residuals has been
reduced by a factor two. The secondary local perturbations, which were
not reproduced previously, are now better described. Their residuals have
been significantly reduced (by a factor 10 for vo = 7, J'= 39 for instance).
The calculation of the mixing fractions of the different states shows that the
3T1,(Q2 = 1) character is not negligible for such levels, and even higher than
the 3IL,(Q = 0) mixing percent. Anyway we see in the lower graph of figure
5.14 that there are still some trends in the representation. It concerns the
highly perturbed levels. Their residuals exceed the error bars. Additionally,
we observed few levels (less than 10), residuals of which exceed the experi-
mental uncertainty by a factor of 3 to 10. Their residuals are not following
the trends of the residuals of the neighbor rotational levels 5.16.

5.3.3 Four-surface model

Including the c®I1,(Q = 2) leads to a very small enhancement of the global
quality. The achieved standard deviation is & = 1.83. The trends observed
with the 3-surface model at the local perturbations remain. Few occasional
levels, which are perturbed by a neighboring level of the 3IL,(Q2 = 2), are
better represented. It is the case, for instance, for the level J'= 39 and
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Figure 5.14: Upper graph: Observed and calculated term energies minus the
regular Gy, =7 + By, =7 J (J + 1) behavior for the 3-states model. Lower
graph: Observed minus calculated term energies together with the experi-
mental error.

for the two levels with J'= 81 for v = 7 as we can see in figure 5.15.
Their residuals are now within the error bars. The calculation of the mixing
fractions of the different states confirms that the 3I1,(Q = 2) character is not
negligible for such levels (~ 1%). We have fitted the parameter +y of the spin-
rotation interaction as a constant with respect to the internuclear distance.
The improvement given by the release of this parameter is marginal. The
obtained value is 1.97 X 1072 cm™!, which is small compared to Ao, and
compared to the rotational constant of the ¢ state (~ 0.05 cm™1). To neglect
the variation of v with the internuclear distance was then justified. We kept
the parameter € from the spin-spin interaction to zero, since it will only be
effectively a very small change of the spin-orbit splitting between the triplet
states.

The few levels mentioned in the previous section, which have a larger residual
than neighboring rotational levels of the same v, , are not better described by
the inclusion of the ¢*IL, (2 = 2) state into the coupled channel calculations
(compared to figure 5.16). These levels belong to the data set from Hofmann
and Harris. The coupled-channel calculation shows that most of these levels
have mainly triplet character (c). Consequently, the intensity of the lines
involving these levels are expected to be weaker than the intensity of the
lines coming from a level with mainly singlet character (A). The ratio of

both intensities ~ (C4)2/(C¢)2, where Ci/° are the percentage of singlet
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regular Gy, =7 + By, =7 J (J + 1) behavior for the 4-states model. Lower
graph: Observed minus calculated term energies together with the experi-
mental error.

state in the wave function, is similar or smaller than the signal-to-noise ratio
of the spectra obtain by Hofmann and Harris (SNR taken from a spectra
shown in [Hofmann R. T. and Harris D. O., 1986]). Therefore, it is possible
that these lines have been not properly assigned.

We have checked also whether these higher deviations could be caused by
the a3L} (Q = 1) state. We included this state into the coupled-channel
calculations, using the potential from [Czuchaj E. et al., 2003]. We have
set the spin-orbit coupling to —((R) = A(R). The matrix element L(R),
equation 5.19, have been approximated to its asymptotic value: L(R) = v/2.
No fit has been tried, only the calculation of the level positions of the five
coupled states have been performed (see the complete matrix 5.22). First, we
observed no improvement on the overall description of the observed levels.
Second, this surface does not produce shifts of levels of similar magnitudes
as the residuals. In fact, this surface causes dynamical changes only to the
levels with a significant ¢®II, (2 = 1) character, which are closed to the
asymptote. These changes are very small, compared to the experimental
uncertainty. Therefore, we cannot conclude that neither the small trends in
the residuals nor the few numbers of larger residuals are caused by the a®SF
(Q = 1) state.
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Figure 5.16: Residuals and error bar for the vy = 10, 13, 15. The few
residuals, which do not show the same behavior as the other are plotted with
a blue star.

5.3.4 Variations of the spin-orbit coupling

We tried different functional forms of x(R), which vanish at large R, to get
some experience about the influence of the variation of the coupling.
We used:

X'R) = xaR™'+ xR+ xR+ xR’ (5.36)
and
XR) = x16TM + x0T 4 yyel3R) 4y, el ~1R) (5.37)
and
X*(R) = Da(R—Re)+x2(R—Re) + xs(R — Re) + xa(R — Re))
x1 /(14 eSB-R)) (5.38)

e >0, R,isa fixed parameter, R,is a cutting at large R

The value of the function can become too large at very short distance for the
first two functions. Therefore, we have introduced a cutoff at 3 A. The results
we obtained were not better with the functions x*(R) and x*(R). They are
not allowing a better representation compared to a constant coupling. But
we observed that each choice of functions gives fitted potentials, which have
different shapes, not only in the energy region where the A and c state
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potentials overlap, but also in the lower part of the A state. This shows that
the coupling and the potentials are strongly correlated. We observed for the
lower vibrational levels (vy = 2, 3, 4) systematic trends, figure 5.17 shows
examples.

For the x/2(R) types of coupling, the difference between the observed and
calculated term energies for the rotational series of vo = 2 and vy = 4
are systematically larger than the experimental error bars. The rotational
behavior is not satisfactorily described. We see a slight dependence of the
residuals with the J-value. For vp = 2 they decrease and for vy = 3 and
4 they increase with J. The representation with the constant coupling is
better. The tendency in function of the J-values differs for v4 = 2, and are
less pronounced for all considered v, . The residuals are within the error bars
for vao = 3. Therefore, one would keep the representation of the coupling by
a constant value since it gives deviations with less systematic trends. These
trends in the residuals seems to indicate that a coupling function decreasing
slower with R than the function x'/?(R) would give some improvement. The
last fit performed including the function x® shows a slight decrease of the
standard deviation compared to the fir with a constant coupling.

5.4 Discussion

5.4.1 Verification of approximations in the model

We have made several approximations or assumptions in the couple-channel
calculations that should be checked.

e We have shifted the data of Hofmann and Harris by —0.037 cm™" (see
section 5.1.2). To check whether this could limit the quality of the
representation, we have fitted this shift as an additional parameter in
our model. The description is slightly better with a shift of —0.029
cm™! instead of —0.037 cm™!. The decrease of the standard deviation
is less than a percent. The trends in the residuals remain. Therefore,
this correction does not provide a significant improvement. This is
understandable since this correction is smaller than the experimental
uncertainty we set for the data set of Hofmann and Harris.

o We selected the range of internuclear distances as [2.38 A — 10 A]
for establishing the grid points for the Fourier grid Hamiltonian. This
implies that levels lying at higher energy than the potential energy at
these two internuclear distances are included in the model as box states.
The position of levels of the ¢ state close to the asymptote are the most
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affected ones by this approximation, as well as the continuum levels.
The exact position of the continuum states is not of importance, since
they are separated to the highest observed levels by an energy at least
equal to the magnitude of the spin-orbit coupling. Therefore they are
weakly coupled to the A state levels. But we should check whether the
increase of the density of states by enlarging the range of internuclear
distance may have a non-negligible influence by a cumulative effect.
The increase of the range by a factor two, allowing a better description
of the highest bound levels of the ¢ state and an increase of the density
of its continuum states by a factor of roughly 4, does not show any
significant change in the quality of the representation of the observed
set of data.

The assignment of the vibrational numbering of the A state have been checked
by calculating the Franck-Condon factors with the determined potential en-
ergy curve and compared with intensity pattern of observed fluorescence
spectra. The agreement is still good and even better than obtain previously
in figure 5.6.

5.4.2 Comparison with the previous study

Hofmann and Harris have carried out a local deperturbation analysis, rep-
resenting the energy positions of the rovibrational levels of the A'Y} and
c*TI(0;) states by Dunham expansions and a coupling parameter for each lo-
cal perturbations. They included several perturbing levels above and below
each A state vibrational level (in average 6 vibrational levels). The coupling
to each of these perturbing levels necessitated three additional adjustable pa-
rameters. It resulted to this approach that a large number of parameters was
necessary to reproduce their observed data (81 parameters). They achieved
a quality of the representation of ¢ = 0.13 cm~!. They have included the
effect of a c®II(1,) level for two instances in their fits.

In the present, we have used a global deperturbation analysis via the coupled-
channel calculations. We have achieved a quality of the description o = 0.055
cm~! for an average experimental uncertainty of 0.03 cm™!, with a number
of parameters lower than Hofmann and Harris (44 parameters), and for a
larger data set (6 vibrational levels more).

5.4.3 Predictions

Bondybey and English have presented in their publication [Bondybey V. E.
and English J.H., 1984] an excitation spectrum of low resolution of the



5.4 Discussion 129

region 14470 cm™! to 15200 cm™! obtained by time-resolved laser induced
fluorescence in a pulsed supersonic jet. A copy of the spectrum in presented
in figure 5.18. They have identified progression bands vy < v’= 0 and
va — v'= 1. These bands are labeled as vy and va; with black numbers in
the figure. The numbering have been corrected due to the new assignment
achieved in the present study. Several bands observed in this spectrum have
not been identified by Bondybey and English. Applying our results from the
deperturbation analysis, we can now assign these bands. They are excita-

Y TR S
15200 15108 15000 14980

PSS S SO SO S PR VU TOUUY S SV L
14350 1415 14650 14530

Figure 5.18: Overall scan of the Ca; A'S - X' X} excitation spectra obtained
by Bondybey and English. Bands are labeled with the v values and with the
v“value as subscript when v“> 1. A rescaling of the spectrum below 15100
cm™! have probably be carried out, although it is not mentioned in the
publication of Bondybey and English.

tions of the c’II, (2 = 0) - X'SJ transitions. We have marked them by
red numbers in the spectrum. The c®II; state being metastable, the levels,
which can be efficiently excited, have significant mixing with the A’} state.
The graphs in figure 5.19 display the percentage of A state character in the
vibrational functions of the c state levels for J'= 1, 25, 45. We consider
these low J, since in a supersonic jet only the low rotational levels are ther-
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Figure 5.19: A state character of the ¢ state levels as function of the binding
energy. By convention we attribute a level to the ¢ state when the percentage
of ¢ state character is higher than 50%.

mally populated. With the temperature Bondybey reported (40 K - 70 K)
the maximum of population occurs around J” = 18 - 24. We see that the
A state character is important for the low vibrational levels with an even
numbering. This is why in the spectra, we observe the band heads of v, =
2, 4 and 6. The mixing of A state decreases for these levels as the J -value
increases. This dependence on J and the fact that the rotational constant of
the c state is similar to the one of the ground state, explain why the bands
appear very sharp. We see in figure 5.19 that the percentage of A state for
the low vibrational levels with an odd number increases significantly only for
v, = 1. The bands with v, = 1 are thus present in the spectra. Bands from
higher v, can also be observed.
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5.5 Conclusion

We have treated the coupled A'SF and 311, electronic states applying the
Fourier grid Hamiltonian method combined with a fitting procedure. This
global approach has allowed a satisfactory deperturbation of the coupled sys-
tem providing diabatic potential energy curves and spin-orbit interactions.
The observed perturbations in the spectra of the A'S7 - XS} system are well
described. Small trends between observed and calculated levels compared to
their observed splittings remain. We have included in the description all the
states, which have a significant contribution to the representation. We have
shown that the few approximations we made are justified. Therefore, we
consider that the model we used is complete. We believe that the represen-
tation can be further improved having a better model for the variation of
the spin-orbit coupling with internuclear separation. Tables of parameters
for the potentials and the coupling can be found in appendix A. Using these
parameters give a standard deviation of & = 1.83.

To further improve the potential energy curves and to obtain more precise
coupling functions, it is necessary to collect more data on the lower levels
of the A state, which are less perturbed. The observation of the vibrational
levels v = 0 and 1 will fix the minimum position of the A state. Significant
improvement of the triplet surfaces would be reached by observing directly
transitions involving c state levels with higher triplet character. The fact that
bands belonging to the ¢*II, (2 = 0) - X%} have been observed by Bondy-
bey and English (see figure 5.18) is a good mdlcatlon that the observation of
the c state levels with a relatively low A state character can be observed in
a molecular beam with high resolution laser spectroscopy. To collect more
precise data on the A'EF and ¢3I1, states will help to reduce the correlations
between the parameters of the potentials and of the spin-orbit coupling for
the deperturbation analysis.

The observation of the last bound levels of the ¢TI, (0F) state in a beam is
more difficult due to the fast decreasing of the A state character as shown in
figure 5.20. A larger time of observation than possible with the fast molecules
in beam is necessary. In this respect, photoassociation spectroscopy on trap
Ca atoms on the P, - !S; transition will give better results (see the case
of Sr by [Katori H., ]). The asymptotic levels of the a?SF (1,) can be ob-
served in the photoassociation spectra. The combination of the data from
the beam and from the photoassociation experiment will then allow a pre-
cise description of the dynamics of the cold collisions at the triplet asymptote.

Only one example of a global deperturbation analysis exists on a similar
system. It concerns the A'S} and b®Il, coupled states of the Ko molecule
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Figure 5.20: Fraction of A state character of the levels of the c®II, near the
triplet asymptote as function of the binding energy.

[Lisdat Ch. et al., 2001] and [Manaa M.R. et al., 2002]. Lisdat et al. showed
that the widely used local deperturbation analysis, which takes account of
couplings within a limited set of neighboring vibrational levels does not allow
a satisfactory representation with a reasonable number of parameters (they
obtained & = 4). There is no obvious criterion, which may help to restrict
the number of neighbor levels to consider. They demonstrated that one con-
sequence is that the shifts induced by the coupling between both states on
the lower levels of the °II, lying below the potential-curve crossing are not
well described. The Fourier grid Hamiltonian method allow a global analy-
sis, therefore the cumulative effect of all vibrational levels of the AT} on
the b3TI, on each vibrational level within each subspace of J, is properly in-
cluded. The number of parameters is then limited to those of the potentials
and those of the coupling functions. The global deperturbation permitted
to reach & = 1.2. The present work is then a second example of a global
approach. The spin-orbit coupling is 2 times larger for Cas compared to Ko
and the ¢3II, state is 5 times shallower than the b1, state. Therefore, the
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cumulative effects are more important for Cay, and a local deperturbation
would have clearly failed. A more complete model for the coupled-states
compared to Lisdat et al. was needed. We have considered the long-range
behavior of the ¢TI, potential, and take into account the influence of the
a’%, state. This is due to the particularity of the c®II, potential to be quite
shallow.

The analysis of [Manaa M.R. et al., 2002] use also a global approach. The
levels positions are first described with a series of Dunham parameters for
both states. Then, from these coefficients RKR. potentials are calculated,
and used in a coupled-channel treatment for the calculation of the energy
levels. These levels are compared to the observed ones, and the initial repre-
sentation by the Dunham coefficients is improved. The procedure is repeated
iteratively to obtain a good representation of the observed data. The derived
"deperturbed” Dunham expansions should be used with the RKR potentials,
the spin-orbit couplings, and its dependence with the internuclear distance
in order to reproduce desired observed levels. Therefore, to use this represen-
tation is not straightforward and the physical meaning of the intermediate
RKR potentials is not clear. Furthermore, problem of convergence of the
Dunham expansion for the levels near the asymptotes limit the use of the
method. The Fourier grid Hamiltonian method with analytical potentials,
which take properly into account the long-range part of the potential allow
a complete treatment of a coupled-states system.
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Chapter 6

Conclusion

I have explained in the introduction of this thesis that the available knowledge
about the calcium dimer states was limited and sometimes questionable. The
potential energy curves of the ground state Xlzg and the B'Z} have been
obtained by Vidal in 1980. We found that the shape of this ground state po-
tential presents a non-physical behavior for its repulsive part. Unfortunately,
the original spectroscopic data have been lost since 1980, preventing the cor-
rection of the derived potential curve. Several spectroscopic studies of the
A'SF — ¢, coupled states have been realized by Bondybey and English
and by Hofmann and Harris. Rovibrational constants and local coupling pa-
rameters have been derived, but no definite answers about the vibrational
assignments have been reached for both states. An accurate determination
of the long range part of the B!X7 state potential have been obtained by
photoassociation spectroscopy at the 'P + 'S asymptote reported in [Zinner
G. et al., 2000].

In this thesis work we have re-investigated the ground state of the °Ca,
molecule using a highly accurate Fourier transform spectroscopy on the laser
induced fluorescence of the B'Lf —~X'2} system. We have collected a large
and dense body of data, and determined a potential energy curve by two full-
quantal approaches involving different representation of the potential. We
have used an analytical representation, parameters of which are determined
with a non-linear fitting routine, and a point-wise representation, potential-
points of which are adjusted with an iterative linear procedure. The two
approaches allowed us to investigate the internuclear region where the po-
tential does not depend on the choice of representation [3 A-10 A], and
thus is uniquely determined. We demonstrated that it is not the interval of
classical turning points of the observed levels, which define the range of reli-
ability of a potential. Therefore, a physical long-range model, extrapolating
the potential outside this range will not give a reliable long-range part of the
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potential. We have enriched our data by observing levels near the asymp-
totic limit by the filtered laser excitation technique. The highest observed
level lies only 0.2 cm™! below the dissociation threshold and have a classical
turning point at 20 A. The range of reliability is not significantly increased
by the newly collected levels. We discovered that the data can be precisely
described with a pure dispersion potential starting at relatively short inter-
nuclear separation inside the range of reliability at 9.5 A allowing in this way
a good determination of the potential up to large internuclear distances. The
derived potential describes 99.98% of the well depth of the ground state. The
dispersion coefficients Cs, Cs, Cio, and the dissociation energy have been di-
rectly adjusted on the observed data. The ground state potential curve have
been greatly improved compared to the potential achieved by Vidal, and we
showed that the derived dissociation energy differs by 7 cm™! compared to
the previous value lying far outside the given error limit by Vidal.

The motivation of our investigation is to derive an interaction potential,
which can be used for the description and the prediction of cold-collisions
dynamics. Therefore, the accuracy of the long-range potential should be es-
timated. To transfer the information of the experimental accuracy of the ob-
served data to the uncertainty of the long-range coefficients, we have adapted
a Monte-Carlo simulation. We have obtained confidence intervals for the dis-
persion coefficients and the dissociation energy. The precision on the Cs
coefficient of the leading van der Waals force is in the order of few percent.
This uncertainty interval contains the values of the most recent ab-initio cal-
culation of the Cg value. It was then straightforward to obtain the values and
the uncertainty of molecular and atomic properties like the position of the
last bound level, and the s-wave scattering length. We have demonstrated
that the scattering length is positive showing that a Bose-Einstein conden-
sate with calcium atoms will be stable.

The characterization of the ground state potential have already set the basis
for the understanding of the observation of photoassociation spectra achieved
recently and published in [Degenhardt C. et al., 2003]. It allowed to perform
a full simulation of rotational line profiles and thermal line shifts observed in
a the trap loss experiment with an ensemble of calcium atoms at 3 mK.

A molecular calcium supersonic beam is under construction in our group.
Using a stimulated Raman adiabatic passage scheme to perform the spec-
troscopy of the last bound levels of the ground state, where the main contri-
bution to the experimental uncertainty will be caused by the Doppler broad-
ening of the lines due to the slight divergence of the beam. It will allow to
improve the accuracy of the long-range coefficients by a factor higher than
10 and to obtain a better description of the exchange energy contribution to
the long-range behavior of the interaction potential.
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The collected data from the spectroscopic study of the B'S} —X'2F system
allowed us to determine a B!X] state potential using the analytical represen-
tation, which describes the observed data with a standard deviation slightly
larger than the experimental uncertainty. Our analysis shows that more data,
are necessary in order to fix the shape of the potential. We have confirmed
that no local perturbation larger than the experimental accuracy are present
for the levels lower than vp = 23. High precision data can be obtained by
spectroscopy in the molecular beam in order to fill the gap between the pho-
toassociation data and the data observed during the present work. Then the
complete potential of the B state can be determined. Due to the lack of
hyperfine structure the description of cold collision is facilitate. The calcium
element as the other alkaline-earth atoms can serve as testing ground for the
theoretical models. One can compare the quality of description of the long-
range levels from the observed photoassociation spectra, for the accumulated
phase method [Moerdijk A.J. et al., 1995] and for the full potential approach
always used in the present thesis.

We have investigated the A'SF — ¢TI, coupled states. Energy levels having
mainly a singlet character have been observed by laser induced fluorescence
combined with Fourier transform spectroscopy. We have included in the data
set the observation by Hofmann and Harris from 1986, and we have consid-
ered the complete Hamiltonian for the subspace of states AL — %I, —
a®TT in order to describe the observed perturbed levels. The calculation of
level positions have been obtained with the Fourier grid Hamiltonian method
combined with a fitting routine for the adjustment of the parameters of the
potential curves and the spin-orbit coupling functions. We have reached a
satisfactory description of the coupled system. The standard deviation is
close to the experimental accuracy. Trends in the observed-minus-calculated
levels are still present. Since our model is complete in the considered sub-
space, we believe that improvement of the representation of the data can be
reached having a better coupling functions for the spin-orbit interaction from
new ab-initio calculations (in progress [Bussery-Honvault B. et al., |).

In order to get more precise potential curves, especially for the c¢®II, and to
reduce the correlation between all the parameters entering the description
of the coupled-states, a spectroscopic study of the c state is needed. We
have seen from our revised interpretation of the observation of Bondybey
and English that the observation of levels with high triplet character can be
achieved in a supersonic jet. This gives a promising ground for the beam
experiment under development in our group. An improved description of the
coupled system including data from envisaged photoassociation at the *P; +
1S, asymptote can allow the calculation of decay rate of levels of the coupled-
states near the triplet asymptote to the vibrational levels of electronic ground
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state. The efficiency of formation of cold molecules in the ground state via
photoassociation to the 3P, + 'S asymptote by a selective excitation of levels
with a significant singlet character can be estimated.

The energy shift induced by the binary collisions between calcium atoms dur-
ing the laser interrogation of the intercombination transition in the frequency
standard experiment have been recently estimated to be lower than (-20 %
55) mHz for a density of 10'® m™ at the temperature of 20 K, giving a
relative shift lower than (-0.4 £ 1.2) x1071¢ [C. Degenhardt, 2004]. For a
relative instability of 107! for a time of observation lower than one second
the shift is not the main limiting factor of precision. The developments of
the calcium optical frequency standard are very promising. In the prospect
that the quantum projection noise limited instability of 4x107'" in only 1 s
be reached, the collisional shift could become the main limiting contribution
to the uncertainty budget. Therefore the estimation of the frequency shift is
of importance for the next generation frequency standard.

The calculation of the collisional frequency shift at finite temperature is
rather complicate in the case of the alkalis, and in particular for *3Cs, which
is the used element for the present atomic clocks, due to the large number
of collisional channels [Leo P.J. et al., 2001]. The lack of hyperfine structure
and the information already collected about the dynamics of cold collisions
between calcium atoms provide arguments to test the theoretical models
‘with this element. The complete potentials of the X'-F state and the 3Tl
—~A'SF coupled states can provide precise descriptions of the collisional pro-
cesses, and comparison with experiment on the Ca frequency standard can be
very valuable for the understanding of the interactions between light and an
ensemble of atoms. These considerations give grounds for the continuation
of the study I have undertaken during my thesis.



Appendix A

Tables of parameters of the
X!zt , Blst, AlS], and %11,
potentials

The parameters of the analytic potential are listed in table A.1. The {a;}
are the coefficients of the expansion equation 2.8 and 2.9, the A and B are
used to extrapolate the expansion at R < R;,, using the expression 2.10
page 35. The parameters (grid of points) of the point-wise representation
of the potential are listed in table A.2. A natural spline should be used
to interpolate the given points. For both representations the analytic long-
range model equation 2.11 is used beyond R,,;. No errors are attached to the
parameters corresponding to the intermediate region of the potential since
they have no individual physical meaning. Only the eigenvalues calculated
from the complete potential will obtain a predictive uncertainty read off
from the standard deviations of the fit. For the potential of the B state the
extrapolation 4.1 is to be used. For the potentials of the A state and the ¢
state the extrapolations 5.32 and 5.33 should be used.
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Tables of parameters...

Table A.1: Parameters of the analytic representation of the Xlzg state po-
tential energy curve in “°Cay. The minimum energy of the potential is at

Zero.

R< 3.66 A
Rinn 3.66 A
A ~2.9714 x 102 ¢cm™!
B 7.209 x 102 cm—1A12
366 A<R<95A
b -0.5929
Rm 4277277 A
a0 0.00043 cm ™!
a1 —2.57153863528197002 cm~*
az 3.79611687289805877 x 10% cm !
a3 3.82947943867555637 x 10% cm™?
aq —~2.74470356912936631 x 103 cm™1
as ~3.23378807398046092 x 10% cm™!
as 3.70205119299758223 x 10% cm~!
ar 6.35318559107446436 x 103 cm~!
as —7.39783474312859562 x 10% cm™*!
ag —1.90759867971015337 x 10% cm™?
a10 5.41779135173975228 x 10% cm™!
a1 4.40527349765557083 x 10% cm~1
a12 —1.55406021572582802 x 10% cm~?
a3 —8.35826911941128783 x 104 cm™~?
aia 2.13873243831604603 x 10° cm™!
a1s 1.56022970979522303 x 105 cm™?
aie —1.56329579530082468 x 10% cm~?
a7 —1.46822446075956163 x 105 cm™!
a8 2.74480910039127666 x 104 cm™?!
aig 7.11882274192053592 x 104 cm™?!
az0 —7.63044568335207146 x 102 cm~?
R>9.5 4
Rout 9.5 A
De 1102.074 cm~1
Cs 1.0030 x 107 cm—1AS
Cs 3.87 x 108 cm~1A8
Cio 4.41 % 109 cn—1A10

Do = 1069.870(9) cm™*

Additional parameter
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Table A.2: Parameters of the numeric representation of the XlEg state po-
tential energy curve in “°Cay.

R[A] V[em™1] R[A] V[em™Y
3.096980 9246.6895 5.678571 636.3741
3.188725 6566.7325 5.809524 684.9589
3.280470 4525.7282 5.940476 728.9235
3.372215 3090.9557 6.071429 768.5976
3.463960 2134.2175 6.202381 804.2551
3.555705 1475.2425 6.333333 836.2419
3.647450 1004.5043 6.464286 864.8746
3.739195 661.4123 6.595238 890.4666
3.830940 410.6117 6.726191 913.2923
3.922685 234.0001 6.857143 933.6417
4.014430 116.0996 6.988095 951.7718
4.106174 44.5437 7.119048 967.8632
4.197920 8.6885 7.250000 982.2159
4.289664 0.1760 7.500000 1005.2497
4.381409 11.9571 7.750000 1023.6698
4.500000 48.5948 8.000000 1038.3262
4.630952 106.9081 8.358974 1054.3861
4.761905 175.7311 8.717949 1066.0579
4.892857 248.8199 9.076923 1074.5969
5.023809 322.3873 9.435897 1080.8961
5.154762 393.7222 9.794872 1085.5974
5.285714 461.4555 10.303419 1090.2990
5.416667 524.6311 10.811966 1093.5160
5.547619 582.9870 11.611111 1096.6870

D, = 1102.060 cm™!

Rous = 9.44 A Cs=3.808x10° cm~1 A8

Cs=1.0023 x107 cm—1AS

C16=5.06-10° cn 1 A10

informal parameter
Dg = 1069.868 cm™!
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Table A.3: Parameters of the analytic representation of the B! state po-
tential energy curve in “°Cay. The reference point is the minimum of the

ground state potential chosen to be at zero energy.
R < Rijpp = 3.22 A

A* 0.185778005%10% cm™!
B* 0.416879830% 1010 cm—! A2
322 A < R < Rout = 5.10 A
b 0.20
R 3.80850 A
ag 18964.02790000 cm™?*
a1 0.134084003805927061x 102 ecm™?
as 0.115261464616408630x10% cm™=?
a3 -0.175521794513471046x 106 cm~!
a4 -0.389222772580998542x 106 cm—!
as -0.177855712188965688x 107 cm™*
ag 0.873202562191374972x107 cm™?
ar 0.895182228732362986x 108 cm™?!
as -0.617220569199902654x 109 cm™?!
ag -0.9132733099611920129x10° cm™?!
aio 0.158286938284422684x 10 cm~—1
a1 -0.333319651215654411x10 cm™!
a2 0.242006639487103224 160 cm—?

Rout < R
DB~ 5790.4(5) cm—1
C3* 0.37544747x10% cm~1 A3
Ce™ 0.91057144x10% cm~1 AS
Additional constants:
equilibrium distance: REP =3.808(1) A

clectronic term difference:
TP =18963.972272 cm™?

* for boundary conditions (see text)



143

Table A.4: Parameters of the analytic representation of the AL} state po-
tential energy curve in *°Cay. The energy reference is the minimum of the
ground state potential chosen to be at zero energy.

R< Ripn = 3.08 A

A* 0.131405404x10% cm~1
B* 0.23709888x10% cm—1 A10
3.08 A < R < Rout = 4.511 A
b —0.57
Bm 3.59402020 A
ag 14106.96734957 cm™*
a1 -0.2257756991559098x10% cm™1
a 0.1220361055570128 % 10% cm™—1
as 0.6769308221686881x10% cm—!
a4 -0.4634816798413386% 104 cm™1
as 0.1690127577627890% 105 cm—1
as 0.9381164005690928x 105 cm—1
ay -0.4559579065456276x 105 cm™1
ag -0.6353781758173143x 108 cm~!
ag -0.6751424160995947%10% cm~!
a10 0.1209687968209198x 107 cm™?
a11 0.3799595228169478 107 cm™—!
a2 0.3064094811331930%107 cm™—?
Rout < R
Dyt 8844.751(9) cm !
Cs* 0.1184628x10% cm™! A5
Ce* -0.6358778x10° cm~—1 AS
Cs* 0.3218361x10% cm—! A8
Additional constants:

equilibrium distance: RA=3.594(1) A

electronic term difference:

T/=14106.957(9)

cm™?

* for boundary conditions (see text)
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‘Table A.5: Parameters of the analytic representation of the ¢TI, state po-
tential energy curve in *°Ca,. The energy reference is the minimum of the

ground state potential chosen to be at zero energy.
R < Ripp = 3.369 A

A* 0.131405404%10% cm™?!
B* 0.23709888% 109 cm~! A0
3.369 A < R < Rout = 7.350 A
b —0.20
Rm 4.06654583 A
ap 14841.95353351 cm™!
a1 -0.3036332121763454x 101 cm™?
a2 0.1767842659743363x10% cm™?!
a3 -0.1852820967921904x 105 em~?
as 0.3934518027564040x 10% cm~!
a5 -0.4426362334350374x10% cm—!
as -0.3168777573729329%x 107 cm™1
ar 0.2451491313546689x 108 cm™1!
ag 0.2452052452711268x 108 cm™!
ag -0.4412763936304449x 109 cm~?
@10 0.4469452325764918x10° cm—?!
a1 0.3155234326261032x10*° ¢cm™?!
a2 -0.7818086347467031x1010 cm—?!
a3 -0.3064990751325005% 1010 cm™?
@14 0.3115018184529581x10%! cm™1
a1s -0.3988067473686848x 1011 cm~!
a16 0.1679365847361850x 10! cm™1
Rout S R
D¢* 1470.184(9) cm™!
Ce* 0.1855883% 108 cm—1 AS
Cs* 0.5410024%10% cm~1 A8
Additional constants:
equilibrium distance: RE=4.067(1) A

clectronic term difference:
TA=14106.957(9) cm~!

* for boundary conditions (see text)
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Parameters of the diagonal spin-orbit coupling A(R):

Ay = 0.4802 x 10% cm™!
—0.1504 % 10* cm~! A°
Ap = —0.9718 x 10° em~! A"

>
I

Non-diagonal spin-orbit coupling between the A'XF (0) and the ¢*II, (0):

x = 0.36507 x 102 cm™!
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Appendix B

Distributions of the Cg, Cg, Cqg
coefficients

The projections of the total distribution of parameters on the Cg and Cj

plan, on the Cgs and Cyg and on the Cg and Ciy plane are presented on this
page and the next one.
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Figure B.1: Projection on the long-range (Cs, Cs) plane.
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Appendix C

Concentration of Ca and Cas in
the oven.

Let’s consider an oven filled at room temperature with a certain amount of
?pure” element X. The oven is then heated up to a temperature T'. Inside this
oven there is a certain amount of the element in the vapor phase characterized
by its saturated vapor pressure p** which is only determined by T". The oven
is in the canonical situation since we can consider that it is in contact with
a thermostat at the temperature T' (heating system).

At this temperature there is a non zero probability that the elements
associate together to form dimers. These dimers have also a certain prob-
ability to dissociate depending on their dissociation energy. There is then
equilibrium characterized by this equation:

2X (gas) = X2(gas)

Supposing that both X and X5 elements behave like ideal gases let’s calculate
their respective amount in the gas phase inside the oven. We know from
text book of statistical thermodynamics that the equilibrium constant of a

chemical reaction equal:
ps\"”
K, = “he
! IJI (pe)

where J takes for X or X, and p° = 10° Pa. And v; are the fraction of X
and X, formed in the reaction: 0 = v(X)X (gas) + v(X2)X2(gas) Since the
forward reaction is 0 = 2X (gas) — Xa(gas) then v(X) = 2 and v(X3) = —1.
Then

p(X)?
p(Xo)p®

149

K, =
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We can write again the equilibrium constant in terms of the concentra-
tions using [X] = p(J)/RT and the molar volume V}; = RT/p°:

[X]Z‘/'e

m

[Xo]
Using the Gibbs function G for independent particles we can write K, as:

23 vy
% =11 <%.) x ¢=OTo/RT
J

q5 is the partition function respective to the J element and AEy is the molar
dissociation energy of the molecule at T' = 0.

The atomic molar partition function is related, only to their translational
motion and the electronic degeneracy, as:

N 27, 1/2
o0 oo - (27)

K, =

The energy of the molecule can be written in the Born-Oppenheimer ap-
proximation as a sum of the contribution of the different degrees of freedom:

V'ib, Rot

6t‘ot — eTrans + ejElec + €j

J J

The vibrational and rotational are not decoupled. We can thus approximate
the molecular molar partition function as the product of the molar partition
function of each precedent modes of motion:

qe (Xg) — qTrcms % quec % qVib,Rot
The diatomic molar partition function is then:

X, )12 gVibs Rot WEaT \ /2
2) m4 A( 2) — ( B )

vy 8
9 (X) o A(Xg)s 27Tmca2

Then it follows that the equilibrium constant is

— g(X)2 < A(X2)3V;1 % 1 « g—AEo/RT
g(X2)  A(X)EN, ViR (X,)

Kp

In the Handbooks of Chemistry or Physics we find the dependence of the
vapor pressure for atoms with respect to the temperature.
Then
XV
K,

[Xo] =
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Figure C.1: molare concentration of Ca and Ca, in function of the tempera-
ture of the oven.

We can now calculate for the case of calcium the amount of atoms and
dimers in the oven in function of the temperature. The partition function
qV® Rt has been computed having the knowledge of the ground state po-
tential curve which allowed the determination of the energies F, ; and the
relation:

qu'b,Rot — Z(Q‘] + 1) e—Ev,J/kBT
v,

The ground state of Ca is a 1S, state with no hyperfine degeneracy so we
have g(X3) = 1. The single ground state of Cay has the 123‘ symmetry so
g(X5)=1. The molar dissociation energy is the energy necessary to dissociate
one mole of dimers in their ground rovibrational level (v = 0,J = 0). Ey =
1069.87cm™ so AE, = 12795.60 J mol™1.

We can now plot the dependence of the concentration in function of the
Temperature:

The typical temperature used during the experiments is 1220 K. There-
fore, the calculated concentration of Casy at this temperature is 2x 1072 mole
cm~2 i.e ~1.2x10' calcium dimers per cm™2. The dynamics in a heat pipe
oven is different than in a conventional oven therefore these concentrations
are only indication of the amount of calcium in our pipe. This number give
probably a better estimation of the concentrations in the oven used in a beam
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experiment in the case where the aperture for the expansion of the vapor of
calcium is not too large.
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Corrections from 26.11.2004

Page 22 in section 2.2.2 replace "In addition, for bosonic atoms in di-
atomic molecules,...” by ”"In addition, for bosonic atoms with nuclear spin
zero in diatomic molecules,...”

Page 42 in the caption of table 2.2 comparisons with the most recent data
from literature are given in table 3.3.5 page 42

Page 87 replace DZ + T2 = A(... by DB = DB + TE = A(...

Page 108 after equation 5.6 the following information is missing: The effect

of the operator 12 is included as an effective contribution in the potential
curves.

Page 117 the value of the improved representation is about 60 and not 110.
Page 125 the equation 5.36 should be replaced by:

X3(R) = i(R—Re)+x2(R— RC)2 + x3(R — RC)3 +xa(R — RC)4]
x1 /(14 BRI
e >0, R,is afixed parameter, R,is a cutting at large R

Page 144 in table A.5 replace T/ = 14106.957(9) cm™! by T¢ = 14850.953(9)
cm™!
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