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Chapter 1

Introduction

1.1 Motivation
Gravitational Quantum States (GQS) arise when slow particles are confined between the
Earth’s gravitational potential and a reflective surface that produces quantum reflection.
They were first observed with ultra-cold neutrons in 2002 [1], establishing quantised verti-
cal motion over a mirror. Yet, despite decades of theoretical predictions, no atom has ever
been seen in such states. Hydrogen (H ) is an ideal candidate: its simple two-body nature
permits high-precision calculations, and cryogenic sources can deliver orders-of-magnitude
higher fluxes than neutron beams. Observing atomic GQS would therefore open a new
window on short-range forces, tests of the weak equivalence principle in the quantum
regime, and precision surface-potential metrology.

1.2 Quantum Gravitational States (GQS)

1.2.1 State of the art

The very first experimental evidence for gravitational quantum states arose in 2002, when
ultra-cold neutrons were shown to occupy discrete vertical levels above a mirror [1] .

As we shall see, the spectra for neutrons (n), hydrogen (H) and antihydrogen (H̄) are
practically identical. Whenever sufficiently slow particles feel the Earth’s gravitational
pull on one side and a repulsive mirror on the other, they become trapped in a triangular
quantum well (Fig. 1.1). The derivation below starts with a neutral particle of atomic mass
m; replacing m by the neutron or (anti)hydrogen mass leaves the analysis unchanged.

1.2.2 Triangular potential and governing equation

A particle in the gravitational field above an ideal horizontal mirror experiences

V (z) = mg z, z > 0, (1.1)

with g ≃ 9.81 ms−2. The vertical dynamics obey the time-independent Schrödinger
equation

− ℏ2

2m

d2ψ(z)

dz2
+ mg z ψ(z) = E ψ(z), (1.2)

supplemented by the boundary condition ψ(0) = 0.
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Justification of the hard-wall boundary: Energies in the lowest quantum states are
of order 10−12 eV—five orders of magnitude below the potential of a polished gold surface
(∼ 10−7 eV). Likewise, the surface potential increases over 10−9 m, whereas the de Broglie
wavelength of the particle in a low GQS is 10 µm [2]. Hence the mirror appears as an
infinitely steep barrier on the scale of the wave-packet, validating ψ(0) = 0.

Figure 1.1: Gravitational potential and mirror barrier, together with the squared eigen-
functions |ψn(z)|2 of the first five GQS [2].

1.2.3 Exact Airy-function solution

Equation (1.2) reduces to the Airy differential equation by introducing the characteristic
length

z0 =
(
ℏ2/2m2g

)1/3
= 5.87 µm.

Its solutions read

ψn(z) = Cn Ai(ξn), ξn =
z

z0
− λn, En = mg z0 λn, (1.3)

where λn denotes the n-th zero of Ai(−λ), (ψ(0) = 0). For the four lowest states

λ1..4 = 2.34, 4.09, 5.52, 6.79.

Associated energy, length and frequency scales follow:

ε0 = mgz0 = 0.602 peV, f0 = ε0/2πℏ = 145 Hz.

1.2.4 Semiclassical approximation

To obtain an approximate description of the quantized energy levels EQS
n for a particle

(such as a neutron or H) bouncing vertically above a hard mirror in a gravitational
potential, we can adopt a semiclassical approach based on the WKB [3].
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According to the Bohr-Sommerfeld quantization rule, the energy levels in the gravita-
tional quantum states (GQS) are approximately given by

EQS
n =

3

√
9m

8

(
πℏg

(
n− 1

4

))2

, (n = 1, 2, 3, . . . ). (1.4)

As the quantum number n increases, the energy scales as EQS
n ∼ n2/3, and the spacing

between consecutive levels decreases as ∆EQS
n+1,n ∼ n−1/3. At high n, the energy levels

become increasingly dense and gradually form a quasi-continuum.
Each energy level En corresponds to a classical turning point zn = En/(mg), i.e., the

maximum height a classical particle with energy En would reach in the gravitational field.
In quantum mechanics, the probability of finding the particle at height z is given by the
squared modulus of the wave function, |ψn(z)|2 (Fig. 1.1).

In the quantum description, although the wave function is mostly localized below the
turning point zn, it exhibits an exponentially decaying tail for z > zn. The asymptotic
form of this decay is given by:

ψn(ξn(z)) → Cn ξ
−1/4
n exp

(
−2

3
ξ3/2n

)
, for ξn → ∞ (i.e. z → ∞). (1.5)

The classical turning heights corresponding to the first four quantum states are ap-
proximately:

zn = {13.7, 24.0, 32.4, 39.9}µm. (1.6)

For a clearer and more pedagogical explanation of gravitational quantum states (GQS)
and the WKB approximation in this context, see [3], Section 2.5, pp. 110–116.

Using the known eigenfunctions, we can derive their Fourier transform, and then
obtain the amplitudes ϕn(v) measuring the velocity distribution of the particle in the nth

quantum state:

ϕn(v) =

√
m

2πℏ

∫ ∞

0

ψn(z) e
−imvz/ℏ dz. (1.7)

From Eq. (1.3) the natural gravitational scales are:

z0 =

(
ℏ2

2m2g

)1/3

, ε0 = mgz0, (1.8)

and the corresponding velocity

v0 =

√
2ε0
m

=
√
2gz0 ≈ 1.07 cm s−1 (for neutrons). (1.9)

We set dimensionless variables η := z/z0 and u := v/v0. Since mv0z0/ℏ = 1, the
amplitudes ϕn(v) become:

ϕn(v0u) =

√
m

2πℏ
z0

∫ ∞

0

ψn(z0η) e
−iuη dη. (1.10)

Thus v0 sets the natural scale (i.e., the width) of the vertical velocity distribution
|ϕn(v)|2.
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1.2.5 Why neutrons, hydrogen and antihydrogen behave alike

At this point, it becomes clear why gravitational quantum states (GQS) for different
particles such as neutrons, hydrogen, or antihydrogen are expected to emerge through
essentially the same physical mechanism.

The key reason is that the only parameter entering the Schrödinger equation for a
neutral particle above an ideal mirror is the particle’s mass. Since the masses of neutrons,
hydrogen, and antihydrogen are all very close to the atomic mass unit, they experience
nearly identical dynamics under gravity in the presence of a reflective surface which acts
almost like a perfect mirror.

1.3 Historical Observation of Gravitational Quantum
States (GQS)

The first direct observation of gravitational quantum states (GQS) was performed using
ultracold neutrons (UCN). In these experiments, a neutron beam was directed above a
horizontal mirror, with an absorber placed at a variable height ∆l above it, creating a slit
through which neutrons could pass. The number of neutrons transmitted through this
slit was measured as a function of ∆l, revealing signatures of quantized motion in the
gravitational field.

Because of the intrinsic properties of gravitational quantum states (GQS), some tech-
nical barriers must be overcome to observe them with atoms. In order to form observable
GQS, particles must remain confined long enough between the gravitational potential and
the reflecting surface. According to the Heisenberg uncertainty principle ∆t∆E ≳ ℏ/2,
the time of flight ∆t spent by the atoms in the confinement region must be long enough
that the energy uncertainty ∆E becomes much smaller than the typical energy scale of
GQS, on the order of pico-electronvolts (peV).

This condition determines the required horizontal velocity of the particles and the
corresponding length of the mirror and absorber system, as illustrated in Fig. 1.2.

Figure 1.2: Schematic of the historical experiment [1].

In the vertical direction, quantum states emerge due to the confinement of neutrons
between the mirror and the gravitational potential. These eigenenergies are given by
En = mgz0λn, where λn are the zeros of the Airy function and mgz0 = 0.602 peV. For
instance, the first two levels have energies E1 ≈ 1.41 peV and E2 ≈ 2.46 peV, with an
energy separation of approximately 1.05 peV. To resolve these levels experimentally, the
uncertainty in the vertical energy ∆E must be smaller than this gap. Since ∆E ∼
mg∆z, this imposes a constraint on the vertical confinement length ∆z < 10µm. By
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the Heisenberg relation, this implies an uncertainty in vertical velocity ∆vz ∼ ℏ/(2m∆z),
which is on the order of 0.3 cm/s. This is consistent with the characteristic vertical
velocity of the first quantum state, vz ∼ 1.07 cm/s, confirming that very narrow vertical
collimation is essential to observe GQS. This justifies the use of an upstream collimator
to limit the vertical divergence of the neutron beam.

The slit height ∆l between the horizontal mirror and the absorber determines which
vertical quantum states can pass through. When ∆l is much larger than the classical
turning point zn of a given state, neutrons in that state pass with minimal loss. As ∆l
decreases, the neutron wavefunction ψn(z) begins to overlap with the absorber, leading
to increased absorption and a drop in transmission. When ∆l becomes smaller than zn,
neutrons in the n-th state are mostly absorbed and cannot be transmitted.

This behavior leads to a characteristic step-wise signal in the detected neutron flux.
For ∆l < z1, no gravitational quantum state can exist between the mirror and the ab-
sorber, so the transmitted flux is essentially zero. As soon as ∆l = z1, the first quantum
state fits into the slit, and a sudden increase in the detected flux occurs. The flux then
stays approximately constant until ∆l = z2, where the second state begins to contribute.
This results in another step, and so on for higher states. This discrete, step-by-step
appearance of the flux is a direct signature of gravitational quantum states and clearly
differs from the smooth classical expectation.

Figure 1.3: Neutron transmission as a function of slit height ∆l showing step-wise in-
creases, characteristic of quantum gravitational bound states. Black points: measured
transmission. Solid curve: classical expectation N ∝ (∆l)3/2. The dashed curve is a
quantum-mechanical fit: in which all level populations and the height resolution are fit-
ted from the experimental data. The dotted curve is a truncated fit that assumes only
the lowest quantum state contributes below its turning height, producing the first step.
[1].

The differences between the experiment performed with neutrons and the one we
will perform with hydrogen lie in the distinct methods used to produce and detect the
particles, and since we have different lengths of the mirror-absorber system, in their
different longitudinal velocities. Additionally, the mechanisms by which the particles
interact with the scatterer differ between the two cases.
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Chapter 2

Manipulation of the Hydrogen Beam I

2.1 Our experimental setup
In our lab, an existing apparatus, used for spectroscopic measurements, is available that
we need to modify to perform the detection of (GQS).

Our experiment is designed to detect gravitational quantum states (GQS) using a
beam of atomic hydrogen (H). The hydrogen atoms are produced from an ultrapure
water (H2O) source. First, ultrapure H2O undergoes electrolysis to produce molecular
hydrogen (H2). The resulting H2 gas is then injected into a microwave (MW) discharge
cavity, where a plasma is sustained to dissociate H2 molecules into atomic hydrogen (H).

The atomic hydrogen beam is cooled in a cryogenic environment then one Zeeman
deceleration pulsed coil will be employed to reduce and control the longitudinal velocity
vz, using magnetic field gradients acting on the magnetic moment of the atoms. After
deceleration, a magnetic hexapole will be used to focus and collimate the beam in the
transverse directions (x and y) by exploiting the state-dependent magnetic potential [5].

The detection system consists of an absorber–mirror assembly, with the mirror pro-
viding vertical confinement in the gravitational field (g). Atoms exiting this region are
detected at the end of the setup.

Figure 2.1: Simplified schematic of our setup. Hydrogen atoms are cooled in a cryostat,
decelerated by a pulsed Zeeman coil, focused by a magnetic hexapole, and guided into a
gravitational quantum state detection region composed of an absorber–mirror assembly
and then detected with a pulsed laser.

9



2.1.1 Velocity selection and target range for GQS detection

In our experiment, the atomic hydrogen beam is cooled to approximately 6 K, and we
cannot lower it further; otherwise, the atoms freeze out onto the cryostat walls. At the
exit of the cryostat through a small aperture, the velocity distribution of the atoms follows
the well-known effusive Maxwell–Boltzmann distribution. This initial velocity profile is
illustrated in Fig. 2.2.

Figure 2.2: Effusive Maxwell–Boltzmann distribution of the atomic hydrogen beam at the
exit of the cryostat at T ≈ 6 K.

According to scaling arguments based on the 2002 neutron gravitational quantum state
experiment by Nesvizhevsky et al. Ref. [1], for a mirror length of 30 cm the optimal con-
ditions for observing the first gravitational quantum states with hydrogen atoms require
time of flight of about 0.5 ms. These parameters imply that the longitudinal velocity of
the atomic beam should be 50 m/s.

In principle, one could aim to decelerate atoms located near the peak of the initial
velocity distribution in order to maximise the number of atoms in the target velocity
range. However, reducing the speed from the distribution maximum down to 50–60 m/s
would require a magnetic force far greater than what is experimentally feasible with our
electronics and coil design.

For this reason, we instead choose to isolate a narrower fraction of the distribution—
atoms with velocities between 190 and 210 m/s (highlighted in green in Fig. 2.3)—and
then decelerate only this portion to the desired 50–60 m/s range. This approach reduces
the required magnetic force to a practical level. Numerical simulations carried out by
Pierre Bataille (post-doctoral researcher at LKB) confirm that such a velocity reduction
can be achieved using one pulsed Zeeman decelerator coil.
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Figure 2.3: Selected portion of the effusive velocity distribution (green) between 190 and
210 m/s to be decelerated down to 50–60 m/s.

2.1.2 Principle of Zeeman deceleration

Figure 2.4: Zeeman energy levels for the hydrogen ground state.

In all our study, we work with the |F = 1, mF = 1⟩ state. Following the conventions of
Jansen and Merkt [5], the first–order Zeeman shift of a hyperfine state |F = 1,mF = 1⟩
reads

Umag(z) = gF mF µB B(z), (2.1)

where gF is the hyperfine Landé factor, mF the magnetic quantum number and µB the
Bohr magneton. The corresponding effective magnetic dipole moment is

µeff = −∂Umag

∂|B|
= − gF mF µB, (2.2)

so that the longitudinal force in an inhomogeneous field becomes

Fz = µeff
∂B(z)

∂z
= − gF mF µB

∂B(z)

∂z
. (2.3)

If gFmF > 0 (“low-field-seeking”) and the field increases
(
∂B/∂z > 0

)
, Eq. (2.3) gives

Fz < 0: the atom is decelerated and the kinetic energy is converted into magnetic potential
energy. For gFmF < 0 (“high-field-seeking”) the force is in the same direction as the
gradient and the atom is accelerated, while states with mF = 0 experience only second-
order forces. Hence, in ground-state hydrogen the sublevel |F = 1,mF = 1⟩ is the only
component slowed in a Zeeman decelerator, providing intrinsic state selectivity.
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Fig. 2.5. A net velocity reduction is obtained by switching off the magnetic field
precisely when the atom reaches the maximum of the potential barrier, so that none of
the stored magnetic energy is reconverted into kinetic energy on the downstream side.
Fast current pulses in the deceleration coil accomplish this timing.

Figure 2.5: Schematic illustration of Zeeman deceleration: an atom climbs the magnetic
potential barrier and the field is switched off at the maximum, preventing re-acceleration.

2.1.3 Magnetic hexapole refocusing

Immediately downstream of the pulsed coil the hydrogen packet acquires a sizeable trans-
verse spread: atoms that have lost longitudinal speed diverge radially. A static magnetic
hexapole provides the required refocusing, because its field grows quadratically with radius
and exerts a restoring force on the low-field-seeking sublevel |F = 1,mF = 1⟩; high-field-
seekers are defocused and leave the beam. The simulation of the hexapole stage for our
geometry remains to be carried out.

2.2 Manipulating the beam to fulfil GQS detection re-
quirements

2.2.1 Transverse requirements along the gravitational axis

In chapter 1 we showed that the vertical coordinate y (parallel to g) must remain within
the characteristic length scale of the lowest gravitational quantum states, and that the
corresponding vertical velocity should be of order vy ∼ 1 cm/s. Figure 2.1 (page 9)
sketches the profil of the beam after the hexapole: the packet typically emerges with

y, x ≃ 1 mm, vy, vx ≃ 1 m/s, vz = 50−60 m/s.

To meet the GQS detection conditions we therefore have to compress y by one order of
magnitude, down to y ≈ 100 µm, and reduce the vertical velocity spread at the same time
to vy ≈ 1 cm/s, while leaving the longitudinal velocity vz unchanged because it already
lies in the required range.
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2.2.2 Liouville’s theorem in phase space

Consider a Hamiltonian system with canonical coordinates (q, p) and Hamiltonian H(q, p).
Each point ζ = (q, p) moves with velocity

ζ̇ = (q̇, ṗ) =

(
∂H
∂p

, −∂H
∂q

)
, (2.4)

so the phase–space divergence is

∇ · ζ̇ =
∂q̇

∂q
+
∂ṗ

∂p

=
∂

∂q

(
∂H
∂p

)
+

∂

∂p

(
−∂H
∂q

)
= 0. (2.5)

because mixed partial derivatives commute. Hence the volume (area) enclosed by any
material surface that moves with the phase points is constant in time; the phase–space
density is incompressible. This result, proven for one degree of freedom and easily gener-
alised to 2n dimensions, is Liouville’s theorem (Taylor, Classical Mechanics, Sec. 13.6)-[6].
Liouville’s theorem remains valid even when H(q, p, t) depends explicitly on time. For a
three–dimensional N -particle system the state corresponds to a point in a 6N -dimensional
phase space or, equivalently, to N points in a six-dimensional space; when N is very large
these points form an incompressible “fluid” in the continuous limit whose density ρ = N/V
satisfies dρ/dt = 0 (also constant).

2.2.3 Compressing the (y, vy) subspace

In other experimental schemes, a set of mechanical slits is used to limit the transverse
extent, but this inevitably discards a large fraction of the beam. The first-order Stark
effect for ground-state hydrogen vanishes. Dissipative forces are also not feasible for this
state: Doppler laser cooling would require ultraviolet wavelengths that are presently im-
practical. For these reasons, our strategy has been to identify a magnetic field configura-
tion—equivalently, a conservative force field—that can achieve the desired compression in
(y, vy) while compensating in (x, vx). From Liouville’s theorem we know that the volume
in 6D phase space is conserved under Hamiltonian evolution. Our initial approach was
therefore to search for a conservative magnetic force that could reduce the phase–space
area in the subspace (y, vy), while producing a compensating increase in another canonical
pair, here (x, vx), since the x direction is not constrained (mirror width of ∼ 10 cm) and
vz should be unchanged since it is already in the required range. So we work in 4D phase
space (x, vx, y, vy), where the volume is again conserved because we decoupled from z.
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Figure 2.6: Our idea was to find a Hamiltonian evolution that shears the initial volume
in the 4D space (x, vx, y, vy) along the (x, vx) direction, so that the projection area onto
the (y, vy) plane decreases while maintaining the total volume constant. The figure also
shows, the projection onto the (y, vy) plane. We will examine in the following whether
this is possible or not.

How do we approach the problem?

• Track individual particle trajectories in the phase space (x, vx, y, vy) under the action
of a conservative force:

F⃗ = −∇V (x, y) (2.6)

F⃗ = −∇ (E(F,mF )) (2.7)

F⃗ = −∇
(
µ∥B⃗∥

)
for the state |F = 1, mF = 1⟩ (2.8)

• Compute the area of the convex hull (i.e., the maximum area in phase space):

– A decrease in convex hull area implies a decrease in the area in the (y, vy)
subspace.
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Figure 2.7: Left: projection in (y, vy). Right: corresponding convex hull. Random Gaus-
sian distribution in phase space just to show the concept of convex hull.

A force from two wires with opposite currents

We first considered a configuration of two parallel wires aligned along the z-axis, po-
sitioned symmetrically at opposite y-coordinates and carrying opposite currents. This
served as a first simple example: we considered the resulting magnetic field, the corre-
sponding force exerted on the atoms, and the evolution of an initial Gaussian distribution
in order to gain intuition into the dynamics in phase space.

In Fig. 2.8 (left) we show the resultant magnetic field in the (x, y) plane, and in Fig. 2.8
(right) the corresponding magnetic force field. A series expansion of the force around the
origin gives

Fx ≈ k x, Fy ≈ −k y, (2.9)

Figure 2.8: Magnetic field (left) and corresponding force field (right) in the (x, y) plane
for two parallel wires along z with opposite currents placed at (0, d) and (0, −d) where
d = 1m here. Where x axis is the horizontal axis here and the color code is the by-default
Mathematica code: Modulus ascending from blue to red.

We studied the evolution of initial ellipses in phase space with the linearized forces,
and understood the underlying physics using transfer matrices. The motion in (y, vy)
is harmonic, corresponding to a rotation in phase space, while the motion in (x, vx) is
hyperbolic, leading to an elongation of the ellipse. In both subspaces, however, the area
is conserve because x and y are decoupled, so Liouville’s theorem applies separately to
each subspace.
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Figure 2.9: Evolution of an initial ellipse in the (y, vy) phase space under harmonic motion:
the area is conserved, the ellipse is rotated.

Figure 2.10: Evolution of an initial ellipse in the (x, vx) phase space under hyperbolic
motion: the area is conserved, the ellipse is elongated.

A General Linear Force

I considered then a more general linear force of the form:{
Fy = ax+ by

Fx = cx+ dy

Numerical simulation with 16 random points

I took 16 random points in the 4D phase space and solved the equations of motion using
Mathematica. I then followed the evolution in the (y, vy) subspace and observed a clear
alignment of the points and a significant decrease in the area of their convex hull for the
chosen parameters a = 0.01, d = 152000, and b = c = 0. This behavior is illustrated in
Figure 2.11.
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Figure 2.11: Left: Initial configuration of 16 random points in (y, vy) subspace. Middle:
Alignment after evolution. Right: Decrease of the convex hull area, where T represents
the distance Z traveled by the particles.

Later, when returning to the magnetic field configuration, I realized that for the force
to be conservative (derive from a potential), i.e., F⃗ = −∇⃗V , since the curl of a gradient
always vanishes, we should impose the condition ∇⃗× F⃗ = 0, which leads to the constraint
a = d. This ensures that the force is conservative. So, our result is not a conservative
force.

Now I imposed the condition a = d, and for a technical reason that will be explained
later, I initially took a symmetric distribution in phase space. Then, by manually scanning
the remaining parameters, we never observed a decrease of the area of the convex hull.
Even with an automatic code that searches for the minimum area of the convex hull over
a wide range of parameter combinations, it never yields an area smaller than the initial
one! At this point, I started thinking about a general proof that with a linear force, it is
impossible to compress the (y, vy) subspace.

Figure 2.12: Manual parameter scanning with sliders.

A comment on the magnetic field case

You may say at this point that the magnetic field is more constrained because it must
satisfy Maxwell’s equations. But it is useless since if it does not work with a general linear
force, it will not work by adding more constraints. Despite that, I include in Appendix A
the full calculations I performed, starting from a linearized 3D magnetic field and imposing
the static Maxwell conditions: ∇ · B⃗ = 0 and ∇× B⃗ = 0. Then, I solved the equations of
motion using Mathematica.
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Figure 2.13: Sliders controlling the magnetic field parameters and here simulation time
T.

Despite exploring many combinations of parameters with these sliders, I never observed
any decrease in the area of the convex hull compared to the initial one in either the (x, vx)
or the (y, vy) subspaces.

2.3 Gromov’s Theorem Uncovered
After that, we began exploring nonlinear forces. I tested several cubic and fourth-order

coupled potentials, but the result was always the same: the area of the projection in
(y, vy) was never smaller than the initial one. In most cases, it even increased.

While searching through the literature, I found the article [7]which explores the same
idea and cites Gromov’s non-squeezing theorem.

Beyond the conservation of phase-space volume, symplectic maps also obey a much
stronger constraint known as Gromov’s non-squeezing theorem. This celebrated result,
proved in 1985, states that it is impossible to map a symplectic ball B2n(r) of radius r into
a symplectic cylinder Z2n

j (R) of smaller radius R < r via any symplectic transformation.
Formally, if there exists a symplectic map φ such that

φ : B2n(r) −→ Z2n
j (R),

then necessarily r ≤ R.
The ball and cylinder are defined as:

B2n(r) ≡

{(
x1, x2, . . . , xn, p1, p2, . . . , pn

)
∈ R2n

∣∣∣∣∣
n∑

i=1

(p2i + xi2) < r2

}
, (2.10)

Z2n
j (R) ≡

{(
x1, x2, . . . , xn, p1, p2, . . . , pn

)
∈ R2n

∣∣∣ p2j + xj2 < R2
}
. (2.11)

This result is often interpreted as a "symplectic rigidity" theorem: although the ball
B2n(r) is fully contained in the cylinder Z2n

j (R) when r = R, no symplectic transformation
can squeeze a larger ball B2n(R + ε) into the same cylinder.
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[7].

Figure. Gromov’s non-squeezing theorem illustrated. No symplectic map φ can squeeze the
ball B2n(r) into the cylinder Z2n

j (R) if r > R. However, for r ≤ R, the ball already fits
symplectically.

The link to our work An equivalent statement of Gromov’s theorem is: "No canonical
transformation can squeeze a phase–space ball BR through a circular hole of radius r < R
cut in a conjugate plane Πj ≡ {xj, pj}". Because Hamiltonian dynamics are canonical,
this implies that in phase space (in our case 4D phase space), we cannot compress the
distribution with Hamiltonian dynamics in such a way that the projection in a conjugate
subplane (in our case, (y, vy)) shrinks below its initial area.

Figure 2.14: Shadow of a deformed ball under Hamiltonian evolution Ref. [8].

For a better understanding of symplectic geometry and Gromov’s theorem see Ap-
pendix. D.

2.4 Conclusion.
We conclude that our idea of decreasing the area in the (y, vy) plane while increasing
it in the (x, vx) plane is topologically forbidden. Although the idea may seem naive
in hindsight, approaching the problem from the right perspective has brought valuable
insights. In particular, it explains why our simulations consistently failed to compress the
projection in (y, vy). More importantly, this investigation led us to discover a theorem
that, while not widely known, at least in our lab group, is significantly more powerful
than Liouville’s theorem. Unlike Liouville’s, which only asserts volume preservation, this
result imposes stricter constraints on how distributions can evolve in phase space, ruling
out certain intuitive but incorrect strategies like the one we initially explored.
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Chapter 3

Manipulation of the Hydrogen Beam II

3.1 Requirement for laser-based detection
After the pulsed coil shown in Fig. 2.1, previous simulations indicate that the hydrogen
beam forms a ∼ 3mm-long bunch with longitudinal velocities in the range 50–60 m s−1.
At the detection plane, we probe the beam with a 10 ns pulsed laser of 1mm (see Fig. 3.4).

Since we use a 10 ns pulsed laser and the initial bunch has a velocity dispersion of
about 10 m/s, a large fraction of atoms will be lost during the detection, which will in
turn weaken the signal. So our objective is to engineer a magnetic-field profile—hence
a longitudinal force—that produces temporal (time-of-flight) focusing at the detector:
atoms originating from the initial bunch should arrive simultaneously within the 1mm
laser spot. Attending this condition increases the number of atoms within the laser volume
per pulse and thus enhances the detected signal.

3.2 1D model: linear-force pulse
In order to gain an initial understanding of the problem, I began by simplifying it and
studying a simple case. Therefore, I first considered the system only along the z-axis
(1D), neglecting the initial spatial extent, and neglected the intial bunch length as if the
atoms are emitted from the same point with longitudinal velocities uniformly spanning
50–60 m s−1. I chose the detection plane randomly at z = 5 m. Our first idea was to test
a linear longitudinal force

F (z) = k (z − zc), (3.1)

where zc is the position of the bunch center at the activation time of the force. We
apply this force as a short pulse so that atoms located before the center are accelerated
and atoms located after the center are decelerated, leading to temporal focusing at the
detector. The pulse must be short enough that atoms located before zc do not cross to
the other side during the activation; otherwise they would be re-decelerated.

In the first simulation we chose zc = 2.5 m and obtained an effective slope

k ≈ −1.47× 10−21 Nm−1,

with a pulse duration of 50 µs (from ton = 45.430 ms to toff = 45.480 ms). This pulsed
linear force reduces the arrival-time spread from 16.67 ms (no force) to 0.03 ms (Fig. 3.1).
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Figure 3.1: 1D linear-force pulse: parameters and achieved temporal focusing.

To illustrate the dynamics, Fig. 3.2 shows three frames of the simulation.

(a) t ≈ 0.037 s: bunch approaching the force
zone.

(b) t ≈ 0.072 s: beam refocusing.

(c) t ≈ 0.090 s: atoms before arriving together at z = 5 m.

Figure 3.2: Three frames from the 1D simulation showing temporal focusing with a pulsed
linear force.
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3.3 Real-coil magnetic force for F = 1, mF = 1

We work throughout with the low-field–seeking hyperfine state F = 1, mF = 1 of hydro-
gen, hence gF = 1 and mF = 1, see Chapter 2. In the linear Zeeman regime, the level
shift is simply: (see [5])

WZ(z) = µB B(z), (3.2)

so the axial force is minus the gradient,

Fz(z) = −dWZ

dz
= −µB

dB

dz
. (3.3)

For a thin circular coil of radius R with N turns and current I, centered at z = zb,
the on-axis field is

B(z) =
µ0NIR

2

2 [R2 + (z − zb)2 ]3/2
, (3.4)

whose derivative is
dB

dz
= − 3µ0NIR

2 (z − zb)

2 [R2 + (z − zb)2 ]5/2
. (3.5)

Inserting (3.5) into (3.3) gives the on-axis magnetic force for our working state:

Fz(z) =
3µB µ0N I R2 (z − zb)

2 [R2 + (z − zb)2 ]5/2
. (3.6)

(a) On-axis magnetic field B(z) from Eq. (3.4).
The dashed line marks zb.

(b) Axial force Fz(z) for the working state
F=1, mF=1, obtained from Eq. (3.6) with a
negative current.

Figure 3.3: On-axis field and force used in the simulations. Formulas correspond to
Eqs. (3.4) and (3.6).

3.3.1 Linear expansion of the real-coil force

As shown in Sect. 3.2, a linear (pulsed) force might suffice to achieve temporal focusing.
We now ask when the real-coil force (3.6) behaves linearly around its center and thus
reproduces the same effect. For direct comparison we align the centers, zb = zc, and write
δz ≡ z − zb. For our working state F = 1, mF = 1 the on-axis force is

Fz(z) =
3µB µ0N I R2 δz

2 [R2 + (δz)2 ]5/2
. (3.7)
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Factorizing R and expanding for |δz| ≪ R,

Fz(z) =
3µB µ0N I

2R3
δz

(
1 +

(δz)2

R2

)−5/2

=
3µB µ0N I

2R3
δz

[
1− 5

2

(δz)2

R2
+

35

8

(δz)4

R4
+O

(
(δz)6

R6

)]
. (3.8)

To first order,

Fz(z) ≃ k δz, k =
3µB µ0N I

2R3
. (3.9)

From equation 3.8 the linear behavior requires the second term to be negligible:

5

2

(
δz

R

)2

≪ 1.

As in Subsec. 3.2, we activate the force when the bunch center coincides with the coil
center, zc = zb. Over the pulsed region we have |δz| ≤ ∆zmax = L/2, where L is length of
the chain. Imposing that the second term 5

2
(δz/R)2 be ≪ 1 over this interval gives

R ≫
√

5

2
∆zmax =

√
5

2

L

2
≈ 0.79L.

Numerical test at zb = 10 cm: We start again with a pointlike bunch (to simplify
the problem) and longitudinal velocities v ∈ [50, 60] m s−1. The coil is centered at zb =
0.10 m and the detector at 2 m. When the bunch center reaches the coil (zc = zb, as in
Subsec. 3.2), the time is tc = zb/vc ≃ 0.10/55 ≃ 1.82 ms. The resulting bunch length at
activation is

L ≈ (vmax − vmin) tc = 10× 0.10

55
=

1

55
m ≈ 1.82 cm.

To enforce near-linearity we chose R = 3L ≃ 0.0545 m. With this choice and a pulse
when zc = zb (activation window 1.818–1.868 ms), the arrival-time spread is reduced
from 6.67 ms (no force) to 0.18 ms. However, achieving this temporal focusing with
R ≈ 5.45 cm required N = 100 turns and I ≃ −1900 A, which is impractical. This is
consistent with the scaling from Eq. (3.9), k = 3µBµ0NI

2R3 : increasing R to improve linearity
raises the required NI roughly as R3, creating a trade-off between linearity and feasibility.

3.3.2 Real coil with realistic current

We now move to the experimental geometry. After the Zeeman–deceleration stage (see
Chap. 2), the hydrogen beam forms an initial 3 mm bunch at z = 0. We place the pulsed
coil at

zb = 0.20 m,

(This choice is explained in the next paragraph) and probe the beam at the detection
plane

z = 1.00 m

with a 10 ns laser of 1 mm diameter. In this section we seek coil parameters that are
experimentally realistic (current and turns) while still producing temporal focusing at the

23



detector. As before, we trigger the pulse when the bunch center reaches the coil center,
zc = zb, and we model the on-axis field and force with Eqs. (3.4)–(3.6) specialized to the
working state F = 1, mF = 1.

Figure 3.4: Experimental layout: a 3 mm initial H bunch (blue) at z = 0, a pulsed coil
centered at zb = 0.20 m, and laser detection at z = 1.00 m with a 1 mm spot.

Our idea is to choose a coil radius R smaller than the bunch length L at the activation
time so that less current is needed, while still focusing a substantial fraction of the beam.
Activating earlier is better (shorter L), but we set zb = 20 cm to leave space for the
hexapole (see Chap.2). The initial bunch is 3 mm long with random velocities v ∈
[50, 60] m s−1. To make temporal focusing possible, we need a position–velocity correlation
at activation (atoms ordered by velocity). In the worst case (fastest initially at z = 0 and
slowest at z = 3mm), the ordering time is

tord =
∆z0
∆v

=
3 mm

10 m s−1
= 3× 10−4 s = 0.30 ms.

During this time the bunch center travels z ≃ vctord with vc ≈ 55 m s−1, i.e.

z ≈ 55× 0.30 ms ≈ 1.65 cm.

Thus activating when the center reaches the coil, zc = zb = 20 cm, safely meets the
ordering requirement.

Instead of fixing the detection, we decided to see where we have zpeak: the maximum
fraction of atoms (percent) inside a 1 mm window at a given time. For R = 1 cm and
∆tpulse = 0.3 ms,

NI = 9.98× 102 Aturns ⇒ percent = 24.7%, zpeak = 0.30 m,

NI = 1.41× 103 Aturns ⇒ percent = 30.6%, zpeak = 0.26 m.

Increasing NI raises the percentage while shifting the focus upstream (smaller zpeak).
Given the experimental requirement of at least 50 cm of free space after the coil (because
we should leave a space for the 30cm length mirror-absorber system), these main peaks
are too close; zpeak must be pushed downstream (beyond 0.70 m when zb = 0.20 m).
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I carried out many simulations by manually exploring parameter sets. As a rep-
resentative example where the maximum percentage is farther than our first example
above, with the coil centered at zb = 0.50 m, choosing R = 3 cm, ∆tpulse = 0.3 ms, and
NI = 2.81×103 Aturns, I obtain an optimal peak fraction of 10.2% (within a 1 mm win-
dow) at zpeak = 0.90 m and tpeak = 16.6 ms, i.e. the focus occurs about zpeak−zb = 0.40 m
(40 cm) downstream of the coil which is acceptable for instance.

3.3.3 Multiparameter simulation

We now run a multiparameter study. The initial bunch is L0 = 3 mm with velocities
v ∈ [50, 60] m s−1. We vary the coil radius over R ∈ [3 mm, 3 cm], the coil position over
zb ∈ {20, 30, 40, 50} cm, and the pulse width over ∆tpulse ∈ [30, 300] µs. Timing follows
the rule

tcentrale =
zb − L0

2

v̄
, v̄ = 1

2
(vmin + vmax),

and we scan ton ∈ [tcentrale −∆tpulse, tcentrale] with toff = ton +∆tpulse.
For each coil position zb, we first determine the required “impulsion”

Θ ≡ NI ∆tpulse
R3

,

choosing Θ so that the beam focuses at z = 1 m. Once Θ(zb) is fixed, every simulation
point (R,∆tpulse) uses

NI = Θ(zb)
R3

∆tpulse
,

and we run all combinations possible for each zb. We also repeat the full set at each zb with
NI adjusted by ±10%. For each set of parameters, we record the maximum percentage
of atoms inside a 1 mm window and the corresponding zpeak.

Data analysis. Because the problem is highly multiparameter (zb, R, ∆tpulse, NI, ton),
clear trends are not evident. Figure 3.5 reports, for each coil position zb (noted Z0 on the
axis), the maximum percentage of atoms found inside the 1 mm window over all tested
parameter combinations. The overall maximum percentage is again about 10%. We also
observe that the maximum percentage generally decreases as zb increases, which is natural
since the bunch is longer at activation and a smaller portion of the beam lies within the
coil’s effective region. At zb = 50 cm, we observe an exception: after the first cluster of
points—appearing as a continuation of the trend for other zb—the maximum percentage
increases again, reaching about 11%; This behavior is still not understood.
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Figure 3.5: Maximum percentage of atoms inside the 1 mm window versus the coil position
zb (labeled Z0). For each zb, the best value over all tested parameter combinations is
shown.

Larger coils clearly perform better: color-coding by R (Fig. 3.6) shows that the highest
percentages occur for R = 0.03 m (blue), while for R = 0.003 m (red) the percentages re-
main below a few percent. This trend is consistent with the linearization argument—larger
R makes the force more nearly linear across the bunch, improving compression for a given
impulsion.

Figure 3.6: Maximum percentage of atoms in the 1 mm window vs. coil position zb (labeled
Z0), color-coded by radius R: R = 0.003 m (red), R = 0.0165 m (green), R = 0.03 m
(blue). Larger R ⇒ higher percentage, consistent with improved linearity over the bunch.

Figure 3.7 shows that higher percentages coincide with larger NI.
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Figure 3.7: Maximum percentage vs. coil position zb (labeled Z0), color-coded by NI
(A·turns).

3.3.4 Phase-space evolution

To better understand the mechanism, we examine the evolution in phase space. For
illustration, we randomly select one simulation run from our sweep. That run has

zb = 0.04 m, R = 0.02 m, ∆tpulse = 0.3 ms, NI = 1.39× 103 Aturns,

and yields a maximum percentage of 10.2% within the 1 mm window, reached at tpeak =
12.8 ms and zpeak = 0.691 m.

We now reuse the same coil but compute and use this time the full 3D magnetic field.
The coil we took in simulation is that of a single-turn circular loop carrying a current NI
with the same parameters as above; the field formulas are taken from Ref. [9]. The goal
is to analyze and see what happens in the transverse directions (x, y) as well. The initial
phase-space distribution we took is

z ∈ [0, 3 mm], vz ∈ [50, 60] m s−1, x, y ∈ [−0.5, 0.5] mm, vx, vy ∈ [−1, 1] m s−1.
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(a) Free flight (before the pulse). (b) Immediately after the pulse at zb.

(c) At the focus z = zpeak.

Figure 3.8: Evolution in (z, vz) with the coil position shown by the dashed red line.

We start with an initial bunch of width 3mm and velocity dispersion between 50 and
60m/s. After a free flight (Fig. 3.8(a)), atoms with higher velocities move faster along
the z-axis, so the initially rectangular distribution in phase space (z, vz) becomes tilted.
This produces a clear correlation between position and velocity, as expected.

When a localized pulse is applied(Fig. 3.8(b)), it acts only on a part of the atomic
beam. In phase space, this corresponds to an inversion of the slope of a part of the
distribution.

After another free flight, the ensemble evolves such that the distribution refocuses:
the atoms converge again in space, despite their initial velocity spread. The focalization
is maximal when the distribution in (z, vz) becomes vertical, meaning that atoms with
different initial velocities arrive at the same spatial position simultaneously (Fig. 3.8(c)).
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(a) Initial distribution (x, vx). (b) After free flight (before the pulse).

(c) Just after the pulse.

Figure 3.9: Evolution in the transverse phase space (x, vx).

1

By cylindrical symmetry the same behavior holds in (y, vy): the core of the cloud stays
within |vx,y| ≲ 1 m s−1, while a small fraction is driven transversely to |vx,y| ∼ 3 m s−1.

3.4 Conclusion and outlook
Our target was a detection fraction of ∼ 33%, since the laser spot is 1 mm while the initial
bunch length is 3 mm. The study is well advanced but still requires optimization. At
present we reach ∼ 10%. The main reason is geometric: at the activation time we chose
coil radius R smaller than the bunch length L (because we don’t want high NI unfeasible
as explained before), so the pulse acts only on a portion of the bunch rather than on all
atoms.

An interesting idea is to insert a second hexapole stage after the first one in Fig. 2.1,
acting as a phase–space rotator shortly after t = 0, so that the longitudinal distribution
does not expand before the pulsed coil is triggered. This option remains to be studied in
detail and was not pursued further here due to time constraints.

1The symmetry of the distribution is conserved; see App. E.
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Chapter 4

My experimental work

4.1 Initial orientation and objectives
At the beginning of my internship, Dr. Martin Simon (University of Vienna) visited our
lab and walked me through each part of the experimental setup. My assignment was to
design, model, and integrate a radiative heat shield. At that time, the system operated
around 14 K, whereas in Chapter 2 we established a target temperature of 6 K for the stage
hosting the hydrogen beam. The heat shield was therefore designed to suppress incoming
blackbody radiation onto the beam stage and thus to be cooled to approximately 6 K.

Along the way, I gained practical experience with vacuum hardware and cryogenic
practices, as well as hands-on skills such as soldering. For example, we cut and re-
terminated the leads of a temperature sensor and then re-soldered them during the rerout-
ing of the wiring.

4.1.1 Two-stage cryocooler

Figure 4.1: Two-stage cryocooler used to cool the experimental beam stage.

This two-stage regenerative cryocooler uses a Stirling-type refrigeration cycle with helium
gas. A room-temperature compressor produces alternating high/low pressure, while valves
(or a phase shifter) set the right timing. Each stage contains a regenerator—a porous
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matrix with high heat capacity—that stores heat on the way down and returns it on
the way back. During the high-pressure stroke the gas flows through the regenerator, is
precooled to the local cold-end temperature, and reaches the cold heat exchanger. There
it undergoes an effectively isothermal expansion and absorbs the thermal load Q̇c from the
attached sample. During the low-pressure stroke the gas returns through the regenerator,
picks up the stored heat, and rejects it at the warm end. Stage 1 (60–80 K) intercepts
radiation/conduction from 300 K and precools the stream feeding Stage 2. Stage 2 (4–10
K) provides the ultracold tip; its rejected heat is dumped into Stage 1, which then rejects
to ambient. Repeating cycles pump small packets of enthalpy each time, so the cold masses
cool down gradually until the cooling power balances the load. Real machines achieve a
fraction of Carnot efficiency due to finite effectiveness of the regenerator, pressure drops,
phasing losses, and parasitic heat leaks.

4.1.2 First heat shield

To suppress black–body radiation onto the second stage, we installed a copper heat shield
thermally anchored to the first stage (∼60–80K). The radiative heat leak to a surface at
temperature Tc is

Q̇rad = ε σA
(
T 4
view − T 4

c

)
, (4.1)

with emissivity ε, area A, and the Stefan–Boltzmann constant σ. Without a shield the
cold tip “sees” Tview ≈ 300K; after installing the shield the view temperature drops to
Tview≈60K, giving

Q̇
(60K)
rad

Q̇
(300K)
rad

≃ 604 − T 4
c

3004 − T 4
c

≈ 1.6× 10−3 (Tc≈12K). (4.2)

Consistently, the base temperature improved from ∼14K (no shield) to the value shown
in Fig. 4.3, Tc = 11.861K (Channel A). In practice, polished or gold-plated shields fur-
ther reduce ε, lowering the radiative load. Figure 4.2 shows the mechanical design with
SolidWorks + the shield installed; the improved base temperature is confirmed in Fig. 4.3.

(a) HBEAM first heat shield: mechanical de-
sign (SolidWorks).

(b) The heat shield installed.

Figure 4.2: First heat shield.
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Figure 4.3: Lakeshore controller readout after installing the shield: Tc = 11.861K.

4.1.3 Double heat shield

Because we did not reach 6 K with the single shield, we redesigned a double heat shield with
an inner and an outer enclosure, and added more screws to improve thermal contact. After
installation and cooldown, the base temperature remained essentially unchanged at Tc ≃
11.9K. From the outset, I questioned the cryocooler’s capacity and overall performance.
We measured the helium line pressure at ∼ 14 bar, below the nominal 15.7 bar, and
initially considered a refill. However, checking the manufacturer’s information for the
Sumitomo CH-210 showed that the minimum second-stage temperature is about 10K (see
Fig 4.5). Dr. Martin, who had worked with the setup for spectroscopic measurements
before, told us that our cryostat is supposed to reach 4 K. We trusted his word and
used heat shields, but yes, we should have checked from the beginning. Therefore, a 6K
target is not achievable with this unit; the observed ∼11.9K is consistent with the model’s
specification and remaining conductive/radiative loads.

(a) CAD of the double (inner+outer) heat
shield.

(b) Inner heat shield installed.

Figure 4.4: Double heat-shield concept and mechanical design and inner shield installed
shown.
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Figure 4.5: CH-210 10K Cryocooler .
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Appendix A

Definition of a Linear Magnetic Field

We seek to define a static magnetic field B⃗ in the following general linear form:

B⃗ = Bx(x, y, z) e⃗x +By(x, y, z) e⃗y +Bz(x, y, z) e⃗z (A.1)

with:

Bx(x, y, z) = Bx
0 + αx+ βy + γz (A.2)

By(x, y, z) = By
0 + δx+ ϵy + ζz (A.3)

Bz(x, y, z) = Bz
0 + ηx+ θy + κz (A.4)

where Bx
0 , B

y
0 , B

z
0 , α, β, γ, δ, ϵ, ζ, η, θ, κ are constants.

Condition 1: Zero divergence
The magnetic field must satisfy:

∇ · B⃗ =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0 (A.5)

which imposes the constraint:
α + ϵ+ κ = 0 (A.6)

Condition 2: Zero curl
The magnetic field must also satisfy:

∇× B⃗ = 0⃗ (A.7)

This leads to the following component-wise constraints:

∂Bz

∂y
− ∂By

∂z
= 0 ⇒ θ = ζ (A.8)

∂Bx

∂z
− ∂Bz

∂x
= 0 ⇒ γ = η (A.9)

∂By

∂x
− ∂Bx

∂y
= 0 ⇒ δ = β (A.10)

Final Form of the Field

34



Thus, the magnetic field becomes:

B⃗ = (Bx
0 + αx+ βy + γz) e⃗x + (By

0 + βx+ ϵy + θz) e⃗y + (Bz
0 + γx+ θy + κz) e⃗z

(A.11)
with the constraints:

α + ϵ+ κ = 0, δ = β, ζ = θ, η = γ (A.12)

Full Expression of the Magnetic Field Norm and Asso-
ciated Force
The norm of the magnetic field is:

∥B⃗∥ =
√
B2

x +B2
y +B2

z (A.13)

We denote:

Bx = Bx
0 + αx+ βy + γz (A.14)

By = By
0 + βx+ ϵy + θz (A.15)

Bz = Bz
0 + γx+ θy + κz (A.16)

Each squared component expands as follows:
1. B2

x:

B2
x = (Bx

0 + αx+ βy + γz)2

= (Bx
0 )

2 + 2Bx
0 (αx+ βy + γz)

+ α2x2 + β2y2 + γ2z2 + 2αβxy + 2αγxz + 2βγyz (A.17)

2. B2
y :

B2
y = (By

0 + βx+ ϵy + θz)2

= (By
0)

2 + 2By
0(βx+ ϵy + θz)

+ β2x2 + ϵ2y2 + θ2z2 + 2βϵxy + 2βθxz + 2ϵθyz (A.18)

3. B2
z :

B2
z = (Bz

0 + γx+ θy + κz)2

= (Bz
0)

2 + 2Bz
0(γx+ θy + κz)

+ γ2x2 + θ2y2 + κ2z2 + 2γθxy + 2γκxz + 2θκyz (A.19)

Total Norm Expression:
Let us denote ∥B⃗∥ =

√
S(x, y, z), where:

S(x, y, z) = Axx
2+Ayy

2+Azz
2+Axyxy+Axzxz+Ayzyz+Bxx+Byy+Bzz+C (A.20)

with the coefficients:
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Constant term:
C = (Bx

0 )
2 + (By

0)
2 + (Bz

0)
2 (A.21)

Linear coefficients:

Bx = 2(αBx
0 + βBy

0 + γBz
0) (A.22)

By = 2(βBx
0 + ϵBy

0 + θBz
0) (A.23)

Bz = 2(γBx
0 + θBy

0 + κBz
0) (A.24)

Quadratic coefficients:

Ax = α2 + β2 + γ2 (A.25)
Ay = β2 + ϵ2 + θ2 (A.26)
Az = γ2 + θ2 + κ2 (A.27)
Axy = 2(αβ + βϵ+ γθ) (A.28)
Axz = 2(αγ + βθ + γκ) (A.29)
Ayz = 2(βγ + ϵθ + θκ) (A.30)

Associated Force:
The associated force is defined as:

F⃗ = −∇∥B⃗∥ = − 1

2
√
S(x, y, z)

∇S(x, y, z) (A.31)

Explicitly:

F⃗ (x, y, z) = − 1

2
√
S(x, y, z)

2Axx+ Axyy + Axzz +Bx

2Ayy + Axyx+ Ayzz +By

2Azz + Axzx+ Ayzy +Bz

 (A.32)

Simulation Parameters and Observations
In the simulations, the magnetic field is implemented using this full analytical expression.
Using Mathematica, we solved the equations of motion for atoms subjected to such a force,
using various values of the coefficients above. Below is a representation of the interactive
slider interface used to explore these parameters:

Despite extensive parameter sweeps, both manually and automatically, no decrease in
the area of the convex hull was ever observed in either the (x, vx) or (y, vy) subspaces.
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Figure A.1: Sliders used to manually adjust magnetic field parameters and duration T of
the simulation.
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Appendix B

Theoretical part of Chapter 2

B.1 Conservation of the global inversion symmetry in
linear case

We aim to prove that if a particle density ρ(x, vx, y, vy, t) is initially symmetric under
simultaneous inversion of all variables, i.e.:

ρ0(−x,−vx,−y,−vy) = ρ0(x, vx, y, vy), (B.1)

then this symmetry is preserved at all times t under the action of a linear force of the
form:

Fx = cx+ ay, Fy = ax+ by. (B.2)

We work in the phase space R4 with the state vector:

Z =


x
vx
y
vy

 , (B.3)

and a linear dynamics given by:

dZ

dt
=MZ, where M =


0 1 0 0
c 0 a 0
0 0 0 1
a 0 b 0

 . (B.4)

The solution to this system is:

Z(t) = etMZ(0). (B.5)

The phase-space density at time t is given by:

ρ(Z, t) = ρ0(e
−tMZ), (B.6)

since the flow is deterministic, linear, and volume-preserving (Liouville’s theorem).
We assume that:

ρ0(QZ) = ρ0(Z) with Q = diag(−1,−1,−1,−1). (B.7)
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This corresponds to a global inversion:

QZ = (−x,−vx,−y,−vy). (B.8)

We want to prove that this symmetry is preserved over time, i.e.:

ρ(QZ, t) = ρ(Z, t) for all t ∈ R. (B.9)

We begin by writing:
ρ(QZ, t) = ρ0(e

−tMQZ). (B.10)

If we can show that:
e−tMQZ = Qe−tMZ, (B.11)

then it follows that:
ρ(QZ, t) = ρ0(Qe

−tMZ). (B.12)

And using the initial symmetry hypothesis:

ρ0(Qe
−tMZ) = ρ0(e

−tMZ) = ρ(Z, t). (B.13)

Let:
Q = diag(−1,−1,−1,−1), so Q = −I. (B.14)

We compute:

QM = (−I)M = −M, MQ =M(−I) = −M ⇒ QM =MQ. (B.15)

Thus:
[Q,M ] = QM −MQ = 0 ⇒ Qe−tM = e−tMQ. (B.16)

Hence:
e−tMQZ = Qe−tMZ. (B.17)

We conclude that:

ρ(QZ, t) = ρ0(e
−tMQZ) = ρ0(Qe

−tMZ) = ρ0(e
−tMZ) = ρ(Z, t). (B.18)

The global symmetry of the initial density is therefore rigorously preserved at all times
t.

This result relies on two fundamental facts:

• The evolution of Z(t) is linear, given by etM .

• The symmetry matrix Q commutes with M : [Q,M ] = 0.

B.2 An equation for the marginal density ρy(y, vy, t)

The marginal density ρy(y, vy, t) is defined by:

ρy(y, vy, t) =

∫
dx dvx ρ(x, y, vx, vy, t) (B.19)
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Liouville equation

∂ρ

∂t
+ v⃗ · ∇r⃗ρ+

F⃗

m
· ∇v⃗ρ = 0 (B.20)

where ρ = ρ(x, y, vx, vy, t), r⃗ = (x, y), v⃗ = (vx, vy), and F⃗ = −∇r⃗V (x, y).

Integration of the Liouville equation over x and vx

We integrate: ∫
dx dvx

(
∂ρ

∂t
+ vx

∂ρ

∂x
+ vy

∂ρ

∂y
+
Fx

m

∂ρ

∂vx
+
Fy

m

∂ρ

∂vy

)
= 0 (B.21)

Term-by-term, we get: ∫
dx dvx

∂ρ

∂t
=
∂ρy
∂t

(B.22)∫
dx dvx vy

∂ρ

∂y
= vy

∂ρy
∂y

(B.23)∫
dx dvx

Fy

m

∂ρ

∂vy
=

1

m

∫
dx dvx Fy

∂ρ

∂vy
(B.24)

And assuming fast decay at infinity:∫
dx dvx vx

∂ρ

∂x
= 0 (B.25)∫

dx dvx
Fx

m

∂ρ

∂vx
= 0 (B.26)

(see Appendix C for justification of the last two integrals). Therefore, we obtain:

∂ρy
∂t

+ vy
∂ρy
∂y

+
1

m

∫
dx dvx Fy(x, y)

∂ρ

∂vy
= 0 (B.27)

Special case: force independent of x

If the force is of the form F⃗ (y) = −∂yV (y), i.e., depends only on y, then:

∂ρy
∂t

+ vy
∂ρy
∂y

+
Fy(y)

m

∂ρy
∂vy

= 0 (B.28)

This is a Liouville equation in the subspace (y, vy), provided the force depends only on
y. This corresponds to a decoupling of the longitudinal and transverse dynamics. This
explains why the area is conserved in two subspaces separately in Figures 2.9 and 2.10.
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Appendix C

Justification of the cancellation of two
integrals

We want to show that, under the assumption that the probability density ρ(x, y, vx, vy, t)
decays sufficiently fast at infinity, the following two integrals vanish.

1. Term
∫
dx dvx vx

∂ρ

∂x

We perform integration by parts with respect to x, treating vx as constant in the inner
integral:

∫
dx dvx vx

∂ρ

∂x
=

∫
dvx

(∫
dx vx

∂ρ

∂x

)
=

∫
dvx [vxρ]

x=+∞
x=−∞ −

∫
dvx

(∫
dx

∂vx
∂x

ρ

)
(C.1)

Since ∂vx/∂x = 0, this simplifies to:∫
dx dvx vx

∂ρ

∂x
=

∫
dvx [vxρ(x, y, vx, vy)]

x=+∞
x=−∞ (C.2)

Assuming that ρ→ 0 as x→ ±∞, the boundary term vanishes, and thus:∫
dx dvx vx

∂ρ

∂x
= 0 (C.3)

2. Term
∫
dx dvx

Fx(x, y)

m

∂ρ

∂vx

Here, Fx(x, y)/m is independent of vx, so we factor it out and integrate by parts in vx:

∫
dx dvx

Fx(x, y)

m

∂ρ

∂vx
=

∫
dx

Fx(x, y)

m

[∫
dvx

∂ρ

∂vx

]
=

∫
dx

Fx(x, y)

m
[ρ]vx=+∞

vx=−∞ (C.4)

41



Under the assumption that ρ→ 0 when vx → ±∞, we find:∫
dx dvx

Fx(x, y)

m

∂ρ

∂vx
= 0 (C.5)
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Appendix D

Symplectic Geometry and Gromov’s
Non-Squeezing Theorem

“Symplectic geometry is the language of Classical Mechanics in its
Hamiltonian formulation,

and it also plays a crucial role in Quantum Mechanics.”

After discovering the constraints imposed by Gromov’s theorem on distributions in
phase space—and because it is less well known than Liouville’s theorem yet more pow-
erful—I devoted one month of my internship to understanding symplectic geometry. I
then gave a group seminar entitled “Symplectic Geometry Demystified,” and this chapter
is essentially a concise version of that presentation.

D.1 The Mystery of the Symplectic Egg
Take a hard-boiled egg and slice it across its widest part: the resulting cross-section is a
circle of area

A = πr2. (D.1)

If, instead, you cut the egg along a longitudinal plane, the section is an ellipse whose area
is

A = πR2, (D.2)

which is strictly larger.

By contrast, for a symplectic egg—an ellipsoid obtained from a ball via a linear sym-
plectic transformation—every slice that passes through the centre, provided the cutting
plane is a plane of conjugate coordinates, has the same area.
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A symplectic egg is simply the image of a ball under a linear symplectic transformation.
Remarkably, if the radius of a symplectic egg is chosen as

√
ℏ, every central cross-section

has area
πℏ =

h

2
. (D.3)

This value coincides with the minimal action cell dictated by the quantum-mechanical
uncertainty principle.

D.2 Symplectic Geometry

D.2.1 The Standard Symplectic Matrix

The symplectic structure on R2n is encoded in the matrix

J =

(
0 In

−In 0

)
, (D.4)

where In is the n× n identity matrix. It satisfies

J2 = −I2n, JT = J−1 = −J. (D.5)

Together, (D.4)–(D.5) define the geometry of phase space.

D.2.2 Analogy Between Euclidean and Symplectic Geometry

Euclidean Geometry and Orthogonal Matrices

Euclidean geometry studies linear maps that preserve the inner product

⟨u, v⟩ = uTv. (D.6)

A matrix M preserves lengths precisely when

⟨Mu,Mv⟩ = ⟨u, v⟩ ⇐⇒ MT IM = I, (D.7)

and such matrices are called orthogonal.

Symplectic Geometry and Symplectic Matrices

Symplectic geometry replaces the inner product by the symplectic product

z ∧ z′ = (z′)TJz. (D.8)

A matrix S preserves this form iff

(Sz) ∧ (Sz′) = z ∧ z′ ⇐⇒ STJS = J, (D.9)

and such matrices are called symplectic.

D.2.3 Symplectic Matrices

Definition: A real 2n× 2n matrix S is symplectic if

STJS = J. (D.10)
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One degree of freedom (n = 1): For n = 1, (D.10) reduces to

detS = 1. (D.11)

Block form: Writing

S =

(
A B
C D

)
, A,B,C,D ∈ Rn×n, (D.12)

the condition (D.10) is equivalent to

ATC = CTA, BTD = DTB, ATD − CTB = In. (D.13)

These identities generalise (D.11) to higher dimensions.

Properties of Symplectic Matrices

1. Closure under multiplication. If S, S ′ ∈ Sp(2n,R) satisfy (D.10), then

(SS ′)TJ(SS ′) = S ′T (STJS)S ′ = S ′TJS ′ = J, (D.14)

hence the product SS ′ is symplectic.

2. Determinant and invertibility. Taking determinants of (D.10) gives

(detS)2 det J = det J =⇒ (detS)2 = 1. (D.15)

Thus detS = ±1 and every symplectic matrix is invertible. It turns out that in fact
detS = 1. This can be proved by more advanced methods.

3. Inverse is symplectic. Equation (D.10) implies JS = (S−1)TJ , so

(S−1)TJ S−1 = J, (D.16)

i.e. S−1 ∈ Sp(2n,R).

4. Transposition property. The symplectic group is closed under transposition—if
S is symplectic, so is ST. Taking the inverse of eq. D.16 gives

SJ
[
(S−1)T

]−1
= J,

since J−1 = −J . And since
[
(S−1)T

]−1
= ST,

SJST = J. (D.17)

Thus ST itself satisfies the symplectic condition.

5. Equivalent block conditions. Inserting the block form (D.12) into (D.17) gives

ABT = BAT, CDT = DCT, ADT −BCT = In. (D.18)

These relations are fully equivalent to the set in (D.13).
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Inverse in block form. Because both S−1 and
(
S−1

)T are symplectic, the inverse of
S in the block notation (D.12) is

S−1 =

(
DT −BT

−CT AT

)
. (D.19)

Relation to the 2×2 case. For n = 1, (D.19) reduces to the familiar inverse of a 2×2
matrix with unit determinant, (

a b
c d

)−1

=

(
d −b
−c a

)
,

highlighting that symplectic matrices mimic the area-preserving behaviour of 2 × 2 ma-
trices. Symplectic geometry is, at its core, a geometry of areas—a fact that will reappear
in Gromov’s non-squeezing theorem and the symplectic-egg property.

A remark on determinants and counterexamples. Not every 2n× 2n matrix with
determinant one is symplectic when n > 1. For instance, consider

M =


λ 0 0 0
0 1/λ 0 0
0 0 λ 0
0 0 0 1/λ

 , λ ̸= 0. (D.20)

This matrix has det(M) = 1, but violates the condition

ADT −BCT = Id (D.21)

unless λ = ±1.

D.2.4 The First Poincaré Invariant

Loop in phase space. Let γ : [0, 2π] → R2 be the closed curve

γ(t) =

(
x(t)

p(t)

)
, 0 ≤ t ≤ 2π, (D.22)

with x(0) = x(2π) and p(0) = p(2π); the functions x(t) and p(t) are assumed C1.

Definition. The first Poincaré invariant of γ is the line integral

I(γ) =

∮
γ

p dx =

∫ 2π

0

p(t)T ẋ(t) dt, (D.23)

which equals the signed area enclosed by the loop in the (x, p)-plane.

Symplectic invariance. If S is any symplectic matrix and we replace the loop by
Sγ(t), I(γ) is unchanged:

I(γ) =

∮
γ

p dx = I
(
Sγ
)
=

∮
Sγ

p dx. (D.24)

Thus I(γ) is preserved under all linear symplectic transformations.
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D.3 Proof of the Symplectic–Egg Property
1. Ball and symplectic egg. Let

BR =
{
z = (x, p) ∈ R2n | |z|2 = |x|2 + |p|2 ≤ R2

}
. (D.25)

For any symplectic matrix S, its image

S(BR) =
{
z′ | |S−1z′| ≤ R

}
(D.26)

is an ellipsoid called a symplectic egg.

2. Section by a conjugate plane. Intersect S(BR) with the conjugate plane Πj ≡
{xk = pk = 0 (k ̸= j)}; the intersection is an ellipse Γj with boundary loop γj. Relabeling
coordinates, take j = 1 and parameterise

γ1(t) =
(
x1(t), 0, . . . , 0, p1(t), 0, . . . , 0

)T
, 0 ≤ t ≤ 2π, (D.27)

with x1(0) = x1(2π), p1(0) = p1(2π).

3. Elliptic-section area. Because xk(t) = pk(t) = 0 for k > 1,

Area(Γ1) =

∫ 2π

0

p1(t) ẋ1(t) dt =
n∑

k=1

∫ 2π

0

pk(t) ẋk(t) dt =

∮
γ1

p dx = I(γ1), (D.28)

i.e. the area equals the first Poincaré invariant of the loop.

4. Symplectic invariance and conclusion. The matrix S−1 is symplectic, so I(γ1) =
I(S−1γ1). The loop S−1γ1 lies in the plane S−1Π1 and bounds a section of the ball BR;
it is a great circle, whose enclosed area is exactly πR2. Hence Area(Γ1) = πR2, showing
that every central conjugate slice of a symplectic egg has area πR2, which proves the
symplectic-egg property.

Illustrative counterexample (why “conjugate & symplectic” matter). Take the
symplectic matrix

S =


λ1 0 0 0
0 λ2 0 0
0 0 1/λ1 0
0 0 0 1/λ2

 , λ1, λ2 > 0, λ1 ̸= λ2,

so the image of the ball (D.25) is the ellipsoid

x21
λ1

+
x22
λ2

+ λ1p
2
1 + λ2p

2
2 ≤ R2. (D.29)

• Conjugate slice. Setting x2 = p2 = 0 (the x1, p1 plane) gives 1
λ1
x21 + λ1p

2
1 ≤ R2: its

area is πR2
√
λ1
√

1/λ1 = πR2, fully consistent with the symplectic-egg property.

• Non-conjugate slice. Intersecting (D.29) with the non-conjugate plane x2, p1 (x1 =
p2 = 0) yields 1

λ1
x21 + λ2p

2
2 ≤ R2, whose area is πR2

√
λ1

λ2
̸= πR2.

• Symplectic assumption is essential. Take S ′ = diag(λ1, λ2, 1/λ2, 1/λ1); then detS ′ =
1 but S ′ /∈ Sp(4,R). The slice in the x2, p2 plane now has area πR2

√
λ1/λ2 ̸= πR2,

confirming that only symplectic maps preserve the constant cross-sectional area in
conjugate planes.
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D.4 Canonical Transformations on Phase Space
General definition. A canonical transformation is a C∞ diffeomorphism

f :

(
x

p

)
7−→

(
x′

p′

)
, f−1 ∈ C∞. (D.30)

whose Jacobian matrix
f ′(x, p) =

∂(x′, p′)

∂(x, p)
. (D.31)

is symplectic at every point (x, p); i.e.

f ′(x, p)
T
J f ′(x, p) = J. (D.32)

Linear canonical maps. Any symplectic matrix S =
(
A B
C D

)
induces the linear canonical

transformation (
x
p

)
7−→ S

(
x
p

)
. (D.33)

It is an invertible transformation, since symplectic matrices are invertible.

Translations and affine maps. Phase–space translations(
x
p

)
7−→

(
x+ x0
p+ p0

)
. (D.34)

have Jacobian Id2n, trivially symplectic. Composing a linear canonical transformation
with a translation yields the full class of affine canonical transformations.

Non-linear example (n = 1). Using polar–like variables (r, φ) in place of (x, p), define

(r, φ) 7−→
(
x, p
)
=
(√

2r cosφ,
√
2r sinφ

)
, 0 ≤ φ < 2π. (D.35)

Its Jacobian is

f ′(r, φ) =

 1√
2r

cosφ
1√
2r

sinφ

−
√
2r sinφ

√
2r cosφ

 . (D.36)

det f ′(r, φ) = 1. (D.37)

so f ′(r, φ) ∈ Sp(2,R) for every (r, φ): the map is canonical.
The construction extends to n > 1 by applying the same polar substitution to each

conjugate pair (xj, pj).

D.5 Gromov’s Theorem (1985)

D.5.1 Statement:

No canonical transformation can squeeze a phase–space ball BR through a circular hole of
radius r < R cut in a conjugate plane Πj ≡ {xj, pj}.
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The “symplectic camel” metaphor. Why this nickname? Recall the scriptural say-
ing:

Then Jesus said to his disciples, “Amen, I say to you, it will be hard for one
who is rich to enter the kingdom of heaven. Again I say to you, it is easier for
a camel to pass through the eye of a needle than for one who is rich to enter
the kingdom of God.”

That is our symplectic camel— it cannot enter the eye of the needle!

D.5.2 The Symplectic Egg as a Linear Version of Gromov’s The-
orem

Picture the ball BR as the “camel” and the hole of radius r in the plane Πj = {xj, pj} as
the needle’s eye. The symplectic-egg result is really just the linear (or affine) version of
Gromov’s non-squeezing statement.

Here’s the idea: If we try to pass the egg S(BR) through that hole, its slice in Πj must
fit inside the circle of area πr2. But the egg property says every such slice already has
area πR2. So for the squeeze to work we’d need πR2 ≤ πr2, i.e. R ≤ r. When R > r,
the egg just won’t go through. That’s the linear case of Gromov’s theorem because the
symplectic egg is generated by a linear map S directly.

D.6 Dynamical Interpretation
Canonical transformations are fundamental in physics because Hamiltonian dynamics
themselves are expressed as canonical transformations. Consider a particle of mass m
moving along the x-axis under the influence of a scalar potential V (x). The particle
experiences a force:

F = −dV
dx

= m
dv

dt
=
dp

dt
. (D.38)

The equations of motion can thus be written:

dx

dt
=

p

m
,

dp

dt
= −dV

dx
. (D.39)
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D.6.1 Hamiltonian Formulation

Introducing the Hamiltonian function

H(x, p) =
p2

2m
+ V (x), (D.40)

the previous equations are equivalent to Hamilton’s equations:

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
. (D.41)

This formulation naturally extends to n dimensions:

dxj
dt

=
∂H

∂pj
,

dpj
dt

= −∂H
∂xj

, 1 ≤ j ≤ n. (D.42)

Hamiltonian Flows

More generally, the Hamiltonian H can depend on time or have a more complex form.
In any case, solving Hamilton’s equations determines a flow in phase space. If we denote
the initial state by (

x(0)

p(0)

)
, (D.43)

then, assuming the solution exists and is unique at time t, the final state is given by(
x(t)

p(t)

)
= ϕH

t

(
x(0)

p(0)

)
, (D.44)

where ϕH
t is the Hamiltonian flow generated by H.

D.6.2 Trajectories and Liouville’s Theorem

As time evolves, the initial point traces a curve in phase space, called a flow curve
or Hamiltonian trajectory. A crucial point is that the flow ϕH

t is a canonical trans-
formation. Thus Hamiltonian flows preserve phase-space volume, which is precisely the
content of Liouville’s theorem. The reason is simple: the Jacobian of a canonical
transformation is a symplectic matrix S, hence detS = 1.

Volume preservation alone is not unique to Hamiltonian dynamics—any map with
det(Jacobian) = 1 is volume-preserving. But because Hamiltonian flow is canonical, it
is additionally constrained by Gromov’s theorem; it is therefore more than just volume-
preserving.
Conclusion: Liouville’s theorem and Gromov’s non-squeezing theorem both follow from
the symplectic structure of phase space.

D.6.3 Comments on Gromov’s Theorem

One reason this result was discovered so late is its apparent contradiction with classical
intuition. At first sight, Gromov’s theorem seems to contradict the usual reading of
Liouville’s theorem, which is probably why the “symplectic camel” remained unsuspected
for so long.
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Liouville’s theorem guarantees volume preservation, but says nothing about shape. A
Hamiltonian flow can stretch and fold a subset of phase space, potentially spreading it over
vast regions while its projections onto certain planes shrink arbitrarily. This mechanism
becomes even more pronounced as the number of degrees of freedom n increases.

Such observations raise deep philosophical questions. As Roger Penrose remarked
(1989, p. 183), phase-space spreading

“suggests that classical mechanics cannot actually be true of our world.”

D.6.4 Shadows and Gromov’s Theorem

Gromov’s theorem implies that Hamiltonian evolution is much more structured than one
might expect. To illustrate this, consider the phase-space ball BR. Its orthogonal projec-
tion (or “shadow”) onto any plane Π of conjugate coordinates xj, pj is a circle with area
πR2. If the ball evolves under a Hamiltonian flow ϕH

t , it may deform, but its volume
remains constant. Yet, according to the symplectic camel principle, its shadow on Πj will
never shrink below πR2.

Figure D.1: Shadow of a deformed ball under Hamiltonian evolution.

In this bibliographic appendix, I have summarised the article [8].
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Appendix E

Conservation of a Global Symmetry in
a Nonlinear Flow

Theorem E.1 (Conservation of a Global Symmetry). Let ρ(Z, t) be a particle density
evolving in phase space R2n, according to a deterministic dynamic given by:

dZ

dt
= F (Z), (E.1)

where F : R2n → R2n is a C1 function admitting a differentiable flow Φt(Z), such that
Φ0(Z) = Z and

d

dt
Φt(Z) = F (Φt(Z)). (E.2)

Assume the density evolves according to:

ρ(Z, t) = ρ0(Φ−t(Z)), (E.3)

where ρ0 is the initial phase-space density.
Let S : R2n → R2n be a differentiable transformation such that:

• (Initial symmetry) ρ0(SZ) = ρ0(Z) for all Z ∈ R2n,

• (Flow invariance) Φt(SZ) = SΦt(Z) for all t ∈ R, Z ∈ R2n.

Then, for all t ∈ R and all Z ∈ R2n, we have:

ρ(SZ, t) = ρ(Z, t). (E.4)

Proof. By the definition of the time-evolved density:

ρ(SZ, t) = ρ0(Φ−t(SZ)). (E.5)

Using the flow invariance hypothesis:

Φ−t(SZ) = SΦ−t(Z). (E.6)

Then, by the initial symmetry:

ρ0(SΦ−t(Z)) = ρ0(Φ−t(Z)) = ρ(Z, t). (E.7)

Therefore, ρ(SZ, t) = ρ(Z, t), which completes the proof. □
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