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Abstract

The main goal of this work, is to give a definition of the temperature of a sys-

tem that can be hold at several scales and directly link to a dynamic and a local

description of the system. For this purpose, we try to build a model to approach

temperature, based on local quantities starting from thermodynamics properties

of a system. We used lagrangian formalism to give meaning to dynamics of a

system, and then we formalise further, asserting that temperature can be com-

puted through the contribution of all particles in an ensemble (motion and rest).

This approach, can be extended to diffusion and mobility of particles on surface

that can described for instance, clusters deposition on substrate. Brownian mo-

tion and DLA model will describe, respectively, one particle mobility, and an

ensemble of particles behaviour, leading to self-organisation. The temperature

can than be approached through this diffusion process. A link to experimental

measurement can then be achieved, as an example application, through zeta

potential measurement on solution on substrate.
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1 Motivation

Temperature is one of the most important concepts in physics. This comes because we

find it everywhere and at different scales. Every thing that has a rest mass has a tem-

perature. However the temperature is always defined as a mean value of an ensemble

of particles behavior, depending on models (canonical, microcanonical, ...) or through

equivalency (cold atoms are slow atoms for exemple). From this point of view, my

motivation came along how to define a temperature for a single particle to be able to

extend the concept. An other motivation is linked to the research activities of Nano3

group in laboratoire Aime Cotton. They work on self-organisation of nanoparticles

on a surface and they have a great interest on more direct link between temperature

definition and mobility description.

Temperature is almost always measured through its effects on physical properties (di-

latation of a liquid or a gas, change of resistivity, spectrum of radiation, potential

change, ...) and quiet never directly linked to its definition. Temperature is defined as

the measure of average translational kinetic energy of particles and since this is a sta-

tistical concept, we should have an ensemble to determine it. Another opened question

is how to discretize (”quantize”) it and define a quantum operator for temperature.

One of the connection that can be usefull to do that, is the link between principle of

least action (general, multisacle concept) and entropy. We have learnt from quantum

mechanics lectures for example that we can quantify angular momentum from action,

and from entropy we can quantify information. This appears so, very promising and

in this project that is the main goal to achieve. We shall emphasize that defining S, T

for systems with discrete energy levels is still an open problem. For such a task one

may have to redefine at the end the concept of temperature. We will further have also

to discuss the importance of intensive parameters that has to be studied to achieve

such a goal. This approach, can be extended to diffusion and mobility of particles on

surface that can desctribed for instance, clusters deposition on substrate.
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Brownian motion and DLA model will describe, respectively, one particle mobility,

and an ensemble of particles behavior, leading to self-organisation. The tempera-

ture can than be approached through this diffusion process. A link to experimental

measurement can then be achieved, as an exemple application, throw zeta potential

measurement on solution on substrate.

2 Statistical definition

We have seen in thermodynamics, that temperature is an intensive parameter and is

a key concept to define properties of our system. Temperature is the average value of

translational kinetic energy of each particle in ensemble divided by a constant (Boltz-

mann constant) :

T =
<E>

kB
(1)

if we want to be more general we then must link it to the definition due to entropy:

T =

(
∂U

∂S

)
i

where temperature is defined, now, as partial derivate of internal energy U(S, V,N)

with respect to entropy S, over some parameter we defined by the ensemble that we

choose to describe, from which in most cases i = V,N . With N representing the num-

ber of particles and V representing the volume of the ensemble in study.
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3 The model

In this study the model is very simple and here we can start by introducing the tools

that will be used. Starting with canonical ensemble in thermal equilibrum with a heat

bath at fixed temperature.

As we know, we have to describe this canonical ensemble by determining thermo-

dynamic potentials, and for this we just focus on internal energy U(S, V, {N}, {xi})

and Helmoltz free energy F (T, V, {N}, {xi}) defined using Temperature T , Volume V ,

Entropy S and Xidxi for any external forces:

dU = TdS − pdV + Σ{µidNi}+ Σ{Xidxi} (2)

F = U − TS (3)

dF = −SdT − pdV + Σ{µidNi}+ Σ{Xidxi} (4)

The reason of presenting this here is pointed out from de Broglie and Helmoltz’s

Theory.

From this definitions, one may easily write the Euler - Lagrange equation for the

system:

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= Xi (5)

writing simply L = Ekin−Upot subject to xi and ẋi where we have in an implicit form

of the energy for our canonical ensemble.

Therefore is simple from here to build an Hamiltonian representation of our system

by a Legendre transformation, and therefore having a hamiltonien for Schrodinger

equation:

Ĥ|ψ> = (Ekin + Upot)|ψ> (6)

In this model, we will focus first in kinetic energy and we will suppose that particles do

not interact with each other and have no potential energy. Entropy soon will appear
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as a function of density or as a function of wavefunction for a particle. We may recall:

S = kB lnW S = −kBΣρi ln ρi

Boltzmann entropy formula deduced from H-theorem, W being the number of mi-

crostates and the second representation of entropy is the one called Shanon Entropy.

They have both equivalent meaning but they are used in different frameworks. Re-

minding that entropy is zero in revesible processes and increases in irreversible pro-

cesses. Moments later we shall see the link.

4 Analogy and Lagrangian formalism

Starting with a very basic analogy (Helmoltz canonical schema) which consists of

linking temperature and ’velocity’ ẋ, for x, generalized coordinated, being a cyclic

variable, we can write:

ẋ =
dx

dt
= T (7)

From (2) by only considering external forces and the pdV term, we can write:

dU = Xdx− pdV

and with (7):

dU = Xẋdt− pdV (8)

From 1st and 2nd laws of thermodynamics :

TdS = dU + pdV

inferring heat:

Xẋdt = TdS (9)

where now from (7) and (9) we deduce:

X = Ṡ =
dpx
dt
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From model, keeping volume constant, we know that V̇ will have no contribution to

the lagrangian and hence:

∂L

∂x
= 0,

d

dt

∂L

∂ẋ
= X,

∂L

∂ẋ
= p

Easily one finds back that, entropic momenta:

~px = S (10)

This is self-consistent, and establish in this model canonical link between tempera-

ture and entropy, there are conjugated through Legendre transformation. Applying

Legendre transform for L̂, we get :

L̂ = ẋ
∂L

∂ẋ
+ V̇

∂L

∂V̇
− L = ẋ

∂L

∂ẋ
− L = TS − L (11)

Denoting L̂ as energy one will have:

U = TS − L <=> L = TS − U

from equation (3):

L = −F (12)

This is a strong deduction which tells us that Helmoltz free energy plays a deep role

in lagrangian formalism for this system, and hence one should consider this to build a

framework.

5 Introducing locality

All quantities studied in our experiment are functions of position and time. In this

part of the report we will introduce locality for temperature, entropy, energy and their

behaviour to the model(1d). One may to write it, is :

T = T (x, t), S = S(x, t), U = U(x, t)

Our situation now becomes local, and in few words we went from global analysis, as

we are used to in usual thermodynamics to local approach, to consider only part of
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the space inside the canonical ensemble.

Therefore is strongly important to present the following observables:

dS =

(
∂S

∂x

)
dx+

(
∂S

∂t

)
dt dT =

(
∂T

∂x

)
dx+

(
∂T

∂t

)
dt

dU =

(
∂U

∂x

)
dx+

(
∂U

∂t

)
dt dF =

(
∂F

∂x

)
dx+

(
∂F

∂t

)
dt

that therefore leads to :

dS =
1

T

(
∂U

∂x

)
dx+

1

T

(
∂U

∂t

)
dt (13)

Internal energy remains conserved, so ∂U/∂t = 0, same for F (x, t).

It should be pointed out that time derivative of temperature will be also zero, ∂T/∂t =

0. Thus one can easily prove that entropy stays the same as dS = dU/T . For the

gradient of temperature, we can easily check that:

∇T = − 1

S

(
∂F

∂x

)
Gradient of temperature plays an important role as driving force of many phenomena

from diffusion to environmental and climatic behavior. In our study we kept temper-

ature locally constant, so the gradient will be of no use for this model but we have

there a tool for generalisation. Having gone as strictly as possible, now we would like

to rewrite formula (1) to emphase it for the following. Since our system will have

constant temperature, we assume that we can sum all temperatures of the particles

hof the ensemble.

T (x, t) =
n∑
i=1

Ti =
1

2kb

n∑
i=1

p2
i

mi

(14)

for i = 1, 2, ...., n particles, and we may write for entropy:

S = −kb
n∑
i

ρi(x, t) ln ρi(x, t) (15)
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6 New equation

From eq (12) we clearly see that kinetic energy will be subject to T Ṡ. One may easily

write from a Legendre transform that our hamiltonian is given by:

H = TS + Upot

With eq (14), (15) and for no potential energy we find our hamiltionian to be like:

H =
1

2kb

n∑
i

p2
i

mi

k∑
j

Sj

now proposing that i = j finding kinetic energy for same particle and defining minor

entropy si, dimensionless variable, we find the final hamiltonian expression:

H =
1

2

n∑
i

p2
i

mi

si (16)

from first quantization rule and Heisenberg’s uncertainty principle, we know that:

p̂|ψ> = −i~∂|ψ>
∂x

x̂ψ = xψ

With eq (6), (16) it comes :

Ĥ|ψi> =
1

2

n∑
i

p2
i

mi

si|ψi> (17)

from p̂2(...) = −~2∆(...):

Ĥψi = −~2

2

n∑
i

∆(siψi)

mi

and from the linearity of laplacian operator ∆(fg) = g∆f + f∆g + 2∇f∇g, one can

write:

Ĥψi = −~2

2

n∑
i

1

mi

(ψi∆si + si∆ψi + 2∇si∇ψi) (18)

and (18) will be the modified Schrodinger equation for free particles.

It is easy get classical expression by sending local entropy s(x, t), to global s(U, V, {N}).

Thus, entropy will have no laplacian, no gradient and kinetic part will be just F (T, V, {N})

retrieving the Schrodinger equation (6).
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7 Entropic Source

In equation (18) there are new concepts to deal with. Question arises now are : ’What

is the gradient and laplacian of local entropy ?’ ’Is it possible to define entropy as a

field ?’ or ’Is it possible to determine entropy sources ?’

Before we get into the framework of these concepts, let us remind a few concepts from

electrodynamic theory and Poission’s law or Newtonian gravitation field.

∇~g = −4πGρ <=> ~g = −∇φ

Retrieving Poission’s equation for a gravitational field:

∆φ(r) = 4πGρ

The left hand side has the laplacian of a potential function, and right hand side its

source. Another example is found in electrostatics:

∆φ(r) = − ρ
ε0

For left hand side being the potential function, and right hand side being charge density

which is the source

Now it is important to point out, that by analogy there must exist a source for local

entropy too :

∆s(x) = f(x)

For f(x) = 0 the equation will be called a Laplace equation for entropic source.

Which might solve eq (18) for stationary cases very well and hence one may result to

the temperature for one particle.

One can think of entropic source as the basis of general temperature-entropy relation.

By using the Green function for the Poission’s equation we find:

s(x) = −
∫
x′

f(x′)

4π|x− x′|
dx′ (19)

For which we might be able to retrieve the solution, as it will be seen below.
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8 Single and many particles Problem

Let us now study, as an example, the behaviour of one particle, stationary, for which

eq (18) becomes:

∆s+ (2
∇ψ

ψ
)∇s+ (

∆ψ

ψ
)s = 0 (20)

This is a second order linear homogeneous differential equation for which can be solved

with characteristic polynomial:

aλ2 + bλ+ c = 0

for a 6= 0 , b = 2∇ψ
ψ

, c = ∆ψ
ψ

; for which it has two roots respectively:

λ1 =
∇ψ

ψ
(−1 +

√
1− ψ)

λ2 =
∇ψ

ψ
(−1−

√
1− ψ)

and the general solution for eq (19):

s(x) = Ae[∇ψ
ψ

(−1+
√

1−ψ)]x +Be−[∇ψ
ψ

(1+
√

1−ψ)]x

We can see that local entropy depends upon length and not from mass of the body.

Therefore, we have entropy dependent on the size of subject in study!

To calibrate our A and B coefficients, we can see for their values at extremities,

proposing s(0) = 0 we find A = −B therefore:

s(x) = A
[
e[∇ψ

ψ
(−1+

√
1−ψ)]x − e−[∇ψ

ψ
(1+
√

1−ψ)]x
]

This equation is the solution to eq(18) and eq(19) for which we may say that entropic

source is coming from. Further, asserting A = s0 at initial time t = t0.

s(x) = s0

[
e[∇ψ

ψ
(−1+

√
1−ψ)]x − e−[∇ψ

ψ
(1+
√

1−ψ)]x
]

(21)
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8.1 Two particle Problem

The problem may easily presented as ratios:

1

m1

∆(s1ψ1) +
1

m2

∆(s2ψ2) = 0

m2

m1

+
∆(s2ψ2)

∆(s1ψ1)
= 0 (22)

It is important to emphasize that these two particles will have a constant mass ratio

and this shall be also the same for laplacians.

8.2 Three particle Problem

Let us see the problem for three different particles,

1

m1

∆(s1ψ1) +
1

m2

∆(s2ψ2) +
1

m3

∆(s3ψ3) = 0

Clearly, is seen that local entropy will be dependent of size, and thus can be represented

as mass ratios.

m3

m1m2

[m2∆(s1ψ1) +m1∆(s2ψ2)] + ∆(s3ψ3) = 0

We can generalize these equations in a second need.

8.3 N-Particle Problem

Let us generalize these equations for N-Particle system,

mn

Πn−1
i=1 mi

[
Πn−1
j∈N=1...sup(n−1)mj

⊗ n−1∑
g=1

∆(sgψg)

]
+ ∆(snψn) = 0

This expression can be linked to find the nth particle local entropy, thus finding its

temperature.
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9 Mobility of particles on a substrate or solution

The experimental activities of Nano3 group in Laboratoire Aimé Cotton, deal with

clusters deposition on substrate and the use of their self organisation for nanostruc-

tured materials engineering. One of the problem encountered is how to link diffusion

and mobility of particles deposited on a substrate to a local definition of the tempera-

ture. Being able to define temperature and entropy, will enable us to determine phase

transition that can describe the change from diffusion to nucleation process.

9.1 Brownian motion and Einstein model

One of the model commonly used to describe the motion of a particle on a substrate

are in a solution is brownian motion, known also as raandom walk. If the interaction

between the particle and the substrate or the solution is weak enough, then the particle

is free to move randomly in its environment. Even if the starting and ending points

are given, it is impossible to predict every intermediate steps traveled by a particle.

Its movements are completely randomized. Moreover, when several particles move at

the same time, they are exposed to unpredictable random collisions and as there is

no privileged direction, it makes more complicated to guess the trajectory. This is so

called Brownian Motion, generally defined as random motion of particles suspended

in a fluid resulting from their collision. The name has been given by Robert Brown

who observed, in the early 19th century, under a microscope, that particles trapped

in cavities inside pollen grains in water where in a constant state of agitation. About

a century after Brown’s discovery, Einstein explained the reason, why pollen grains

agitate constantly in water: their movements are influenced by every single water

molecules. Einstein was interested in the kinetic part of the Brownian Motion. He

predicted that the diffusion coefficient is related to Brownian particle’s displacement

by a simple law. D =
√

kB .T
6πηRt

where η corresponds to the viscosity of fluid; R the size
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of particle and t time; D is called the Diffusion coefficient. Nowadays, this theory is

applied to all kind of diffusion phenomenas. One of the main result of the Einstein’s

theory on the Brownian Motion predicts that the mean value of the displacement of

the particles is proportional to
√
t where t is time: λ =

√
2Dt, λ corresponds to the

mean value of the displacement of the particles; t time; D the Diffusion coefficient. We

implemented a numerical simulation of this random walk where the time t has been

replaced by N which is the number of steps. This numerical experience will enable us

to predict the behavior of particle’s movement, to demonstrate through this numerical

experiment, Einstein model prediction, and to verify that the extension of the defini-

tion of the temperature as described previously will show that brownian motion is a

phenomena with constant temerature and entropy.

Figure 1: Main result obtained by random walk simulation.

The figure above show the main result of the random walk simulation on trajectories

(random aspect), statistics of distribution of distances (stochastic phenomena) and

mean value of the displacement (Einstein model). This simulation done for diffusion

on a substrate (2D) can be easily extended to motion on a solution (3D).
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Figure 2: 3D simulation of a random walk in a solution.

9.2 Diffusion Limited Aggregation

What happen now if you allow a diffusing particle to nucleate, i.e. to stop and stick on a

nucleation site (defect on a substrate for instance). Such process is known as diffusion-

limited aggregation, or DLA, that produces fractal branching structures using random

motion for particles (diffusion) and particles sticking (nucleation). Evidence of this

process can be found at multiple scales in nature in both organic and inorganic systems.

First described by Thomas Witten and Leonard Sander in their 1981 article Diffusion-

Limited Aggregation, a Kinetic Critical Phenomenon, diffusion-limited aggregation is

a process in which particles of matter stick together (aggregate) as they chaotically

move (diffuse) through a medium that provides some sort of resistive (limiting) force.

As these particles clump together over time they form characteristic fractal branch-

ing structures known as Brownian dendrites or trees. We implemented this process

in a simulation (particle by particle step deposition) and we could demonstrate the

dendritic nature of the obtain nanostructures.

We will have to extend that simulation to many particle motion and to calculate

with our framework particle temperature. The expected results are constant temper-

ature during motion and a drop of temperature on nucleation. The many particle
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Figure 3: Fractal structure produced by particle by particle deposition.

Figure 4: Multiple particle motion with heterogeneous nucleation (on a nucleation site

(defect)) and homogeneous nucleation (particle collision).

simulation should also give us access to drastic change on temperature and entropy as

a signature of phase transition from gas phase (free particle on motion) to solid phase

(nucleation and nanostructures formation).
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10 Implementation of ζ Potential

To be able to link an experimental measurement to our concept of temperature, we

should find a physical variable that can be measured with good resolution and directly

ling to particles motion. A very important object which really matters to colloidal

science is ζ potential. This object is a physical property that is found in all particles

in suspension.

We would like to emphasize two descriptions, ζ potential is the electrical potential at

the slipping plane, and, ζ potential is a scientific term for electrokinetic potential in

colloidal dispersions.

Figure 5: Ionic concentration and potential difference as a function of distance

Why is the need for this potential? Observing our particles in movement would be

very difficult, and almost, even impossible to measure their entropies and temperatures.

Therefore, we need long-term stability, for which ζ potential comes into scene.

The solvent that will be used, shall be put into external field, electric one. Since, this

potential is not measured directly, we have models for that. Later, we will talk for

some factors that affects this potential and changes it drastically. On this purpose, we

find use of DVLO Theory.
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11 DVLO Theory

The main purpose in this theory is to show that there are some sort of forces, later

will be explained, that impact the stability of our system, colloidal. From ζ potential,

we emphasized that we need long-term stability, and we must find a way to solve and

explain this phenomena.

First, we have the external field, and we know that there will be attraction and re-

pulsion depending of particles charge. And, from this we can infer that stability is

dependent upon electro-potential energy VDV LO:

VDV LO = VA + VR + VM (23)

Where, VA stands for attractive forces, in general van der Waals forces, VR stands for

repulsive forces, due to counterions, VM stands for potential energy from solvent. The

VM potential is just a marginal contribution.

What we really care of are attractive and repulsive forces, for which they are responsible

for balance of the system, and further, stability. We may find also use of virial theorem

here, connecting kinetic energy with given potential.

Attractive and repulsive forces acts in distances. Further, we show:

VA = − A

12πd2
(24)

where A is the Hamaker constant for different solvents, d the distance, or particle

separation from each other. Then comes:

VR = 2πεaζ2e−κd (25)

where a is the particle radius, ε is the solvent permeability, κ function of ionic com-

position, ζ is potential. The Hamaker constant helps us determining the interaction

energy of Van der Waals forces. There are tables that shows this constant for different

solvents, for which is not important to our task. If these two forces are in balance, we

can have stability, and further determine ζ potential.
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Particles will undergo Brownian motion, and therefore we will see these particles ap-

proaching to each other. We have to try to achieve colloidal stability, in order to get

indirect measurements of ζ potential. This stability is maintaned from steric repulsion

and electrostatic stabilization.

12 Virial Theorem and link with ζ Potential

Our system will be of a colloidal one, and we have to give attention to two layers of

this system, inner or Stern layer, and outer or Diffuse layer, which keeps our system

bound. We should strongly remind the use of virial theorem in a bound system and

in stability.

For the whole system, with a given potential energy, we have:

2 < Ek >= n < Utotal > (25)

where n is the number of particles inside the system. From eq(18):

Ĥψi = −~2

2

n∑
i

1

mi

(ψi∆si + si∆ψi + 2∇si∇ψi)

without potential energy of any particle inside, and saying that Ĥ is the kinetic energy

of inside particles, we can relate the potential energy of DVLO Theory, which is our

outer region of system, with the inner region.

From eq(23), we can get the potential energy from electro-potential energy, by multi-

plying with the charge:

Utotal = QVDV LO <=> Utotal = nqVDV LO (26)

where Q is total charge which is dependent on the number of particles and the charge

itself.

From eq(25) and eq(26), we will have:

2 < Ek >= n < nqVDV LO > <=> 2 < Ek >= n2q < VDV LO > (27)
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Now using the relations, between hamiltonian, in our case the kinetic energy with the

inferred equation:

2Ĥψi = n2q < VDV LO > ψi (28)

having more,

2Ĥψi = n2q < VA + VR > ψi

deducing,

2Ĥψi = n2q (< VA > + < VR >)ψi (29)

and inferring the relation,

2Ĥψi = n2q

(
− A

12π
<

1

d2
> +2πεaζ2 < e−κd >

)
ψi (30)

writing now the full equation,

−~2

n∑
i

1

mi

(ψi∆si + si∆ψi + 2∇si∇ψi) = n2q

(
− A

12π
<

1

d2
> +2πεaζ2 < e−κd >

)
ψi

(31)

giving us the exact measurement of local entropy from ζ potential and ζ potential

from local entropy.

To further represent eq(31) in more compact way, we can write:

n∑
i

∆(siψi)

mi

=
qn2

~2

(
A

12π
<

1

d2
> − 2πεaζ2 < e−κd >

)
ψi (32)

Local entropy will be affected from the factors that ζ potential is affected, which are:

1. pH

2. Conductivity

3. Concetration

This task is a difficult one, even if the colloidal system is of two particles, since the

equation will be very hard to compute.

We will try to do this computation as in N-body problem, taking approximations and

then deducing the temperature of only one particle.
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13 Electrokinetic effects due to applied field

In applied field our system will behave different, and will show interactions between

particles. When having interaction, there will be charges and there will be formation

of structures. These electric charges are present in the surface of particles.

The link between temperature, entropy, surface charge is found in mobility of particles.

These effects are due to electrokinetic effects of the particles which consists of:

1. Electrophoresis

2. Electroosmosis

3. Streaming potential

4. Sedimentation potential

Electrophoresis, is the study of the movement of a charged particle relative to the

system suspended under the influence of applied field.

Electroosmosis, is the study of the movement of a liquid to a stationary charged sur-

face.

Streaming potential, is the study of the electric field generated when a liquid is forced

to flow through a stationary charged surface.

Sedimentation potential, is the study of the electric field generated when charged par-

ticles sediment.

Our case consists in the first item, electrophoresis study. Supposingly, having a field

applied toward electrolyte, charged particles will be attracted from electrode of op-

posite charge, and there will be viscous forces acting on the particles which tends to

oppose this movement.

In the case of equilibrum, which is the case we are interested in, velocity shall be con-

stant. We will try to link this velocity, to our object, local entropy, local temperature.

The velocity in a unit field will be called as the particle mobility, or electrophoretic

mobility.
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The colloidal system will be of nanoparticles, which are affected from electric field.

This mobility, also called as drift velocity:

µE =
v

E

Or in a moderated way and easy for us to study:

µE =
2εζf(κa)

3η

where ζ is potential, ε is dielectric constant, η is viscosity, and f(κa) is Henry’s func-

tion, where κ is Debye screening length, more use find of, κ−1.

This model is mostly used for aqueous media, and we would be able to moderate

concetration. There are different approximations made for Henry’s function.
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14 Conclusions

In this work, we tried to find a framework for a more direct and local description

of the temperature, with the aim of generalizing the concept at several scales. We

extended the work to apply this framework for both introducing temperature effect

on the description of the mobility of particle in a surface for example and to find a

way to access to local temperature measurement through its mobility in more complex

environment like polar liquid, water. Unfortunnately, due to confinement and moving

of the lab, it was difficult to achieve all the goals, but a promising approach to link

mobility (translational states) and temperature through a Lagrangian formalism was

initiated. Finally, we gave a link with an experimental accessible measure and local

temperature is proposed. My idea is now an open problem, with assistance of prof.

Nouari Kebaili and the final goal is to solve eq(32) for nth particles and/or one particle

system. Finding the local entropy, gives us access to calculate the local temperature.

22



References

[1] A Lagrangian Description of Thermodynamics. Cenalo Vaz

[2] Introduction to Quantum Thermodynamics: History and Prospects. Robert Al-

icki, Ronnie Kosloff

[3] Quantum Thermodynamics: An introduction to the thermodynamics of quantum

information. Sebastian Deffner, Steve Campbell

[4] Lecture Notes in Advanced Thermodynamics. Van Peter, Antali Mate

[5] Temperature as a quantum observable. Sushrut Ghonge, Dervis Can Vural

[6] Existence of Temperature on the Nanoscale.

Michael Hartmann, Gunter Mahler, Ortwin Hess

[7] From Lagrangian Mechanics to Nonequilibrium Thermodynamics: A Variational

Perspective. Francois Gay-Balmaz, Hiroaki Yoshimura

[8] Thermal and Statistical Physics. Tom Charnock

[9] Hanbook of Differential Entropy. Joseph Victor Michalowicz, Jonathan M.

Nichols, Frank Bucholtz

[10] Increasing Entropy for colloidal stabilization. Songping Mo, Xuefeng Shao,

Ying Chen, Zhengdong Cheng

[11] Measurement and application of Zeta-Potential. Branko Salopek, Dragan

Krasic, Suzana Filipovic

[12] Measuring Zeta Potential. Fanny Caputo

[13] Overview of DVLO Theory. Gregor Trefalt, Michal Borkovec

23

http://arxiv.org/abs/1110.6152v1
https://arxiv.org/pdf/1801.08314
https://arxiv.org/pdf/1907.01596
https://arxiv.org/pdf/1907.01596
http://www.rmki.kfki.hu/~vpet/AdvThd/adv_thermo_lnp1.pdf
https://doi.org/10.1088/1742-5468/aacfb8
http://arxiv.org/abs/quant-ph/0312214v4
http://dx.doi.org/10.3390/e21010008
http://dx.doi.org/10.3390/e21010008
http://www2.iap.fr/users/charnock/notes/thermalandstatisticalphysics.pdf


[14] Particle Size Distribution and Zeta Potential Based on Dynamic Light Scattering:

Techniques to Characterize Stability and Surface Charge Distribution of Charged

Colloids. Sanat Karmakar

[15] Zeta Potential, an introduction in 30 Minutes. Marlvern Instruments Ltd

[16] Diffusion Limited Aggregation. Andre Offringa

24


	Motivation
	Statistical definition
	The model
	Analogy and Lagrangian formalism
	Introducing locality
	New equation
	Entropic Source
	Single and many particles Problem
	Two particle Problem
	Three particle Problem
	N-Particle Problem

	Mobility of particles on a substrate or solution
	Brownian motion and Einstein model
	Diffusion Limited Aggregation 

	Implementation of  Potential
	DVLO Theory
	Virial Theorem and link with   Potential
	Electrokinetic effects due to applied field
	Conclusions

